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Abstract 13 

Alterations in the gut microbiota have been associated with a variety of medical conditions such 14 

as obesity, Crohn’s disease and diabetes. However, establishing connections between the 15 

microbial composition and function remains a challenge. We introduce a strategy based on 16 

metabolic models of complete microbial gut communities and apply it to derive the particular 17 

metabolic consequences of the microbial composition for the diabetic gut in a balanced cohort 18 

of 186 individuals. By using a heuristic optimization approach based on L2 regularization we 19 

were able to obtain a unique set of realistic growth rates that allows growth for the majority of 20 

observed taxa in a sample. We also integrated various additional constraints such as diet and 21 

the measured abundances of microbial species to derive the resulting metabolic alterations for 22 

individual metagenomic samples. In particular, we show that growth rates vary greatly across 23 

samples and that there exists a network of bacteria implicated in health and disease that 24 

mutually maintain each other’s growth rates. Studying individual exchange fluxes in the gut 25 

microbiota we observed that consumption of metabolites by the microbiota follows a niche 26 

structure whereas production of short chain fatty acids by the microbiota was highly sample-27 

specific, showed complex cross-feeding, and was affected in diabetes. In particular the models 28 

predicted alterations in SCFA production in Danish individuals and its restoration after 29 

metformin treatment. Additionally, we found that production of many metabolites by the 30 

microbiota could not be easily influenced by single-target interventions and that intervention 31 

effects may be very different across individuals. All methods are implemented in the open 32 

source Python package “micom” which is available at https://github.com/resendislab/micom. 33 
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 34 

Introduction 35 

The microbial composition in the gut may be highly consequential for human metabolism 36 

and has been associated to a variety of medical conditions such as obesity, Crohn’s Disease, 37 

diabetes and colorectal cancer (1–5). Nevertheless, the causality by which the microbiota may 38 

alter the host’s metabolism remains unclear. Several studies have mapped microbial genes in 39 

the microbiome to particular functions (6–8), however that approach is only qualitative since the 40 

presence of a particular metabolic gene does not guarantee expression nor a change in the 41 

associated biochemical reaction. An alternative strategy to quantify the metabolic alterations 42 

that microbial community can induce in the host' metabolism is to use computational models for 43 

analyzing the fluxes in biochemical networks (9, 10). Even though direct measurement of fluxes 44 

by carbon or nitrogen labeling is costly, one can usually approximately infer the metabolic fluxes 45 

of a particular model organism using genome-scale metabolic models. For individual bacteria, 46 

metabolic modeling using flux balance analysis (FBA) has shown to be a valuable tool to 47 

explore their respective metabolic capacities and has been used extensively in basic research, 48 

biochemical strain design and in vitro models of bacterial interactions (11–14). In FBA, fluxes 49 

are usually approximated from a genome-scale model containing all known biochemical 50 

reactions by maximizing the production of biomass under various constraints mirroring the 51 

enzymatic, thermodynamic and environmental conditions (12). For instance, one can restrict 52 

metabolic import fluxes to the ones whose substrate is present in (11, 13, 15) the media in order 53 

to simulate a particular growth medium. Extending FBA to microbial communities can be 54 

challenging due to the necessity of modeling the metabolic exchanges between individuals and 55 

suggesting a proper objective function to mimic the growth of the entire community as well as 56 

individual bacterial species. 57 

In many cases one only maximizes the overall growth rate of the entire community which 58 

may be problematic since individual species might be competitive and will rather maximize their 59 

own growth rate than the growth rate of the community. More complex methods such as 60 

OptCom thus try to find the joint multi-objective maximum of the individual and community 61 

growth rates (16). However, those multi-objective methods are limited to communities consisting 62 

of only very few members which is not realistic for microbial communities in the gut which may 63 

contain up to several hundred distinct subpopulations (17). An additional challenge is the 64 

inclusion of abundance data obtained from 16S rRNA sequencing or metagenomic shotgun 65 
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experiments into the metabolic model. This is particularly important for the metabolic exchanges 66 

taking place between different species in the same community. A highly abundant species may 67 

usually import and export much higher absolute quantities than a low abundant species which 68 

will affect the resulting biochemical fluxes. Nevertheless, genome-scale metabolic modeling 69 

shows a strong potential in microbial communities as it may directly quantify the metabolic 70 

potential of a particular gut microbiota in the form of the metabolic fluxes. In particular, this 71 

computational approach predicts the metabolic exchange rates between the host and the 72 

microbial community in the gut which suggests possible mechanisms associated with the 73 

wellness or disease state of the host.  74 

In this work, we present a strategy that efficiently extends metabolic modeling to 75 

microbial communities. Using an iterative strategy of linear and quadratic optimizations over a 76 

community of microbial genome scale metabolic reconstructions, we were able to scale a 77 

formulation that uses the community as well as individual growth to several hundred microbial 78 

species which enables the study of realistic microbial compositions. Additionally, we explicitly 79 

included microbial abundances from metagenomic shotgun sequencing and realistic diets in 80 

order to make quantitative predictions regarding the metabolic consequences for the host. The 81 

entire strategy is implemented in an easy to use Python software package called “micom”. In 82 

order to assess the explicative and predictive capacities of our approach, we applied the 83 

analysis in micom to a balanced data set of 186 Danish and Swedish individuals distributed 84 

across healthy individuals, patients with type 1 diabetes and patients with type 2 diabetes (with 85 

and without metformin treatment). We show that individual bacterial growth rates vary greatly 86 

across samples and that a subset of bacteria often associated with health show strong 87 

interdependencies within samples. We also quantified exchanges between the gut microbiota 88 

and gut lumen and studied the effect of the microbiota composition on the production of short 89 

chain fatty acids (SCFAs) across samples from healthy and diabetic individuals.   90 

 91 

 92 

 93 

 94 

 95 

 96 
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Results 97 

A regularization strategy for microbial community models. 98 

 99 

Growth in microbial communities can be quantified by two classes of growth rates, the 100 

community growth rate μc (in 1/h) which expresses the growth of the entire community and the 101 

individual growth rates μi which measures the growth of the subpopulation i (16, 18). Here, the 102 

community growth rate μc is connected to the individual growth rates μi by 103 

 104 

                                                      𝜇" = ∑ 𝑎&𝜇&&                                                            (1) 105 

 106 

where ai denote the relative abundance for the subpopulation i (the fraction of the community 107 

that is constituted by this subpopulation). Even though FBA can be used to obtain the maximum 108 

community growth rate, one can see from equation 1 that there is an infinite combination of 109 

different individual growth rates μi for any given community growth rate μc (see Figure 1A for an 110 

example). Various strategies have been employed in order to deal with this limitation, the most 111 

common one being just reporting any one of the possible growth rates distributions for μi . Other 112 

approaches have tried to find the set of growth rates that maximize community growth and 113 

individual growth at the same time (16), but this is computationally intensive and may not scale 114 

well to the gut microbiota which is composed by at least tens of different genera and hundreds 115 

of different species (17, 19). Thus, we tried to formulate a strategy that would allow us to identify 116 

a realistic set of individual growth rates μi and which would still scale to large communities. The 117 

simplest case of a microbial community is a community composed of two identical clonal 118 

subpopulations of the same bacterial strain each being present in the same abundance (thus 119 

constituting 50% of the community each). Assuming that the maximum community and 120 

individual growth rates are equal to one there are now many alternative solutions giving 121 

maximal community growth as shown in Figure 1A. However, the two populations are identical 122 

one would expect that both grown at the same rate. In order to enforce a particular distribution 123 

of individual growth rates one can try to optimize an additional function over the individual 124 

growth rates μi. This is known as regularization and the two most common strategies are L1 125 

regularization which minimizes the sum of individual growth rates and L2 regularization which 126 

minimized the sum of squares of the growth rates (20, 21). Here, only the L2 norm correctly 127 

identifies the alternative solution where both subpopulations grow at the same rate as optimal.  128 
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The same strategy can be applied to heterogeneous microbial communities composed of 129 

several subpopulations with different abundances. Here the L2 norm will give the distribution of 130 

growth rates were growth is distributed as evenly as possible across the individual populations, 131 

which allows growth for as many sub-populations as possible. Thus, the L2 norm minimization 132 

can be interpreted as a heuristic for the simultaneous maximization of individual growth rates 133 

attempted in the non-convex multi-objective formulation. This is also consistent with the demand 134 

that a subpopulation observed in the gut microbiota should be able to grow in the gut. 135 

Additionally, the L2 norm has a unique minimum. Thus, there is only one configuration of 136 

individual growth rates μi that minimizes the L2 norm for a given community growth rate μc. In 137 

practice, maximal community growth might only be achievable if many subpopulations are 138 

excluded from growth, for instance by giving all resources to a fast growing subpopulation. 139 

Again, this would be inconsistent if one has prior knowledge that the other subpopulations are 140 

present in the gut and should be able to grow. Instead of enforcing the maximal community 141 

growth rate one can limit community growth to only a fraction of its maximal rate. Thus, creating 142 

a tradeoff between optimal community growth and individual growth rate maximization. Because 143 

the community growth maximization requires full cooperativity whereas the L2 norm 144 

minimization represents egoistic individual growth maximization, we call the two-step strategy to 145 

fix the community growth rate a fraction of its optimum followed by minimization of the L2 norm 146 

of individual growth rates “cooperative trade-off”.   147 

 148 

Regularization by cooperative trade-off yields realistic growth rate 149 

estimates. 150 

 151 

In order to test whether cooperative trade-off yields realistic growth rates, we implemented and 152 

applied it to a set of 186 samples from Swedish and Danish individuals (22), consisting of 153 

healthy individuals, individuals with type 1 diabetes and individuals with type 2 diabetes 154 

stratified by metformin treatment (a known modulator of gut microbiome). Relative abundances 155 

for a total of 367 bacterial genera and 727 species were obtained with SLIMM (23) from 156 

previously published metagenomic reads (22, 23) as described in the Methods section. 157 

Abundance profiles for all identified genera across all samples were connected with the AGORA 158 

models, a set of previously published manually curated metabolic models for 773 bacterial 159 

species (24). In the used data set the AGORA reconstructions mapped to 109 genera which 160 
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represented more than 99% of the total abundance of the metagenomic reads with an assigned 161 

genus (85.3% vs 85.7%, see Table 1) and in average 85% of all aligned reads for each sample. 162 

Even though the cooperative tradeoff strategy is applicable to species-level subpopulations, the 163 

AGORA reconstructions accounted in average only for 63% of the total reads in each sample 164 

and for less than 50% of the total reads in some samples meaning that the AGORA models 165 

would not be representative for the microbial diversity in those samples. Thus, we decided to 166 

model the subpopulations at the genus level since this covers a larger fraction of the observed 167 

microbiota. For that individual species models from AGORA were pooled into genus-level 168 

models (see Methods). The resulting communities contained between 22 and 78 genera, each 169 

represented by a full genome-scale metabolic model and connected by exchange reactions with 170 

the gut lumen, thus yielding a set of 186 complete metagenome-scale metabolic models. We 171 

used the relative read abundances as a proxy for the abundance of each genus in each sample 172 

(see Methods). Even though DNA quantity is not an exact representation of bacterial mass (in 173 

grams dry weight), we argue that the discrepancy between the two is probably much smaller 174 

than the variation in abundances which spans several orders of magnitude (17). Import fluxes 175 

for external metabolites were restricted by applying an average western diet to each community 176 

model (24).  177 

 178 

taxa unique taxa assigned reads with model 

superkindom 2 99.2% ± 1.5% 99.2% ± 1.5% 

phylum 23 98.7% ± 1.5%  98.7% ± 1.5% 

class 39 96.6% ± 1.9% 96.6% ± 1.9% 

family 160 87.2% ± 3.8% 87.0% ± 3.9% 

genus 367 85.7% ± 4.4% 85.3% ± 4.6% 

species 727 68.3% ± 7.9% 63.6% ± 7.8% 
Table 1: Distribution of taxa assignments across ranks. Shown are the number of unique taxa for each 179 
rank together with the percentage of mapped reads that could be uniquely assigned to a taxa in the rank, 180 
as well as the percentage of reads whose taxa had at least one representative in the AGORA genome-181 
scale metabolic models. Percentages are shown as mean ± standard deviation across the 186 samples.  182 

 183 

We found that computation time generally scaled well with the community size when using 184 

interior point methods which are known to provide better performance for larger models, with 185 

most individual optimizations taking less than 5 minutes (25). However, we found that it was 186 
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difficult to maintain numerical stability with large community models. In fact, the largest difficulty 187 

we encountered was numerical stability and not computation time. None of the tested solvers 188 

were able to converge to optimality when solving the quadratic programming problem posed by 189 

the L2 norm minimization (see Methods). Thus, we used a crossover strategy to identify an 190 

optimal solution to the L2 minimization (see Methods).  191 

 192 

For each of the of the 186 individual community models we solved several linear programming 193 

problems in order to evaluate the effectiveness of different optimization strategies. First, to 194 

establish a baseline we only maximized the community growth rate and used the arbitrary 195 

distribution of growth rates that is returned by the solver when applying no regularization. This 196 

was followed by applying the cooperative trade-off strategy with varying levels of suboptimality 197 

ranging from 10% to 100% of the maximum community growth rate. As argued before we 198 

observed that just optimizing the community growth rate with no regularization of the individual 199 

growth rates led to solutions where only a few subpopulations were left to grow with 200 

unreasonably high growth rates (doubling times smaller 5 minutes) whereas the rest of the 201 

microbial community did not grow (compare Figures 1B-C with strategy marked by “none”). 202 

Adding the L2 norm minimization even while maintaining maximum community growth notably 203 

increased the growing fraction of the community and gave smaller growth rates overall. 204 

However, we also found that maximization of the community growth rate is generally 205 

incompatible with the assumption that the majority of the observed genera should be able to 206 

grow. Lowering the community growth rate to suboptimal levels strongly increased the growing 207 

fraction of the population where a community growth rate of 20% of its maximum will allow 208 

essentially all bacterial subpopulations to grow. Based on reports that about 20-40% of the 209 

bacteria found in stool are not viable (26), we chose a suboptimal community growth rate of 210 

50% maximum growth (which allowed growth for about 70% of all subpopulations) as the trade-211 

off parameter for all subsequent analyses (see Figure S1). 212 

 213 

 214 

 215 

 216 
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Growth rates are heterogeneous and depend on the community 217 

composition 218 

 219 

The community and individual growth rates obtained this way were in good agreement with 220 

previous evidence. Bacterial communities showed an average doubling time of about 10 hours 221 

where individual genera had an average doubling time of 20 hours with a minimum of 23 222 

minutes which is consistent with the generally low growth in the gut and the fast doubling time of 223 

about 20 minutes that can be observed in laboratory growth media (27).  224 

 225 

Even though community growth rates varied only little across all samples (0.069 +- 0.019 1/h) 226 

we found that individual growth rates often varied across fiver orders of magnitude (see Figure 227 

2). Here Eubacterium was predicted to be the fastest growing genus overall which is consistent 228 

with the ubiquitous presence of Eubacterium in microbiome samples (28, 29). We found that 229 

growth rates and abundances were not linearly correlated (Pearson R=0.0) but showed a 230 

moderate correlation on the log-log scale (Pearson R=0.69) which indicates that the relationship 231 

between abundance and growth rate weakly follows a Power law, Figure 3A. However, for any 232 

given abundance growth rates would still vary by up to two orders of magnitude (compare 233 

Figure 3A). Thus, the growth rate is related to abundance but cannot simply be inferred from it.  234 

 235 

To explain this variation in individual growth rate, we hypothesized that different genera might 236 

mutually influence each other’s growth rate, either by competition or by cooperation. In order to 237 

quantify the level of growth rate interdependencies we performed in silico knockouts for each 238 

genus in each sample and tracked the change of growth rate for all remaining genera in the 239 

sample (see Methods). Here we found that each individual genus’ growth rate was impacted by 240 

another genus in at least one of the 186 samples. As could be hypothesized for a set of bacteria 241 

competing for the same resources, most interactions were competitive (red edges in Figure 3B). 242 

However, we observed a distinct subset of bacteria that were interconnected by a large amount 243 

of cooperative interactions (blue edges in Figure 3B). Strikingly, many of the bacterial genera 244 

contained in the group have been associated with gut health or disease, such as Anaerostipes, 245 

Blautia, Escherichia, Bacteroides and Eubacterium (5, 30–34).      246 

 247 
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Analysis of minimal exchanges reveals the metabolic consequences for the 248 

host  249 

 250 

One of the major modes of interaction between the gut microbiota and the host is by means of 251 

consumption or production of the metabolite pool in the gut. We quantified this effect by 252 

obtaining all import and export fluxes for each individual genus across all samples (12,460 253 

exchange reactions) as well as metabolite exchanges between the microbiota and the gut 254 

lumen (195 metabolites). This was done in the absence of a metabolic model for the 255 

enterocytes, colonocytes or goblet cells due to the lack of a curated metabolic reconstruction 256 

and validated objective function for those cells. Thus, the presented results should be seen as a 257 

lower bound for the interaction of the microbiota with the gut.  A unique set of exchange fluxes 258 

was obtained by calculating the minimal medium, the set of exchange fluxes with smallest total 259 

import flux for the growth rates obtained by cooperative trade-off (see Methods). This assumes 260 

that the microbiota competes for resources with the gut or normal dilution and will thus favor an 261 

efficient import that yields the maximum growth rate. 262 

 263 

Even though the minimization of total import fluxes favors simpler media compositions most 264 

samples showed a diverse consumption of metabolites from the gut, particularly using a wide 265 

array of different carbon and nitrogen sources (see Figure 4A). There was a large set of 266 

metabolites that were consumed across all samples but also a smaller set containing some 267 

specific carbon sources such as Arabinogalactan and Rhamnogalacturonan derivatives and a 268 

few selected amino acids such as Alanine and Cysteine. Also, all communities showed a net 269 

anaerobic growth as would be expected in the gut.  270 

 271 

Export fluxes in general were pretty sparse which could again be expected from the 272 

minimization of import fluxes and the lack of the gut epithelium in the models (Figure 4A). 273 

However, we observed a large array of metabolites that was produced by the microbiota and 274 

secreted into the gut lumen. Those are always available to gut epithelium since they are a 275 

byproduct of maximizing growth in the microbiota. The associated export fluxes were in general 276 

much more sample-specific than imports. In particular we found a large set of metabolites that 277 

was only produced by a small set of samples and included all the major short-chain fatty acids 278 

(SCFAs) such as butyrate, acetate, propionate and its precursors which have been previously 279 

implicated in intestinal health (1, 35, 36). SCFA production seemed to be dependent on the 280 
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consumption of a small set of starches, pectin and xylan (see Figure 4A). The overall production 281 

capacity (total production flux across all genera in the sample) for the major SCFAs showed 282 

large variations even in healthy individuals. Butyrate and propionate production capacities were 283 

diminished by about 2-fold in individuals with type 1 diabetes and also slightly altered (non-284 

significant) in metformin negative individuals with type 2 diabetes (Figure 4B). However, most of 285 

the produced SCFAs were also consumed by the microbiota leaving only a small net production 286 

of SCFAs available for the host (at least in the absence of competition with the gut epithelium, 287 

see Figure S2). We observed that this net production was completely abolished for all major 288 

SCFAs in Danish metformin negative individuals with type 2 diabetes but was recovered in 289 

Danish metformin positive individuals (Figure 4C). This means that overshoot SCFA production 290 

is a common necessity from microbiota growth in healthy and metformin positive individuals but 291 

not in metformin negative individuals. This is consistent with previous findings in Danish and 292 

Chinese populations (3, 22, 37). However, we did not observe those effects in the samples from 293 

Swedish individuals which had generally higher production rates of the major SCFAs and 294 

showed only a slightly higher net production rate in metformin treated individuals (Figure 4C). 295 

 296 

To visualize the structure of metabolite consumption by individual bacterial genera in the gut we 297 

used t-SNE dimensionality reductions on the individual genus-specific import fluxes (38). This 298 

showed a clear niche structure across samples were individual genera could usually be 299 

identified by their particular set of import fluxes (Figure 5A). Given the association between 300 

short chain fatty acids and disease progression we also tried to characterize the degree of 301 

SCFA cycling in the microbiota. Here we observed that butyrate was almost exclusively formed 302 

in an acetate-dependent manner from acetyl-CoA, which is the most prevalent pathway in 303 

bacteria (39). This was enabled by an extensive cross-feeding between the genera in the 304 

microbiota. Acetate was mainly produced by Bacteroides and metabolized by Eubacterium to 305 

yield butyrate and propionate (Figure 5B). However, production of SCFAs was complemented 306 

by several other genera generating a network of SCFA cycling within the microbiota. Other 307 

bacteria could selectively substitute Bacteroides and Eubacterium in order to maintain 308 

production of acetate and butyrate (Figure S3). Consequently, 20 bacterial genera showed 309 

notable (total exchange flux > 0.5 mmol/h) cross-feeding of SCFAs (Figure 5B). Cycling of 310 

SCFAs and downstream metabolites within the gut microbiota seemed to differ across 311 

metabolites. For instance, acetate and lactate were both produced and consumed by more than 312 

20 genera, whereas propionate and pyruvate were only produced by a few genera (7 and 2 313 

genera respectively, Figure S3).    314 
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  315 

Finally, we aimed to quantify the impact that isolated interventions may have on the net 316 

consumption or production of particular metabolites by the microbiota. For this we chose three 317 

Swedish samples (normal, T2D metformin-, T2D metformin+) with the most diverse set of 318 

imports (largest set of imported metabolites) and which did not produce butyrate in the non-319 

perturbed setting (optimization by cooperative trade-off, no optimization on import fluxes). The 320 

impact of a particular intervention was then quantified by using the elasticity coefficients (40, 321 

41), a dimensionless measure of how strongly a particular parameter affects a particular flux 322 

(see Methods). The specific single target interventions we tested were either increasing the 323 

availability of any single metabolite in the diet or increasing a single bacterial abundance in the 324 

community. In general, we observed that the healthy individual showed lower elasticity 325 

coefficients than the two type 2 diabetes samples which can be interpreted as a certain 326 

robustness to changes (see Figure 6). Most interventions had a strong impact on the import 327 

fluxes (consumption of metabolites, yellow dots in Figure 6) but not on the net export fluxes 328 

(production of metabolites, brown dots in Figure 6). In particular there was no single intervention 329 

that would increase net butyrate production in any of the three samples tested.  330 

 331 

 332 

Methods 333 

Data availability and reproducibility 334 

 335 

All data to reproduce the manuscript, intermediate results as well as Python scripts to reproduce 336 

the figures in this manuscript are available in a data repository at 337 

https://github.com/resendislab/micom_study.  Metagenomic reads for the 186 individuals were 338 

obtained from the study of Pedersen et. al. and can be downloaded from the Sequence Read 339 

Archive (https://www.ncbi.nlm.nih.gov/sra) with the SRA toolkit 340 

(https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/). A full list of run accession IDs for the 341 

individual samples is provided in the data repository (“samples.csv”). All algorithms and 342 

methods used here were implemented in a Python package and can be easily applied to 343 

different data sets. The Python package “micom” (microbial communities) along with 344 

documentation and installation instructions is available at https://github.com/resendislab/micom. 345 

Micom is based on the popular COBRApy Python package for the constraint-based modeling of 346 
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biological networks and is compatible with its API (42). The cooperative trade-off strategy as 347 

described here was introduced to micom in version 0.9.0. The AGORA reference 348 

reconstructions with an already applied average Western diet can be downloaded from 349 

https://vmh.uni.lu/#downloadview. Several methods used in micom require an interior point 350 

solver with capabilities for quadratic programming problems (QPs) for which there is currently 351 

only commercial software available. Micom supports CPLEX (https://cplex.org) and Gurobi 352 

(https://gurobi.org) both of which have free licenses for academic use. Intermediate results that 353 

required those solvers are also provided in the data repository to permit reproduction of our 354 

major conclusions.  355 

Metagenomic shotgun data analysis 356 

All metagenomic analyses were performed in R using an in-house pipeline which is available as 357 

an open source package along with documentation at 358 

https://github.com/resendislab/microbiome. Sample FASTQ files were downloaded using the 359 

SRA toolkit and trimmed and filtered using the DADA2 “filter_and_trim” function (43) with a left 360 

trimming of 10 bp, no right trimming, a quality cutoff of 10 and a maximum  number of 2 361 

expected errors under the Illumina model. Abundances across different taxa levels were then 362 

obtained using SLIMM (23) which was chosen since it supported one of the largest references 363 

(almost 5,000 reference bacterial genomes). In brief, all sample FASTQ files were first aligned 364 

to the SLIMM reference using Bowtie2 saving the 60 best matches for each read. Taxa 365 

abundance profiles were then obtained using SLIMM with the default parameters and 366 

assembled into a single abundance file. Genus-level quantifications for each sample were then 367 

matched to the AGORA models by their respective NCBI taxa id. The final quantification and 368 

mapping is provided in the data repository (“genera.csv” at 369 

https://github.com/resendislab/micom_study).  370 

Strategies used in micom 371 

Flux balance analysis obtains approximate fluxes for a given organism by assuming a steady 372 

state for all fluxes in the biological system and optimizing an organism-specific biomass 373 

reaction. Using the stoichiometric matrix S which contains reaction in its columns and 374 

metabolites in its rows this can be formulated as a constrained linear programming problem for 375 

the fluxes vi (in mmol/[gDW h]):  376 

 377 
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𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑣./ 378 

𝑠. 𝑡. 𝑆𝑣	 = 	0 379 

𝑙𝑏& 	≥ 𝑣& ≥ 𝑢𝑏& 380 

 381 

The biomass reaction vbm is usually normalized such that it will produce 1g of biomass which 382 

results in a unit 1/h corresponding to the growth rate μ of the organism. The upper and lower 383 

bounds (lbi and ubi, respectively) impose additional thermodynamic constraints on the fluxes or 384 

restrict exchanges with the environment (in the case of exchange fluxes). In order to describe a 385 

community model containing several organisms each with a particular abundance ai (in gDW) 386 

one usually embeds each organism in an external compartment which represents the 387 

community environment (for instance the gut lumen for models of the gut microbiota). Adding 388 

exchanges for the environment compartment and exchanges between a particular organism and 389 

the environment one obtains a community model with the following constraints: 390 

𝜇9 =:𝑎& ⋅ 𝜇&
&

 391 

𝑠. 𝑡. ∀𝑖: 𝑆𝑣	 = 	0	 392 

												𝜇& = 𝑣&./ ≥ 𝜇&/&> 393 

												𝑙𝑏& 	≥ 𝑣& ≥ 𝑢𝑏& 394 

												𝑙𝑏&
?@ 	≥ 𝑎& ⋅ 𝑣&?@ ≥ 𝑢𝑏&

?@ 395 

						𝑙𝑏&
/ ≥ 𝑣&/ ≥ 𝑢𝑏&

/ 396 

Here, ai denotes the relative abundance of genus i, μi its growth rate, vi
bm its biomass flux, μi

min a 397 

user specified minimum growth rate, vi
ex the exchange fluxes with the external environment, and 398 

lb and ub the respective lower and upper bounds. Additionally, μc denotes the community 399 

growth rate and vi
m the exchanges between the entire community and the gut lumen. The 400 

described constraints are identical to the ones employed in SteadyCom (18, 23). We assigned 401 

an upper bound of 100 mmol/[gDW h] for the internal exchange fluxes vi
ex. Assuming a total 402 

microbiota biomass of 200 g and a representative bacterial cell dry weight of 2 pg (44), this 403 

corresponds to a maximum import or export of more than 100,000 molecules/[cell s]. Diet 404 

derived lower bounds with values smaller 10-6 mmol/[gDW h] were set to zero because they 405 

would correspond to an exchange of less than a 1 molecule/[cell s]. Subpopulations with relative 406 

abundances ai smaller 10-4 were discarded since they would not be able to affect the external 407 

metabolite levels in a significant way. Internal fluxes vi received respective bounds of 1000.0 (or 408 

0 if irreversible) making them essentially unbounded. The described constraints are applied to 409 
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all optimization problems in micom and will be further called the “community constraints”. It 410 

should be noted that internal exchange fluxes vi
ex have to be scaled by the abundance of the 411 

respective sub-model when reporting to give the net exchange flux provided by the 412 

subpopulation i. 413 

 414 

The cooperative trade-off method consists of two sequential problems. First, maximize the 415 

community growth rate μc to obtain μc
max. Using a user specified trade-off α now solve the 416 

following quadratic minimization problem: 417 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	:𝜇&B
&

 418 

𝑠. 𝑡. 𝜇9 	≥ 𝛼 ⋅ 𝜇9/D@ 419 

							𝑎𝑛𝑑	𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 420 

  421 

The knockout for a genus i was performed by setting all fluxes belonging to this genus along 422 

with its exchanges with the external environment to zero (lb=0 and ub=0). This is followed by 423 

running cooperative trade-off on the knockout model and comparing the growth rates after the 424 

knockout with the ones without the knockout. 425 

Solvers and Numerical stabilization       426 

Most genome-scale metabolic models usually do not treat more than 10,000 variables in the 427 

corresponding linear or quadratic programming problems. However, in microbial community 428 

models we usually treat 10s to 100s distinct genome-scale models which makes the 429 

corresponding problem much larger. Unfortunately, many open and commercial solvers have 430 

difficulties solving problems of that scale, so we also implemented strategies to increase the 431 

success rate of those optimizations. All linear and quadratic programming problems were solved 432 

using interior point methods as those were much faster than simplex methods for problems with 433 

more than 100,000 variables. Here, we used Cplex but also tested all methods with Gurobi. 434 

Since growth rates tend to be small we also multiplied the objectives used in cooperative 435 

tradeoff (maximization of community growth rate and minimization of regularization term) with a 436 

scaling factor in order to avoid near-zero objective coefficients. A scaling factor in the order of 437 

the largest constraint (1000.0) seemed to work well. Nevertheless, the default interior point 438 

methods for quadratic problems in Cplex or Gurobi were usually not capable of solving the 439 

minimization of the regularization term to optimality and usually failed due to numerical 440 
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instability. However, the solutions reported by the aborted optimization run were usually close to 441 

the optimum but had the tendency to violate some numerically ill-conditioned constraints. To 442 

alleviate this problem, we implemented a crossover strategy were we took the solution of the 443 

numerically ill-conditioned quadratic interior point method as a candidate solution set μi
ca. Based 444 

on that we now optimized the following linear programming problem in order to restore 445 

feasibility: 446 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝜇9 =:𝑎& ⋅ 𝜇&
&

 447 

𝑠. 𝑡. 𝜇& ≤ 𝜇&9D 448 

      𝑎𝑛𝑑	𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 449 

Linear interior point methods are usually numerically stable so this linear programming problem 450 

can usually be solved to optimality. The maximization together with the new constraints will 451 

push the individual growth rates towards the candidate solution as long as it is numerically 452 

feasible.  453 

 454 

Additionally, we found that normalizing the import fluxes to the total community mass also 455 

increased numerical instability since it leads to models where flux bounds varied up to ten 456 

orders of magnitude. A more stable strategy was to apply unscaled import fluxes and rather 457 

dividing all growth rates by the total community mass after optimization. Fluxes obtained this 458 

way can either be interpreted as the total flux across the entire microbiota (in mmol/h, our 459 

preference) or be scaled the same way to obtain fluxes per gDW of microbiota (in mmol gDW-1 460 

h-1). In general, we divided the growth rates by community biomass of 200g as reported recently 461 

(44) and interpreted fluxes as total fluxes within the microbiota (in mmol/h). 462 

Minimal media and exchange fluxes 463 

By convention micom formulates all exchange fluxes in the import direction so that all import 464 

fluxes are positive and export fluxes are negative. Based on this, the minimal medium for a 465 

community was obtained by minimizing the total import flux: 466 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑣KLK =:{𝑣&
/, 𝑣&/	 > 0}

&

 467 

𝑠. 𝑡. ∀𝑖:	𝜇&	 ≥ 𝜇&9K 468 

													𝜇9	 ≥ 𝛼 ⋅ 𝜇9/D@ 469 

													𝑎𝑛𝑑	𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 470 
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Here μi
ct denotes the optimal genera growth rates obtained by cooperative trade-off. The 471 

community exchanges were then obtained by extracting all vi
m, whereas genus-specific 472 

exchanges were given by all vi
ex as defined earlier.  473 

 474 

 475 

Single target intervention studies 476 

We used elasticity coefficients (40, 41) to evaluate the sensitivity of exchange fluxes to changes 477 

in exchange flux bounds (ergo diet changes) or changes in genus abundances. The logarithmic 478 

formulation of elasticity coefficients is given by 479 

 480 

𝜀RS =
𝜕 𝑙𝑛 |𝑣|
𝜕 𝑙𝑛 |𝑝|

 481 

 482 

where v denotes the exchange flux of interest and p the changed parameter. Since the absolute 483 

value removes information about the directionality of the flux this was logged separately to 484 

maintain this information. We used a value of 0.1 as differentiation step size in log space which 485 

which corresponds to a bound or abundance increase of about 10.5% in the native scale. To 486 

enable efficient computation elasticity coefficients were grouped by parameter, cooperative 487 

trade-off run once without modification, the parameter was increased, cooperative trade-off was 488 

run again and differentiation was performed for all exchange fluxes at once.    489 

 490 

Discussion. 491 

There is a large amount of data on microbial abundances available today. This is mostly due to 492 

the cost efficiency of abundance-based experiments such as 16S rRNA sequencing or shallow 493 

shotgun sequencing (45). However, there is also a wide interest in extracting information from 494 

abundance data that goes beyond differential abundance testing (46). Here, metabolic modeling 495 

can be a valuable tool since it integrates a wide array of data. In particular it allows to integrate 496 

genomic data in the individual species-level metabolic models, diet information in the form of 497 

import flux bounds, and abundance data from metagenomic shotgun or marker gene 498 

sequencing. This allows to generate mechanistic predictions concerning the metabolism of the 499 
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microbial community and its exchanges with the environment. However, the complexity of 500 

metagenome-scale metabolic models brings additional problems such as the inability to identify 501 

individual growth rates and slow computations. Here, we provided a strategy that alleviates 502 

those limitations and allows for complex analysis of the community structure and its metabolic 503 

consequences. Our regularization strategy allowed for a fast identification of unique sets of 504 

individual growth rates which operate in biological realistic ranges. This assumed that the 505 

microbiota will prefer enabling more species or genera to grow over maximizing the growth of 506 

only a few. We feel that this assumption is supported by the observation that most microbial 507 

communities are constituted by a large amount of species. Individual growth rates for bacterial 508 

genera varied greatly across samples (Fig. 2) and were only weakly dictated by the genus’ 509 

abundance in the sample (Fig. 3A). It seems that the large variation of growth rates can be 510 

explained by a dependency of the growth rate on the presence of other bacteria in the sample 511 

(compare Fig. 3B). Thus, bacterial growth in the gut microbiota is not only dictated by 512 

abundance but also by intra-microbiota interactions. 513 

 514 

Using cooperative trade-off, we were able to estimate arising co-dependencies in 186 515 

personalized community models. Cooperative effects where limited to a small set of genera that 516 

are often associated with health or disease. The microbiota composition also has a strong 517 

influence on the metabolites produced by the community and production of important 518 

compounds such as butyrate is hardly affected by interventions once established. Additionally, 519 

the predicted effects on SCFA production by the community fall in line with previous 520 

observations and suggest a potential application of community models in order to predict the 521 

metabolic impact of a particular microbiota composition in a personalized manner (22, 47). For 522 

instance, we showed that the connection between butyrate production and microbiota growth is 523 

fragile and forcing butyrate production to be a necessity of growth might be a robust strategy to 524 

improve gut health. We furthermore predicted a complex system of SCFA cycling in the 525 

microbiota which might serve to stabilize not only the overall production of SCFAs but also their 526 

ratios. Experiments in rat and mouse models have shown that ratios between the three major 527 

SCFAs help to control the fraction of goblet cells and underlie the maintenance and function of 528 

colonocytes (48–50).  529 

 530 

However, it should be noted that our predictions are limited by a variety of factors, for instance 531 

the lack of metabolic models for the major cell types of the gut epithelium (especially goblet 532 

cells, enterocytes and colonocytes) and sample-specific nutrition data. Thus, we feel that the 533 
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current major application for micom is to provide detailed functional hypothesis which can then 534 

be validated experimentally. Here, we identified the potential major contributors to SCFA 535 

production and cycling in the gut microbiota which may form the basis for identifying cross-536 

feeding mechanisms to validate in vitro. 537 

 538 

We observed that changes in metabolism seemed to require rather large changes in the 539 

community composition. Import fluxes varied only slightly across samples and most individual 540 

genera formed distinct niches. Furthermore, small single target interventions only had a 541 

substantial impact on the consumption rates of metabolites but could not affect the production of 542 

metabolites by the community in a consistent manner (Figure 6). Still, export fluxes did vary 543 

substantially across samples with different microbiota compositions (Figure 4A). In summary, 544 

this suggests that changes in the production of metabolites by the microbiota require relatively 545 

large-scale changes in the community and cannot be achieved by small-scale changes such as 546 

changing a single diet component or increasing the abundance of a single bacterial genus. This 547 

goes in line with the large success of fecal microbiota transplants (FMT) and we hope that the 548 

methods introduced here will help to leverage affordable microbiome data in order to design 549 

personalized intervention strategies. Additionally, the methods here extend to any ecosystem 550 

containing several microbial species. As such micom can be used to perform computational 551 

functional analysis for a wide class of microbial ecosystems.      552 
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 565 

Figures 566 

 567 

Figure 1: Regularization of growth rates. (A) Regularization values for a toy model of two identical E. coli 568 
subpopulations. Shown are two alternative solutions with different individual growth rates and the 569 
respective values of L1 and L2 regularization. Only L2 regularization favors one over the other and 570 
identifies the expected solution where both subpopulations grow with the same rate. (B) Effect of different 571 
trade-off values (fraction of maximum) on the distribution of individual genus growth rates. Zero growth 572 
rates were assigned a value of 10-16 which was smaller than the observed non-zero minimum. Growth 573 
rates smaller than 10-6 were considered to not represent growth. (C) Fraction of the overall number of 574 
genera that were able to grow under varying trade-off values. “None” indicates a model without 575 
regularization returning arbitrary alternative solutions. Growth rates assumed a total microbiota biomass 576 
of 200g for all samples (see Methods). 577 
 578 
 579 

 580 

 581 

 582 
Figure 2: Non-zero growth rates (> 10-6) across genera obtained by cooperative trade-off (50% maximum 583 
community growth rate). Each point denotes a growth rate in one of the 186 samples. Growth rates 584 
assumed a total microbiota biomass of 200g for all samples (see Methods). 585 

 586 
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 587 

 588 
Figure 3: Co-dependencies of growth rates. (A) Genera growth rates are slightly correlated on the log-log- 589 
scale (Pearson R=0.69, n=39,815). Shown is the density at each point with darker blue indicating higher 590 
density. Marginal density estimations are shown on the sides. (B) Growth rate interactions between 591 
genera as estimated by genera knockouts. Shown are only interaction that induce a growth rate change 592 
of at least 50% the observed maximum. Color of edges indicates strength (in %maximum growth rate 593 
change) and type of interaction. Red edges denote competition where one removal of one genus 594 
increases the growth rate of the other and blue edges denote cooperation where the removal of one 595 
genus lowers the growth rate of the other. Nodes are colored by the degree (number of edges) from lime 596 
(low degree) to dark blue (high degree).   597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 

 605 
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 606 
Figure 4: Exchange fluxes of the microbiota across samples. Exchange fluxes were calculated as the 607 
smallest set of import fluxes that could maintain the genera growth rates obtained by cooperative trade-608 
off. (A) Exchange fluxes across samples. Rows were normalized to their absolute maximum and colors 609 
denote the strength and direction of exchange. Red denotes import fluxes (consumption of metabolites by 610 
the community) and blue denotes export fluxes (production of metabolites by the community). (B) 611 
Production capacities of the major SCFAs stratified by population. Fluxes denote totals of export fluxes 612 
scaled by genus abundance (see Methods). (C) Net production rates of the major SCFAs stratified by 613 
population. Fluxes denote the overall net production in the external medium/gut lumen (see Methods). 614 

 615 

 616 

 617 

 618 

 619 
Figure 5: Metabolite usage across genera. (A) Import fluxes for each genus in each sample 620 

were reduced to two dimensions using t-SNE. Each point denotes a genus in one sample and is 621 

colored and named by its genus. (B) Genus-specific fluxes for the three major SCFAs. Shown 622 

are only genera that show large total SCFA exchange fluxes (> 0.5 mmol/h). Dots denote 623 

means across all samples and bars denote standard deviations. Fluxes are scaled by genus 624 

abundances (see Methods) and directed towards imports. Thus, positive fluxes denote 625 

consumption of the metabolite and negative fluxes secretion/export. 626 
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 627 

 628 

 629 

 630 
Figure 6: Strong interventions across three samples. Single target interventions and their effect 631 

on exchange fluxes between the microbiota and gut lumen. Edges denote interventions and are 632 

colored by their elasticity coefficient. Shown are only interactions and metabolites with an 633 

elasticity coefficient larger one (high sensitivity to changed parameters). Environmental 634 

parameters that were changed are indicated in green (microbial abundances) and gray (diet) 635 

and their exchange fluxes are colored in yellow if the microbiota produces the corresponding 636 

metabolite and in brown if the microbiota consumes the target metabolite. 637 

 638 
Figure S1. Fraction of observed genera growing in each sample. Each dot denotes a single 639 

sample. A trade-off of “none” means optimization without L2 regularization and only maximizing 640 

the community growth rate. 641 

 642 

 643 
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 644 
Figure S2. Consumption rates for the major SCFAs. Fluxes are given as total consumption in 645 

the microbiota. Each dot denotes a sample (n=186). 646 

 647 

 648 
Figure S3. Genus-level exchange fluxes for major metabolites across all samples. Color bars 649 

denotes total fluxes (mmol/h). Blue denotes imports/consumption and red denotes 650 

secretion/export. Shown are only genera with notable contributions (total absolute flux > 0.5 651 

mmol/h). 652 
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