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Abstract

Energy landscape theory suggests that native interactions are a major determinant

of the folding mechanism of a protein. Thus, structure-based (Gō) models have, aided by

coarse-graining techniques, shown great success in capturing the mechanisms of protein

folding and conformational changes. In certain cases, however, non-native interactions
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and atomic details are also essential to describe the protein dynamics, prompting the de-

velopment of a variety of structure-based models which include non-native interactions,

and differentiate between different types of attractive potentials. Here, we describe an

all-protein-atom hybrid model, termed ProfasiGo, that integrates an implicit solvent

all-atom physics-based model (called Profasi) and a structure-based Gō potential, and

its implementation in two software packages (PHAISTOS and ProFASi) that are devel-

oped for Monte Carlo sampling of protein molecules. We apply the ProfasiGo model

to study the folding free energy landscapes of four topologically similar proteins, one of

which can be folded by the simplified potential Profasi, and two that have been folded

by explicit solvent, all-atom molecular dynamics simulations with the CHARMM22*

force field. Our results reveal that the hybrid ProfasiGo model is able to capture many

of the details present in the physics-based potentials, while retaining the advantages

of Gō models for sampling and guiding to the native state. We expect that the model

will be widely applicable to study the folding of more complex proteins, or to study

conformational dynamics and integration with experimental data.

Introduction

It is an essential biological fact that most,1 though not all,2 naturally-occurring proteins can

self-organize to ordered three-dimensional structure(s). There has thus been an enormous

progress in solving protein structures, as evidenced by the observation that the Protein

Data Bank has collected more than 142,000 structures up to date. Despite substantial

progress in combining experiments, theory and simulations to study protein folding,3–9 there

is, however, a substantial gap between the number of structures we know and the proteins

for which we know the folding mechanism. In addition to the intellectual challenge involved

in understanding the protein folding mechanism, modeling protein folding has potential uses

in for example protein design,10,11 in molecular drug development,12 and in interpreting

pathogenicity of genomic sequence variation.13
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Recent advances in computer hardware, methods for enhancing sampling and protein

force fields have made simulations an irreplaceable tool in the study of protein folding.14–18

In principle, a long, equilibrium molecular dynamics (MD) simulation based on an accurate

all-atom, physics-based, explicit-solvent model can not only provide spatial and temporal

details on the structural ensembles of folded states, but also elucidate the mechanism of

folding/unfolding transitions.19 While this has been achieved for small fast-folding proteins,5

and even a natural protein,20 such work generally requires access to extensive sampling

using specialized hardware (e.g. Anton21). Further, most proteins are not ‘fast-folding’,22

and although it is possible also to reach long timescales through using e.g. Markov state

models23 or enhanced sampling techniques,24 it will not be possible to study folding processes

for many proteins using routine all-atom MD simulations in the foreseeable future.

As an alternative to the detailed all-atom physics-based models, native-structure-based

models (also called Gō models25) have been widely applied to investigate the folding and as-

sembly mechanisms of ordered and disordered proteins.26–28 These models are applicable to

larger sizes, complex topologies and slow kinetics, especially when aided by coarse-graining

techniques.29,30 The success of these models has been explained by the proposal that such

models naturally realise a key feature of naturally-occurring proteins, that is, a minimally

frustrated and ideally funnel-shaped energy landscape,31 and indeed analyses of all-atom MD

simulations reveal the central role of native contacts.32 The principle of minimal frustration

in energy landscape theory directly leads to a conclusion that protein topology is a key

factor governing the folding mechanism.32–34 Currently, there are many software tools avail-

able to build and simulate Gō-type models, including SMOG,35 AWSEM-MD,36 CafeMol,37

MMTSB,38 CHARMMing,39 eSBMTools,40 NAMD-Go,41 SOP-GPU,42 GENESIS,43 Mon-

teGrappa,44 and SIMONA.45 Most of them are based on MD simulation though the last

two utilise a Monte Carlo (MC) framework. Also, nearly all previously used Gō-type models

have employed a coarse grained representation of the protein.

In most Gō-type models, the native interactions are emphasised by an attractive poten-
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tial, while the interactions not present in the native folded structures (non-native interac-

tions) are usually simply treated with a repulsive potential. Nevertheless, these non-native

interactions may have significant impact on folding process by adding ‘roughness’ to the

energy landscape,46–50 such as trapping in misfolded or intermediate states and causing ag-

gregation and disease.49 Residual non-native interactions, resulting in local violations of the

minimal frustration principle,51 are considered to be a consequence of the conflicting require-

ments of foldability and function of a protein sequence.52 Opposite to the common view that

the non-native interactions contribute primarily to the roughness of landscapes and frustrate

the folding process, there are also cases that demonstrate that the non-native interactions

facilitate the biological process and play an effective role in protein folding.53–57 The po-

tentially important role and related open questions of non-native interactions have driven

the development of many enhanced structure-based models58 by introduction of additional

potentials (e.g. the Debye-Hückel-type potential to approximate electrostatic interactions

at low salt concentrations,59–61 and the Gaussian potential to model hydrophobic interac-

tions48,56,62) and heterogeneous energetic parameters to distinghuish between different types

of contacts.30,60,63,64

Inspired by previous hybrid models and multi-scale strategies,65–71 we have developed

a hybrid physics-based and structure-based model (denoted as ProfasiGo model) within

the framework of both PHAISTOS72 and ProFASi73 simulation packages for Monte Carlo

simulation of protein molecules. In our model, the physics-based term is inherited from the

implicit solvent force field, denoted as Profasi, which has previously been used extensively to

study protein folding, aggregation and protein structure determination.74–78 (Note that there

is both a simulation software package and an energy function called Profasi; we use the term

Profasi for the energy function and ProFASi for the software package.) The physics-based

term is transferable and preserves the atomistic representation (including hydrogen atoms)

of the protein. We then introduce the structure-based potential (EGo) as an additional term,

thus ‘funnelling’ the underlying energy landscape further, so as to accelerate the folding
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transitions. In this way the hybrid model is designed to be able to capture more complex

energy landscapes. In addition, our software architecture facilitates the investigation of the

driving force in protein folding (e.g. electrostatic, hydrophobic interactions and hydrogen

bonds) through adjustment of the corresponding potential terms.

In this paper we focus on describing and validating the approach in studies of protein

folding. In particular we study four ↵-helical bundles, the designed proteins ↵3W and ↵3D,

and the homeodomains EnHD and UVF, that pairwise have similar topologies but differ in

folding mechanism. One protein can be folded with the pure Profasi force field, and two

with the all-atom CHARMM22* force field, enabling us to examine the extent to which the

hybrid model may capture folding mechanisms in a force field without the structure-based

term.

Models and Methods

Profasi model

The Profasi model belongs to the class of implicit solvent all-atom models (including all

hydrogen atoms) designed for MC simulation73 and has been applied in protein folding,

aggregation, and determination of protein structures and ensembles with experimental re-

straints.74,75,77–80 In Profasi the flexible degrees of freedom are the Ramachandran (� and  )

and side chain (�) torsional angles, whereas bond lengths and angles, and peptide plane !

torsional angles, are fixed. The interaction potential is composed of four terms:

EProfasi = Elocal + Erepulsive + EHB + Esidechain.

The first term, Elocal, accounts for local interactions between atoms, such as the electrostatic

interactions between adjacent residues. The other three terms (Erepulsive, EHB and Esidechain)

account for non-local interactions: excluded-volume effects, hydrogen-bond interactions, and
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residue-specific interactions between pairs of side-chains, respectively. The precise form of

these four terms can be found in the original description.75

Atomic Gō model

In general, the potential energy function of any Gō-type models, EGo, as a function of the

coordinates of the native structure, �0, can be simplified into three terms:

EGo(�0) = Ebonded(�0) + Enonbonded(�0)

= Ebonded(�0) + Erepulsive(�0) + Eattractive(�0)

The first two terms, Ebonded and Erepulsive, maintain the correct backbone geometry, while

the last term Eattractive determines the folding of a peptide chain by attractive inter-atom or

coarse grained inter-residue interactions. These attractive interactions are generally defined

by a pairwise contact list derived from native structure, called the native contact map.

Construction of a native contact map is thus a key step to build a Gō model. In the context

of a standard Gō model, the short-range forces to stabilise the native state (e.g. hydrogen

bonding, salt bridges and VDW interactions), are approximately represented by the native

contact map, while the long-range or nonlocal interactions, like protein-water interactions

or water-mediated interactions, are considered to be averaged out and described using a

mean field perspective. Currently, there are several algorithms to define the native contact

map, including a cutoff-based algorithm,29,55 Shadow Contact Map (SCM),81 and Contacts

of Structural Units.82 The native contact maps calculated by different algorithms differ

from each other to certain extents, but the resulting thermodynamic properties and folding

mechanism are reasonably consistent and robust.83–85

For comparison with our hybrid model, we constructed a pure atomic (without hydrogen

atoms) Gō model using SMOG35 with default parameters (an all-atom contact map by

SCM with a cutoff of 6.0 Å). Briefly, SCM is an algorithm to determine contacts between
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interior protein surfaces without allowing unphysical or occluded contacts.81 Here, the all-

atom attractive Gō potential EAA

attractive
(�0) is expressed by a Lennard-Jones (LJ) potential:

EAA

attractive
(�0) =

X

i<j�3

✏Go(i, j)[(
�ij
rij

)12 � 2(
�ij
rij

)6],

where, �ij and rij are the native and instantaneous distance between atom i and atom j, and

✏Go(i, j) is the strength of pairwise attractive potential between atom i and atom j. It was

homogeneously set to be 1.0 in this work, although it could be tuned to introduce sequence

information,64,86 through e.g. the Miyazawa-Jernigan matrix63 or multi-scaling methods.87

Aiming to represent a standard Gō model and for fair comparison, we kept the energetic

parameters as general as possible.

ProfasiGo model

We integrated a structure-based potential (EGo) into the Profasi force field, and termed this

hybrid model ‘ProfasiGo’: EProfasiGo = EProfasi + EGo. We opted to use a coarse-grained

version of the native contact map in which only C↵-C↵ contacts are included so as to intro-

duce minimal extra potential into Profasi force field. In other words, the Gō potential was

introduced as a minimal perturbation. We implemented two variants of EGo into both the

ProFASi and PHAISTOS software packages (which already implemented the Profasi energy

function). One is based on a 12-10 LJ-like potential:

E1210
Go

= ECA

attractive
(�0) =

X

i<j�3

✏CA

Go
(i, j)[5(

�ij
rij

)12 � 6(
�ij
rij

)10];

and the other uses a 12-10-6 potential described by

E12106

Go
=

X

i<j�3

✏CA

Go
(i, j)[13(

�ij
rij

)12 � 18(
�ij
rij

)10 + 4(
�ij
rij

)6].
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They represent the potential functions used in two popular versions of the coarse-grained

Gō model: the Clementi-Onuchic model29 and the Karanicolas-Brooks model.30 The E12106
Go

function is a modified LJ potential (Fig. S1) that incorporates a low energy barrier (a des-

olvation penalty) which has been shown to be able to increase the folding cooperativity of

two-state folders,88,89 and improve model prediction.90 In both formulations, ✏CA

Go
(i, j) deter-

mines the depths of the potential wells and thus sets the strength of the native bias relative

to the EProfasi term. To keep the different models self-consistent, we built the coarse-grained

native contact map used in the ProfasiGo model from the all-atom geometric occlusion con-

tact map used in the pure Gō model described above. In particular, we considered two

residues to be in contact in the ProfasiGo model if they share at least one atomic contact in

the atom-based Gō model.

MC simulations with Profasi and ProfasiGo model

The MC simulations with Profasi model and ProfasiGo model were performed by the mod-

ified versions of ProFASi73 or PHAISTOS software,72 both of which have implemented the

Profasi force field.75 The patches for adding the Gō functions to the ProFASi and PHAISTOS

software will be available at http://github.com/XXX.

We simulated ↵3W using parallel tempering/replica exchange (PT) with a set of eight

temperatures ranging from 279K to 394K with the same interval. To get efficient sampling

of the free energy landscape, we also used MUNINN, which employs the generalized multi-

histogram equations91,92 and a nonuniform adaptive binning of the energy space, ensuring

efficient scaling to large systems. We used a � (inverse temperature) ranging from 1.3 to 2.4,

corresponding to a temperature range of 278K to 513K.

Three different elementary MC moves are used in the simulations: (a) biased Gaussian

steps (BGS), (b) rotations of individual side-chain angles (Rot), (c) pivot-type rotations

about individual backbone bonds (Pivot). The BGS move is semi-local and updates up to

eight consecutive backbone degrees of freedom but keeps the ends of the segment approxi-
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mately fixed.

MD simulations with pure Gō model

Simulations with the pure Gō model were performed with Gromacs 4.6.5.93 The dynamics

of the systems was simulated using the Langevin thermostat with friction coefficient of � =

1.0. Reduced units and a time step of 0.5 fs were used. Multiple trajectories were collected

at a temperature range around the folding temperature (Tf ) for each protein system. The

length of each simulation is 4x108 simulation steps to include dozens of folding/unfolding

transitions. We saved conformations every 2000 integration steps.

Order parameters to characterise the folding mechanism

The fraction of native contacts, Q, has been shown to be good reaction coordinate in the

study of protein folding.32,94 To describe the folding mechanism of the three-helical bundle

proteins we also employed three local order parameters for helix formation, QH1, QH2, QH3,

and three order parameters that describe the pairwise assembly of helices, QH1-H2, QH2-H3,

QH1-H3. In all cases, QX is a measure of the progress of helix formation or assembly, by

quantifying how far native contacting atoms are from their respective reference distances.

More precisely, QX is a summation over the native contact pairs in the list denoted as X:

QX =
1

NX

NXX

(i,j)2X

1

1 + e�(rij��r
0
ij)
,

where X can be H1, H2, H3, H1-H2, H1-H3 and H2-H3, which are the lists of intra-segment

contacts of helix1, helix2, helix3 and inter-segment contacts between them. Here, rij is the

distance between atom i and atom j in instantaneous structure (in units of nm), while r0
ij

is

the corresponding native distance. We set �=50 nm�1 and �=1.5 in this work. Defined in

this way, QX values fluctuate between 0 (non-native) and 1 (native).

In addition, we employed four folding order parameters: Qsecondary to measure the frac-
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tion of native contacts within the three helices, EHB (backbone hydrogen bond energy) to

quantify the formation of secondary structure, Phelix to measure the proportion of ↵ helical

content, and Pbeta to measure the proportion of � strand content, and two assembly order

parameters: Qtertiary to measure the fraction of native contacts between the three helices,

and EHP (hydrophobic energy), to quantify the formation of hydrophobic core.

Table 1: Atomistic Models and their ability to fold ↵3W, ↵3D, EnHD and UVF

System Size (a.a.) Topology Profasi SMOG ProfasiGo CHARMM22*
↵3W 67 left-handed Y Y Y -
↵3D 73 right-handed N Y Y Y

EnHD 54 right-handed - Y Y N
UVF 52 right-handed N Y Y Y

’Y’, ’N’ and ’-’ refer to the ability of the force field or model to fold the protein. ’Y’: folded succes-
fully, ’N’: failed to fold, ’-’: unknown.

Selection of model proteins

Our goal was to develop the hybrid ProfasiGo model, and to test its range of applicability by

benchmarking against other possible methods for studying protein folding. We thus focused

our work on four three-helix bundle proteins whose folding mechanisms have previously

been examined. The two proteins ↵3W and ↵3D are designed proteins that consist of

three ↵-helices connected by two turns (Fig. 1A-B). According to the arrangement of the

helices, the topology of ↵3W and ↵3D are considered to be left-handed and right-handed,

respectively.95,96 In this sense they represent a pair of proteins with similar topologies but

different conformational ‘chiralities’. We also chose the engrailed homeodomain (EnHD) and

a designed thermostabilized homeodomain (UVF)97 (Fig. 1C-D) which are also three-helix

bundle proteins. EnHD and UVF represent a pair of proteins with almost the same size and

same handedness of the arrangement of the helices (Fig. 1 and Table 1). The similar topology

of these four proteins allows us to use a consistent set of order parameters (as defined in the
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Figure 1: Contact maps and structure of the four three-helix bundle proteins

studied here. Helices 1, 2 and 3 are coloured in red, green and blue, respectively. The
inter-helix contacts between helix 1 and 2, between helix 1 and 3, and between helix 2 and 3
are coloured in orange, cyan and magenta, respectively. ↵3W and ↵3D share similar topology
but different handedness of the orientation of the three helices; their sequence identity is 18%.
EnHD and UVF have the same topology and handedness and a 23% sequence identity.
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Method section) to characterise the folding mechanism. Because of the inclusion of a native-

state bias, both the pure Gō model and the ProfasiGo model are expected to fold all four

proteins to their native states. This is, however, not the case for the two physics-based force

fields (Table 1). By looking across all four proteins, we can compare the folding mechanism

observed in the ProfasiGo model with the results of three other models (a pure Gō model,

the simple Profasi force field and an all-atom explicit solvent force field (Table 1).

The remainder of the manuscript is thus constructed as follows. (i) We first compare the

folding mechanism of a single protein (↵3W) in the hybrid ProfasiGo model with that of the

parent Profasi model. (ii) We then compare the folding mechanism of the four proteins under

the ProfasiGo model to the results in a pure Gō model, and examine the dependency of the

results on model parameters. (iii) Finally, we compare the folding mechanism of ↵3D and

UVF in ProfasiGo and the all-atom, explicit solvent CHARMM22* force field simulations.

Results and Discussion

ProfasiGo and unbiased Profasi capture similar folding mechanisms

of ↵3W

The designed ↵3W protein has previously successfully been folded by simulations with both

coarse-grained models98–100 and all-atom force fields.5,95,101–103 In particular, its folding ther-

modynamics has been characterized by Irbäck et al. using the pure Profasi force field,75

making it particularly suitable to be used for testing and calibrating our ProfasiGo model.

We sampled the free energy landscape of ↵3W with the ProfasiGo model in the multi-

canonical (‘flat-histogram’) ensemble using the MUNINN software.91,92 Such a generalized

ensemble method can not only improve sampling efficiency, but also directly helps deter-

mine the melting temperature where folding and unfolding transitions typically occur most

frequently, a time-consuming but often necessary process in MD or MC simulations.37,64 Sub-

sequently, the thermodynamics properties at any temperature of interest can be obtained by
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reweighting techniques.104

Throughout this manuscript we explore protein folding through such enhanced sampling

simulations, examining folding mechanisms by analysing and comparing free energy profiles.

As an example, we calculated three order parameters for folding, QH1, QH2 and QH3 (see

definitions in Models and Methods), that describe the formation of each of the three helices,

and project the conformational space onto the two-dimensional free energy surfaces spanned

by combinations of these coordinates (Fig. 2A). Free energy surfaces as a function of such

order parameters have been widely used to elucidate protein folding and assembly mech-

anisms through minimum free energy pathways.62,64 For ↵3W, we observe that there are

no low energy pathways along the diagonal lines in these free energy surfaces (F(QH1,QH2),

F(QH1,QH3) and F(QH2,QH3)), indicating that the folding of the three helices is independent

of one another, without strong coupling. Furthermore, there are multiple possible folding

routes, suggesting heterogeneity in the order of formation of the three helices.

In addition to examining the order of formation of the different secondary structure

elements, we also analysed the relationship between formation of secondary and tertiary

structure; such an analysis would be useful to distinguish between a nucleation condensation

model, diffusion collision or framework model, or hydrophobic collapse model for folding.

We thus calculated two additional local order parameters: Qsecondary to measure the fraction

of native contacts within the three helices and Phelix to measure the fraction of helical con-

tent, and two order parameters aimed to capture tertiary interactions: Qtertiary to measure

the fraction of native contacts between the three helices and the hydrophobic energy, EHP,

to quantify the energy of forming the hydrophobic core. The two-dimensional free energy

surfaces as a function of EHP and Phelix, and Qsecondary and Qtertiary illustrate a clear pathway

that helix folding occurs before the formation of the hydrophobic core (Fig. 2A). There-

fore, the thermodynamic free energy analysis suggests the folding of ↵3W in this model can

be well described by the diffusion collision model105 by which the native secondary struc-

tures are formed before the tertiary structures. This conclusion is consistent with previous
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studies.66,101

Having analysed the folding free energy surfaces in our new hybrid model we proceed to

compare with the surfaces obtained in the same model, but without the native bias. The

basic hypothesis is that, for the proteins that can be folded by the physics-based (non-Gō)

Profasi model, the hybrid model would retain most of the features observed in the less biased

model. By taking the same protocol as previously applied in the work of Irbäck et al,75 we

performed replica-exchange MC simulations with the pure Profasi model, and determined

the folding free energy surfaces for ↵3W (Fig. 2B). By comparing with the free energy

surfaces obtained from the hybrid ProfasiGo model (Fig. 2A), we find overall similar shapes

of the free energy landcapes, suggesting a similar mechanism for folding of ↵3W. In addition

to additional ‘roughness’ of the landscape in the pure Profasi model, the major difference

are two intermediate states present on the free energy surface F(EHP,Phelix) sampled by the

Profasi model. Inspection of the structures of these intermediate states revealed that the

consist of very long helices or a high proportion of beta strands, but without any substantial

hydrophobic packing, which we consider to be artefacts of the Profasi model.

In summary, the results suggest that ↵3W folds by a diffusion collision mechanism in

both the pure Profasi model and in the hybrid ProfasiGo model. This observation supports

the idea that the introduction of the native-biased Gō potential mostly acts to smoothen the

energy landscape of protein folding, but does not substantially change the folding mechanism.

This in turn suggests that simulations of protein folding with the hybrid model would yield

realistic folding mechanisms even in cases where folding simulations are not possible with

the pure Profasi model.

Comparing the hybrid model with a pure Gō model

While the ProfasiGo model shows the ability to reproduce the folding mechanism as revealed

by the unbiased Profasi model, we also examined whether the pure Gō model would suggest

a similar mechanism. We performed constant temperature MD simulations using a pure
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Figure 2: Similar folding mechanisms for ↵3W in the Profasi and ProfasiGo mod-

els. (A) Free energy surfaces from MC simulations with the ProfasiGo model with ✏Go=0.2
and reweighted to 346K. The top three panels show F(QH1,QH2), F(QH1,QH3), F(QH2,QH3),
where QH1, QH2 and QH3 are the fraction of native intra-helical contacts. The bottom three
panels show F(EHB,EHP), F(EHP,Phelix) and F(Qsecondary,Qtertiary). Here EHB and EHP are
the backbone hydrogen bond energy and hydrophobic energy, respectively, while Phelix is
fraction of helix formed. Low free-energy pathways are labeled by white arrows. (B) Same
plots as in A, but from MC simulations by the Profasi model and analyzed at T=303K.
Possible misfolded states are highlighted by blue dashed circles. All free energies are in units
of kcal/mol.
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all-atom Gō model generated by SMOG server with default parameters. By performing MD

simulations on different temperatures ranging from 100 to 130K, which cover the expected

folding temperature for normal proteins,35 we found the folding temperature for ↵3W in

SMOG Gō model to be around 109K. We then projected the MD trajectories onto the same

folding order parameters as we used in the ProfasiGo model (Fig. S2). Unexpectedly, the

results are rather different, and indicate a more strongly coupled folding process for all

three helices. Thus the results from the pure Gō model suggest a nucleation condensation

mechanism, in contrast to the diffusion collision mechanism revealed by both the Profasi

and ProfasiGo models. Without more detailed experimental data available for the folding

of ↵3W it is difficult to know which model is more realistic, but our hypothesis is that the

combination of the physical and Gō model in principle provides access to more complex and

varied mechanisms.

Distinguishing between folding mechanisms of ↵3W and ↵3D

Next, we studied the folding mechanism of ↵3D, which has similar topology but different

handedness of the packing the three helices. We carried out MC simulations of ↵3D with the

same strategy as for ↵3W, and compared the resulting free energy surfaces of the two models.

The results suggest significant difference in the free energy surfaces between ↵3W and ↵3D

(Fig. 3). Not only is the folding pathway of the three helices in ↵3D distinct from ↵3W, but

the order of the formation of secondary and tertiary structure is also remarkably different.

For ↵3W, the results suggest that the secondary structure forms before the hydrophobic core,

while for ↵3D, the formation of secondary structure and the hydrophobic core are strongly

coupled. Therefore, the folding mechanisms of ↵3W and ↵3D represent two different models:

diffusion collision and nucleation condensation, respectively. This conclusion is consistent

with recent work carried out by Shao with integrated-tempering-sampling MD simulations.101
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α3W

α3D

F(QH1,QH2) F(QH1,QH3) F(QH2,QH3) F(EHB,EHP)	"
 	#


Figure 3: Distinct folding mechanism of ↵3W and ↵3D suggested by the ProfasiGo

model. (A) F(QH1, QH2), F(QH1, QH3) and F(QH1, QH2). (B) F(EHB, EHP). The results
for ↵3W and ↵3D are shown in the first and second row, respectively. Their free energy
landscapes were sampled by MUNINN with ✏Go=0.3, and reweighted at Tf=373K for ↵3W
and Tf=339K for ↵3D, respectively. Low free-energy pathways are labeled by white arrows.
All free energies are in units of kcal/mol.
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Distinguishing between folding mechanisms of EnHD and UVF

After demonstrating that the ProfasiGo model can distinguish the folding mechanism of a

pair of proteins with similar topology but different handedness of the packing, we proceeded

to a more challenging case: to capture the differences in the folding mechanism of a pair of

proteins with the same topology; such differences are generally difficult to capture within a

pure Gō model.30

We chose the engrailed homeodomain (EnHD) and its thermostabilized variant (UVF)97

as our target systems (Fig. 1C-D and Table 1), and compared the global free energy land-

scape by projecting the conformational space onto a few global order parameters, including

EHB (backbone hydrogen bond energy) and EHP (hydrophobic energy). The free energy

surfaces are quite different between EnHD and UVF (Fig. 4), suggesting the presence of

folding intermediate states, which previously have been proposed by both simulation and

experimental studies.106,107 The two-dimensional free energy surfaces of F(EHB,EHP) suggest

that EnHD has a tendency to form secondary structure before the formation of hydrophobic

core, while UVF tends to form the hydrophobic core coupled with the formation of secondary

structures. In addition, the conformational distribution in the free energy surfaces suggests

that UVF can sample conformational regions with lower hydrophobic energy. This may be

explained by the fact that UVF has higher percentage of hydrophobic residues.101 In any

case, our results suggest that the global folding mechanism of the two proteins can be dis-

tinguished by the ProfasiGo model despite the fact that they share almost exactly the same

topology.

Effects of the strength and shape of the Gō potential

The strength of the Gō potential relative to the physical potential, determined by ✏Go, is a

free parameter in the ProfasiGo model. To assess how sensitive the results are to the choice of

this value, we performed MC simulations of ↵3W with the same generalized ensemble method

but different values for ✏Go. The resulting free energy landscapes at their corresponding Tf
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Figure 4: The ProfasiGo model suggests distinct free energy profiles for two pro-

teins with the same topology (EnHD and UVF). (A-B) F(EHB,EHP) for EnHD and
UVF, respectively. (C) F(Qtot) for EnHD and UVF. The results are from multicanonical MC
simulations with the ProfasiGo model and reweighted to their corresponding folding tem-
peratures (356 K and 376 K for EnHD and UVF, respectively). Low free-energy pathways
are labeled by white arrows.

show very similar free energy surfaces for different Gō strengths, indicating the same folding

mechanism. Thus, our results suggest the folding mechanism predicted by the ProfasiGo

model is quite robust to the variety of Gō strength with this range. This conclusion is also

supported by comparison of the free energy surfaces projected onto other order parameters,

and by the corresponding simulations on UVF (Fig. S3). Unsurprisingly, we find that the

free energy surfaces with different ✏Go, e.g. as a function of total potential energy (Etot)

and RMSD, show that the energy landscapes become more ‘funnelled’ as the strength of Gō

potential increases (Fig. 5 and Fig. S3).

We also tested two types of Gō potential (12-10 and 12-10-6 forms as described in the

Methods section), again using ↵3W as the test case, and found that the folding mechanism

predicted by the ProfasiGo model is not sensitive to the shape of Gō potential, though

we did find a small increase of the free energy barrier (Fig. S4) when using the 12-10-

6 form. Previous simulations based on the coarse-grained Gō models have shown that the

introduction of the desolvation barrier can help rationalise the diversity in the protein folding

rates as well as the experimentally observed folding cooperativity.88,89,108 Our observation

that the mechanism is less sensitive to the choice of the functional form in the context of
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Figure 5: The Gō potential makes the energy landscape more funnelled. (A) Profasi
model of ↵3W (equal to a ProfasiGo model with ✏Go = 0.0) at Tf = 303K; (B) ProfasiGo
model with ✏Go = 0.1 at Tf = 315K; (C) ProfasiGo model with ✏Go = 0.2 at Tf = 346K; (D)
ProfasiGo model with ✏Go = 0.3 at Tf = 370K. (E) The curves of heat capacity in ProfasiGo
models with variant ✏Go ranging from 0.0 to 0.5.
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the ProfasiGo model implies that the non-native interactions are fairly well captured by the

physics-based term, thus alleviating this responsibility from the structure-based term.

Comparison of ProfasiGo, Gō and all-atom MD simulations

The availability of long time-scale, unbiased MD simulations of both ↵3D and UVF per-

formed with ANTON5 allowed us to conduct a final experiment, comparing the free energy

landscapes and protein folding mechanisms obtained by different models, spanning from a

pure Gō model (SMOG), the hybrid ProfasiGo model, to an explicit solvent, all-atom force

field (CHARMM22*109 with TIP3P water110).

To examine the folding mechanisms obtained from different models, we projected the

folding trajectories of ↵3D and UVF onto the two-dimensional free energy surfaces arising

as combinations of QH1, QH2 and QH3 (Fig. S5 and Fig. S6). The results suggest that the

three helices fold independently in the ProfasiGo model, while they are strongly coupled in

the pure Gō model. The folding of the three helices is more complex in CHARMM22*, but

is consistent with ProfasiGo in the sense that it also finds the helices to form independently.

To examine the global free energy landscape, we further projected the folding trajectories

onto two-dimensional free energy surfaces of F(Qsecondary, Qtertiary) for ↵3D (Fig. 6) and UVF

(Fig. S7). We find that the free energy landscape from the ProfasiGo model is more similar

to those of CHARMM22* than those from the pure Gō model.

Conclusions

Here we introduce a model that serves as a hybrid between an atomistic physics-based

potential and a residue-level structure-based (Gō) model, in the context of a Monte Carlo

simulation framework. We demonstrate that our model has the ability to successfully capture

the protein folding mechanism at a level similar to a pure physics-based model. The model

provides features not available with traditional structure-based approaches; for example,
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Figure 6: Comparison of the global free energy landscapes of ↵3D obtained from

a pure Gō model, the hybrid ProfasiGo model and an explicit solvent force field.

The results show the free energy surfaces of ↵3D as a function of Qsecondary (the fraction of
native contacts within the three helices) and Qtertiary (the fraction of native contacts between
the three helices) obtained from the ProfasiGo model with ✏Go = 0.5 (A), SMOG (B) and
CHARMM22* (C). All free energies are in units of kcal/mol.

it is capable of distinguishing between different folding pathways for topologically similar

proteins. Finally, the procedure is complementary to physics based models in cases where

these fail to fold to the native state (or do so excessively slowly).

Our procedure has a some limitations. Like for most force fields, the experimental folding

temperature cannot be perfectly reproduced, and the folding temperature must therefore be

located by scanning a range of temperatures. Secondly, the fact that we have chosen Monte

Carlo as the basis for our approach makes it difficult to obtain realistic kinetic information.

This could potentially be be mitigated by careful selection of moves, or restricting the analysis

to longer time-scales.111,112

The Monte Carlo approach, however, provides substantial benefits in terms of compu-

tational efficiency. Our procedure requires only a few weeks of computation on a single

CPU to obtain converged simulations on modest size proteins (with 40-80 residues), a dra-

matic improvement over comparable explicit solvent force field simulations. This makes it

attractive for rapidly probing structure-mechanism relationships, taking input either directly

from native structures or from indirect structural information derived from e.g. NMR spec-

troscopy or co-evolutionary analysis.77,113 The ProfasiGo model may also serve as an efficient
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atomistic model for sampling conformational space of large proteins, which can be refined a

posteriori by reweighting with available experimental data.114,115 Indeed, while we have here

used the ProfasiGo model in the context of protein folding, we also expect it to be useful in

providing access to conformational dynamics within folded states.

Overall, our results suggest that the ProfasiGo model can serve as a useful middle ground

that combines the simplicity and efficiency of the Gō-type models and the accuracy and high

computational cost of explicit solvent MD simulations.
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Figure S1: Two popular functional forms of the Gō potential. The two curves show
the 12-10 Lennard-Jones-like potential, and the modified 12-10-6 potential, as black solid
and red dashed lines, respectively. The 12-10-6 potential has a low energy barrier designed
to mimic the desolvation effect.
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Figure S2: Free energy landscape of ↵3W in the pure Gō model. (A) F(QH1,QH2). (B)
F(QH1,QH3). (C) F(QH2,QH3). (D) F(Qsecondary,Qtertiary). (E) F(RMSD,RG). Comparison
with the Profasi and ProfasiGo models (Fig. 2 in the main text) reveals a substantially
different mechanism.
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Increasing the ‘foldability’ of a physics-based force field by

adding a native bias

The free energy landscape, F(RMSD,Etot), in simulations of UVF with ✏Go=0.3 reveals a

non-native state (RMSD=10.0) with a comparable free energy and internal energy as the

native state (Fig. S3A). Note that these results were based on ✏Go=0.3 (Fig. S3A). In

this case, increasing the native bias (✏Go=0.4) substantially decreases the stability of this

state (Fig. S3B). Similar results were obtained for ↵3W, when comparing the free energy

landscape in the absence of the native bias with those of the ProfasiGo model (Fig. 5 in the

main text).

There are two key ingredients that help determine the whether an energy landscape is

‘well funnelled’: the energy gap between the native and nonnative state and the energetic

fluctuations in the non-native states.1 The former determines the steepness of the energy fun-

nel, while the later controls the roughness of the energy funnel. Maximization of their ratio

has been used to guide the optimization of the force field parameters by following the mini-

mal frustration principle and maximize the ‘funnelledness’ of the protein energy landscape.2

Here, we provided evidence that the introduction of native structure-based information into a

physics-based force field can funnel the energy landscape not only by increasing the steepness

(native state becomes more energetically favourable), but also by decreasing the roughness

(the energy fluctuation or the width of the energy distribution of the non-native states be-

comes more narrow).

The results in Fig. S3 also suggests that the pure Profasi model (equivalent to ProfasiGo

with ✏Go=0) will not have the correct native state of UVF as its free energy minimum, since

the non-native state becomes progressively more populated as the native bias is decreased.

We thus suggest that analyses such as these could be useful to identify force field problems

in cases where sampling the folding landscape is prohibitively difficult.
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Figure S3: Evidence that Go potential can funnel the free energy landscape by re-
ducing the population of misfolded states in the case of UVF. (A) Two-dimensional
free energy surfaces as a function of RMSD and Etot at ✏Go=0.3. (B) Two-dimensional free
energy surfaces as a function of RMSD and Etot at ✏Go=0.4. Note that the results were from
multicanonical MC simulations by ProfasiGo model of UVF and reweighted to corresponding
folding temperature.
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Figure S4: The free energy landscape in the hybrid ProfasiGo is not sensitive to
the mathematical form of the Gō potential. (A–F) Free energy landscape of ↵3W using
the 12-10 potential (A–D) or 12-10-6 potential. (A–C) F(QH1, QH2), F(QH1, QH3), F(QH1,
QH2) and F(Qall) with the 12-10 potential. (D–F) F(QH1, QH2), F(QH1, QH3), F(QH1, QH2)
and F(Qall) for 12-10-6 potential. (G) The heat capacity curves from the ProfasiGo models
with the two potentials. (H) The free energy profiles of F(Qtot) at corresponding Tf . The
results are from multicanonical MC simulations with the ProfasiGo model with ✏Go=0.3. For
ProfasiGo model with 12-10-6 potential we found T 12-10-6

f =354K, while for ProfasiGo model
with 12-10 potential, T 12-10

f =370K.
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Figure S5: Comparison of the free energy landscapes of ↵3D obtained from the
pure Gō model, the hybrid ProfasiGo model and an explicit solvent force field.
(A) Free energy surfaces of ↵3D as a function of QH1, QH2 and QH3 obtained from the
ProfasiGo model with ✏Go=0.3 at Tf=339K. (B) Free energy surfaces of ↵3D obtained from
the ProfasiGo model with ✏Go=0.5 at Tf=373K. (C)The same free energy surfaces of ↵3D
obtained from a previously published 707µs long MD simulation with CHARMM22* at
T=370K. (D) The same free energy surfaces of ↵3D obtained from MD simulations with a
pure Gō model (SMOG) at Tf=124K. 7

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2018. ; https://doi.org/10.1101/361527doi: bioRxiv preprint 

https://doi.org/10.1101/361527
http://creativecommons.org/licenses/by-nd/4.0/


Figure S6: Comparison of the free energy landscapes of UVF obtained from the
pure Gō model, the hybrid ProfasiGo model and an explicit solvent force field.
(A–C) Free energy surfaces obtained using the ProfasiGo model with ✏Go=0.4 at Tf . (D–F)
Free energy surfaces obtained using all-atom MD with the CHARMM22* force field at 360
K, somewhat below the melting temperature in this force field (390 K). (G–I) Free energy
surfaces obtained using the the pure Gō model (SMOG) at 124 K.
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(C) UVF,SMOG,124K

Figure S7: Comparison of the free energy landscapes of UVF obtained from the
pure Gō model, the hybrid ProfasiGo model and an explicit solvent force field.
The figure shows the free energy surfaces of UVF as a function of Qsecondary (the fraction of
native contacts within the three helices) and Qtertiary (the fraction of native contacts between
the three helices) obtained from (A) the ProfasiGo model with ✏Go = 0.4, (B) CHARMM22*
with TIP3P water, and (C) the pure Gō model (SMOG).
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