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Abstract 13 

Compositional changes in the gut microbiota have been associated with a variety of medical 14 

conditions such as obesity, Crohn’s disease and diabetes. However, connecting microbial 15 

community composition to ecosystem function remains a challenge. Here, we introduce MICOM 16 

- a customizable metabolic model of the human gut microbiome. By using a heuristic optimization 17 

approach based on L2 regularization we were able to obtain a unique set of realistic growth rates 18 

that corresponded well with observed replication rates. We integrated adjustable dietary and 19 

taxon abundance constraints to generate personalized metabolic models for individual 20 

metagenomic samples. We applied MICOM to a balanced cohort of metagenomes from 186 21 

people, including a metabolically healthy population and individuals with type 1 and type 2 22 

diabetes. Model results showed that individual bacterial genera maintained conserved niche 23 

structures across humans, while the community-level production of short chain fatty acids 24 

(SCFAs) was heterogeneous and highly individual-specific. Model output revealed complex 25 

cross-feeding interactions that would be difficult to measure in vivo. Metabolic interaction 26 

networks differed somewhat consistently between healthy and diabetic subjects. In particular 27 

MICOM predicted reduced butyrate and propionate production in a diabetic cohort, with 28 

restoration of SCFA production profiles found in healthy subjects following metformin treatment. 29 

Overall, we found that changes in diet or taxon abundances have highly personalized effects. We 30 

believe MICOM can serve as a useful tool for generating mechanistic hypotheses for how diet 31 
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and microbiome composition influence community function. All methods are implemented in the 32 

open source Python package, which is available at https://github.com/micom-dev/micom. 33 

Introduction 34 

The composition of the gut microbiome can influence host metabolism (1) and has been 35 

associated with a variety of health conditions such as obesity, Crohn’s Disease, diabetes and 36 

colorectal cancer (2–6). However, the causal roles played by the gut microbiota in host physiology 37 

and disease remain unclear. Several studies have mapped individual gut microbial genes to 38 

functions (7–9). However, these mappings are largely qualitative, as the presence of a particular 39 

gene does not guarantee expression of a functional enzyme. An alternative strategy to quantify 40 

the metabolic capacity of a microbial community is to use computational models for inferring fluxes 41 

in biochemical networks (10, 11). While direct experimental measurement of fluxes by carbon or 42 

nitrogen labeling is costly, one can readily estimate the metabolic fluxes of a model organism 43 

using genome-scale metabolic models. For individual bacteria, metabolic modeling using flux 44 

balance analysis (FBA) has been a valuable tool for exploring metabolic capacities under varying 45 

conditions and has been used extensively in basic research, biochemical strain engineering, and 46 

in vitro models of bacterial interactions (12–15). In FBA, fluxes are usually approximated from a 47 

genome-scale model containing all known biochemical reactions by maximizing the production of 48 

biomass under constraints mirroring enzymatic, thermodynamic and environmental conditions 49 

(13). For instance, one can restrict metabolic import fluxes to those whose substrates are present 50 

in the growth medium (12, 14, 16) in order to simulate a particular nutrient environment. Extending 51 

FBA to microbial communities is challenging due to the necessity of modeling metabolic 52 

exchanges between many taxa and selecting an appropriate objective function to account for 53 

potential tradeoffs between species and community growth rates. 54 

Maximizing the community growth rate is at odds with maximizing individual species 55 

growth rates. Multi-objective methods, like OptCom, attempt to find the joint maximum of 56 

individual and community growth rates (17). However, these multi-objective methods are limited 57 

to smaller-sized communities. The human gut microbiome, on the other hand, may contain up to 58 

several hundred distinct species (18). An additional challenge is the integration of relative 59 

abundances obtained from 16S amplicon or metagenomic shotgun sequencing into a community 60 

FBA model. This is particularly important for accurately inferring the metabolic exchanges taking 61 

place between different species within the community. A very abundant species should import 62 

and export much greater absolute quantities of metabolites than a very rare species, which in turn 63 
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impacts the resulting community-level biochemical fluxes. Despite the challenges, genome-scale 64 

metabolic modeling of microbial communities holds great promise as a tool for estimating the 65 

metabolic potential of an individual’s gut microbiome. In particular, this approach could yield 66 

valuable insights into possible metabolic mechanisms underlying host disease states.  67 

Here, we present a computational approach that efficiently extends metabolic modeling to 68 

entire microbial communities. Using a two-step optimization procedure, we were able to simulate 69 

growth and metabolic exchange fluxes for metagenome-scale metabolic models of ecologically 70 

diverse bacterial systems. Additionally, we explicitly included microbial abundances from 71 

metagenomic shotgun sequencing and realistic dietary inputs in order to make quantitative, 72 

personalized, metabolic predictions. This entire strategy is implemented in an open-access 73 

Python software package called “MICOM” (MIcrobial COMmunity).  74 

We tested our approach by applying MICOM to a balanced data set of 186 Danish and 75 

Swedish individuals, including healthy controls, patients with type 1 diabetes, and patients with 76 

type 2 diabetes with and without metformin treatment. We show that individual bacterial growth 77 

rates vary greatly across samples and are correlated with independently measured replication 78 

rates. We quantified exchanges between the gut microbiota and gut lumen and studied the effect 79 

of the microbiota composition on the production of short chain fatty acids (SCFAs) across samples 80 

from healthy and diabetic individuals. Overall, we found that MICOM predicted a bimodal usage 81 

pattern of dietary metabolites, ecological interactions between microbes tended to be community-82 

specific and largely competitive, key gut genera associated with health participated in the largest 83 

number of ecological interactions, inferred SCFA production was lower in diabetic patients, and 84 

targeted dietary or probiotic interventions had unique functional consequences for each individual. 85 

 86 

Results 87 

A regularization strategy for microbial community models. 88 

 89 

Metabolic modeling is commonly applied to model a single strain of bacteria in log-phase, where 90 

the growth rate is approximately constant and the log of the bacterial abundance increases 91 

linearly with time. Modeling bacterial growth in natural environments is often more complex than 92 

this, but some information on environmental context can be extracted from the relative 93 

abundances of bacterial taxa. Within a single individual, and in the absence of persistent dietary 94 
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changes, gut microbial relative abundances tend to fluctuate around a fixed median value over 95 

month-to-year timescales (19–21). This is consistent with a steady state model where bacterial 96 

growth is in equilibrium with a dilution process that continuously removes biomass from the 97 

system (22). Under this approximation bacterial growth rates are constants μi (in 1/h), which is 98 

compatible with the assumption of FBA. All bacteria in the microbial community then contribute to 99 

the production of total biomass, with an overall growth rate constant μc. The community growth 100 

rate μc is obtained from the individual growth rates μi by a weighted mean, with the relative 101 

contribution of species i (ai) to the total biomass serving as the weight (17, 22). 102 

 103 

                                                      𝜇" = ∑ 𝑎&𝜇&&                                                            (1) 104 

 105 

Even though FBA can be used to obtain the maximum community growth rate, one can see from 106 

Equation 1 that there is an infinite combination of different individual growth rates μi for any given 107 

community growth rate μc (see Fig. 1A for an example). Various strategies have been employed 108 

in order to deal with this limitation, where the simplest strategy is to report any one of the possible 109 

growth rates distributions for μi. Other approaches attempt to find the set of growth rates that 110 

maximize community growth and individual growth at the same time (17), but this is 111 

computationally intensive and may not scale well to the species-diverse gut microbiome (18, 23). 112 

Thus, we formulated a strategy that allows us to identify a realistic set of individual growth rates 113 

μi and scales to large communities. The simplest case of a microbial community is a community 114 

composed of two identical clonal strains, each present in the same abundance. Assuming that 115 

the maximum community and individual growth rates are equal to 1.0 there are now many 116 

alternative solutions giving maximal community growth (Fig. 1A). However, the two populations 117 

are identical and present in the same abundance, so one would expect that both grow at the same 118 

rate. In order to enforce a particular distribution of individual growth rates one can try to optimize 119 

an additional function over the individual growth rates μi. This is known as regularization and a 120 

feasible regularization function should enrich for biologically relevant growth rate distributions. As 121 

a heuristic, our minimal requirement for a feasible regularization function was consistency with 122 

the observed metagenomic abundances. This means that a taxon that is observed in the data 123 

should be able to grow. Thus the growth rate of a taxon should be non-zero if its abundance is 124 

non-zero. We show in Supplemental Text S1 that no linear regularization function can comply 125 

with that requirement whereas a simple quadratic regularization, also known as L2 regularization, 126 

does fulfill that requirement (24, 25). L2 regularization is known to distribute magnitude over all 127 
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variables, which is also consistent with a maximization of individual growth rates and thus forms 128 

a heuristic for the simultaneous maximization of individual and community growth rates.  129 

 130 

L2 regularization can be readily integrated into FBA as a quadratic optimization problem, which 131 

is not necessarily true for any generic function. In the previous example of two identical strains 132 

only the L2 norm correctly identifies the solution where both strains grow at the same rate as 133 

optimal. Additionally, the L2 norm has a unique minimum. Thus, there is only one configuration of 134 

individual growth rates μi that minimizes the L2 norm for a given community growth rate μc. In 135 

practice, maximal community growth might only be achievable if many taxa are excluded from 136 

growth, for instance by giving all resources to a fast-growing subpopulation. Again, this is 137 

inconsistent with reality if one has prior knowledge that the other taxa are present in the gut and 138 

should be able to grow. Instead of enforcing the maximal community growth rate one can limit 139 

community growth to only a fraction of its maximum rate, thus creating a tradeoff between optimal 140 

community growth and individual growth rate maximization. Community growth maximization 141 

requires full cooperativity, whereas the L2 norm minimization represents selfish individual growth 142 

maximization. Thus we call our two-step strategy of first fixing community growth rate to a fraction 143 

of its optimum and then minimizing the L2 norm of individual growth rates a “cooperative trade-144 

off”.  Even though it is difficult to formulate a closed form solution for this two-step optimization, 145 

one can obtain a solution for the second optimization (minimization of regularization term) when 146 

dropping additional constraints for growth rates (see Supplemental Text S1 for derivation). In that 147 

case, growth rates are given by: 148 

 149 

                                                      𝜇& =
'()
*+*

𝑎& .                                                          (2) 150 

 151 

Thus, optimal growth rates will be approximately correlated with abundance where the slope 152 

depends on the abundance distribution and the maximum community growth rate. 153 

 154 

We found that computation time generally scaled well with the community size (with most 155 

individual optimizations taking less than 5 minutes) when using interior point methods, which are 156 

known to provide better performance for larger models (26). However, we found that it was difficult 157 

to maintain numerical stability with large community models. None of the tested solvers were able 158 

to converge to optimality when solving the quadratic programming problem posed by the L2 norm 159 

minimization (see Methods). Thus, we used a crossover strategy to identify an optimal solution to 160 

the L2 minimization (see Methods).  161 
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 162 

Figure 1: Regularization of growth rates. (A) Regularization values for a toy model of two identical E. coli 163 
populations. Two alternative solutions are shown with different individual growth rates and respective 164 
values of regularization optima. Here L1 denotes minimizing the sum of growth rates whereas L2 denotes 165 
minimization of the sum of squared growth rates. Only L2 regularization favors one over the other and 166 
identifies the expected solution where both populations grow with the same rate. (B) Effect of different 167 
trade-off values (fraction of maximum community growth rate) on the distribution of individual genus 168 
growth rates. Zero growth rates were assigned a value of 10-16 which was smaller than the observed non-169 
zero minimum. Growth rates smaller than 10-6 were considered to not represent growth (shaded area). 170 
(C) Pearson correlation between replication rates and inferred growth rates under varying trade-off 171 
values. “None” indicates a model without regularization returning arbitrary alternative solutions (see 172 
Methods). The dashed line indicates a correlation coefficient of zero. 173 
 174 

Regularization by cooperative trade-off yields realistic growth rate 175 

estimates. 176 

 177 

In order to test whether cooperative trade-off yields realistic growth rates, we implemented and 178 

applied it to a set of 186 metagenome samples from Swedish and Danish individuals (27), 179 

consisting of healthy individuals, individuals with type 1 diabetes and individuals with type 2 180 

diabetes stratified by metformin treatment (a known modulator of the gut microbiome) (28). 181 

Relative abundances and cleaned coverage profiles for a total of 239 bacterial genera and 637 182 

species were obtained with SLIMM (29) from previously published metagenomic reads (27, 29) 183 

as described in the Methods section. We used ratios in coverage between replication initiator and 184 

terminus as a measure for replication rates, which have been reported to be good proxies for 185 

bacterial growth rates in vivo (30). This provided a set of 1571 strain level replication rate 186 

measurements across the 186 samples that were used for validation of the inferred growth rates 187 

(1062 and 1113 on genus and species levels respectively, see Methods). Abundance profiles for 188 
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all identified genera across all samples were connected with the AGORA models, a set of 189 

manually curated metabolic models which currently comprises 818 bacterial species (31). 93 gut-190 

associated genera within the AGORA reconstructions represented more than 96% of 191 

metagenomic reads across the 186 samples (91% vs 94%, see Table 1 “genus” row). Even 192 

though the cooperative tradeoff strategy is applicable to species or even strain-level data, the 193 

AGORA reconstructions accounted for only 52% of all bacterial species in the data set. Thus, we 194 

decided to perform community model construction separately on species level as well as the 195 

genus level, which covered a larger fraction of the observed microbiome. To accomplish this, 196 

individual strain models from AGORA were pooled into the higher phylogenetic ranks (see 197 

Methods). After removing low abundance taxa (<0.1% for genera and <0.01% for species), the 198 

resulting communities contained between 12 and 30 taxa at the genus level and between 23 and 199 

81 taxa at the species level. Each taxon was represented by a full genome-scale metabolic model 200 

and connected by exchange reactions with the gut lumen, thus yielding two sets of 186 complete 201 

metagenome-scale metabolic models (one set for the species level and one for the genus level). 202 

We used the relative read abundances as a proxy for the relative biomass of each taxa in each 203 

sample (see Methods). Even though relative abundances from shotgun metagenomes are not an 204 

exact representation of bacterial mass (in grams dry weight), we argue that the discrepancy 205 

between the two is probably much smaller than the variation in taxon abundances, which spans 206 

several orders of magnitude (18).  207 

 208 

taxa unique taxa assigned reads with model 

kingdom 1 100% ± 0% 100% ± 0% 

phylum 22 100% ± 0%  99% ± 0% 

class 32 100% ± 0% 99% ± 0% 

family 102 100% ± 0% 91% ± 0% 

genus 239 94% ± 5% 91% ± 5% 

species 637 79% ± 9% 52% ± 9% 

Table 1: Distribution of taxa assignments across ranks. Only reads classified as bacteria were considered. 209 
Shown are the number of unique taxa for each rank together with the percentage of mapped reads that 210 
could be uniquely assigned to taxa within the rank, as well as the percentage of reads whose taxa had at 211 
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least one representative in the AGORA genome-scale metabolic models. Percentages are shown as mean 212 
± standard deviation across the 186 samples.  213 
 214 

The data on 186 individuals used in this analysis did not include diet, metabolomics, or data on 215 

total microbial load. Thus, we were limited to study metabolic effects that are driven by microbiota 216 

composition alone and not by additional factors such as diet or total bacterial biomass. To use a 217 

moderately realistic set of import constraints for the community models, we modeled all individuals 218 

as consuming an average Western diet (32). Import fluxes for external metabolites were based 219 

on a reported set of fluxes for an average Western diet (31, 33). To account for uptake in the 220 

small intestine, we reduced all import fluxes for metabolites commonly absorbed in the small 221 

intestine by a factor of 10.  222 

 223 

To evaluate the performance of the cooperative tradeoff we compared the inferred growth rates 224 

with the replication rates obtained directly from sequencing data. First, to establish a baseline we 225 

ran an optimization that only maximized the community growth rate and used the distribution of 226 

growth rates returned by the solver when applying no regularization. This was followed by 227 

applying the cooperative trade-off strategy with varying levels of suboptimality ranging from 10% 228 

to 100% of the maximum community growth rate. As stated above, we observed that simply 229 

optimizing the community growth rate with no regularization of the individual growth rates led to 230 

solutions where only a few taxa grew with unreasonably high growth rates (doubling times shorter 231 

than 5 minutes), whereas the rest of the microbial community had growth rates near zero 232 

(compare Fig. 1B with strategy marked by “none”). Consequently, the resulting model growth 233 

rates were uncorrelated with replication rates (mean Pearson rho=-0.02). Adding the L2 norm 234 

minimization while maintaining maximum community growth allowed more genera to grow (see 235 

Fig. S1) but yielded growth rates that were anticorrelated with replication rates (mean r = -0.11). 236 

Lowering the community growth rate to suboptimal levels strongly increased the growing fraction 237 

of the population (Fig. S1) and led to a much better agreement with replication rates for tradeoff 238 

values smaller than 70% (mean Pearson rho ≅ 0.4). Calculating correlations across all samples 239 

rather than within samples showed a similar tendency, with no regularization showing no 240 

correlation with replication rates (r = -0.05, p = 0.07) and increased agreement up to a tradeoff of 241 
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50% (r = 0.21, p = 2e-12). The lower magnitude correlations in the across samples setting is likely 242 

due to differences in diet or bacterial load across people that were not taken into account. Overall, 243 

the best agreement with the observed replication rates across and within samples was observed 244 

at 50% sub-optimal community growth. We observed similar performance with the species level 245 

models (Fig. S2). However, the best agreement with in vivo replication rates was observed for a 246 

tradeoff parameter of 0.7 (Fig. S2C). Because genus level model performed equally well as 247 

species level models but represented a higher percentage of observed reads (compare Table 1) 248 

we decided to continue all further analysis with the genus models and a tradeoff parameter of 0.5. 249 

 250 

 251 
Figure 2: Non-zero growth rates (> 10-6) across genera obtained by cooperative trade-off (50% maximum 252 
community growth rate). Each small filled point denotes a growth rate in one of the 186 samples and 253 
larger points with white fill denote the mean growth rate for the genus (see Methods). Genera are sorted 254 
by mean growth rate from left (lowest) to right (largest). 255 
 256 

 257 
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Growth rates are heterogeneous and depend on the community 258 

composition 259 

 260 

A tradeoff of 50% maximal community growth led to good agreement with replication rates. 261 

Bacterial communities showed an average doubling time of about 6 hours, where individual 262 

genera had an average doubling time of 11 hours. Community growth did not vary substantially 263 

across samples (0.246 +- 0.002 1/h) indicating that each individuals’ microbiota were almost 264 

equally efficient at converting dietary metabolites into biomass at the community level. However, 265 

we found that individual genus-level growth rates often varied over five orders of magnitude (Fig. 266 

2). Bacteroides was predicted to be the fastest growing genus overall and was closely followed 267 

by Eubacterium, which is consistent with the ubiquitous presence of these abundant taxa in 268 

microbiome samples (34, 35).  269 

 270 

 271 
Figure 3: Co-dependencies of growth rates. (A) Relationship between abundance and growth rate across 272 
samples. Shown in the larger scatter plot are growth rates and abundances for the first 10 samples. Each 273 
dot denotes one genus in one sample and is colored by sample provenance. Dashed lines denote the linear 274 
relationship between growth rates and abundances predicted by Equation 2 for each sample. The black 275 
box demonstrates how varying slopes (i.e. as community evenness declines, so does the within-sample 276 
slope) can result in negative correlation between abundance and growth rate across samples. Smaller inset 277 
scatter plot shows data from all samples (Pearson rho=0.69, n=39,815). (B) Growth rate interactions 278 
between genera as estimated by genus knockouts. Shown are only interaction that induce a mean growth 279 
rate change of 0.1 across all samples (i.e. ubiquitous interactions). Color of edges indicates change of 280 
growth rate and type of interaction. Red edges denote competition where removal of one genus increases 281 
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the growth rate of the other and blue edges denote cooperation or syntropy where the removal of one genus 282 
lowers the growth rate of the other. Nodes are colored by the degree (number of total connections) from 283 
lime (few) to dark blue (many).   284 
 285 

 286 

In the absence of additional constraints, L2 regularization will result in growth rates that are 287 

linearly dependent on the taxa abundances (see Equation 2 and Supplemental Text S1). 288 

However, this requires some simplifying assumptions that may not be met in the particular 289 

constraints of the full metabolic community models. We compared growth rates estimates 290 

obtained from numerical optimization with the approximation from Equation 2. We found that 291 

growth rates obtained with the cooperative tradeoff usually followed the derived linear 292 

relationship, albeit with a large variation (mean R2 = 0.94, sd = 0.34, Fig. 3A). Deviations from 293 

that relationship were mostly observed for small growth rates (see Fig. 3A) which could not reach 294 

the suggested growth rate due to additional constraints on growth. Thus, the linear relationship 295 

between growth rates and abundance holds for most growth rates but is likely inaccurate for very 296 

small growth rates. It is important to note that even though abundances are positively correlated 297 

with growth rates within a single individual this is not true across samples where one can observe 298 

a negative correlation for abundant taxa (see Fig. 3A). This is a consequence of the coefficient in 299 

Equation 2, which depends on the actual abundance distribution as well. In particular, the slope 300 

of the linear relationship between abundance and growth rate will be the greatest if all taxa have 301 

equal abundances and take its lowest value when one taxon dominates. 302 

 303 

We observed a wide variation in individual taxon growth rates across samples. Because all of the 304 

community models were constrained under the same diet this phenomenon was due to microbiota 305 

composition only. To explain this variation in individual growth rates, we hypothesized that 306 

different genera might influence each other’s growth rate, either by competition or by cooperation. 307 

In order to quantify growth rate interdependencies we performed in silico knockouts for each 308 

genus in each sample and tracked the change in growth rates for all remaining genera in the 309 

sample (see Methods). Here we found that the growth rate of each genus was influenced by 310 

another genus in at least one of the 186 samples. As would be expected for bacterial species 311 

competing for the same resources, most interactions were competitive (red edges in Fig. 3B). 312 

However, we observed a distinct subset of bacteria that were interconnected by a network of 313 

cooperative interactions, including Akkermansia and Faecalibacterium (blue edges in Fig. 3B, 314 

also Fig. S3). Strikingly, genera participating in many interactions across all samples, such as 315 
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Bacteroides, Eubacterium, Akkermansia, Alistipes and Faecalibacterium, are known to be 316 

ubiquitous members of the gut microbiome and are often associated with health (6, 36–40). We 317 

found that the prevalence and strength of interactions were highly dependent on the composition 318 

of the microbiome. The vast majority of strong growth interactions were present in only 1-5 319 

samples, whereas all other samples showed very few strong interactions (Fig. S3). This result is 320 

perhaps unsurprising, as many strong species-species interactions are thought to be destabilizing 321 

to ecological communities (41, 42). 322 

 323 

Analysis of exchange fluxes reveals differential use of diet components and 324 

niche partitioning in the microbiota 325 

 326 

One of the major modes of interaction between the gut microbiota and the host is by means of 327 

consumption or production of the metabolite pool in the gut. In our simulations all individuals were 328 

under the same average Western diet (see Methods), which imposes an upper bound for the flux 329 

of metabolites into the gut lumen. However this does not determine a priori which components of 330 

the diet are consumed at what rate in each sample, because individual microbiota may consume 331 

less than what is imposed by that maximum diet flux. We quantified this effect by obtaining all 332 

import and export fluxes for each individual genus across all samples (1,613 exchange reactions 333 

in each of 62 genera) as well as metabolite exchanges between the microbiota and the gut lumen 334 

(152 metabolites). This was done in the absence of a metabolic model for enterocytes, 335 

colonocytes or goblet cells due to the lack of a curated metabolic reconstruction and validated 336 

objective function for those cells. A unique set of exchange fluxes was obtained by considering 337 

the set of exchange fluxes with smallest total import flux for the growth rates obtained by the 338 

cooperative trade-off (see Methods). This assumes that the microbiota competes for resources 339 

with the host gut and will thus favor an efficient import that yields the maximum growth rate. This 340 

also corresponds to the particular distribution of import fluxes an individual microbiota is most 341 

adapted to. 342 

 343 

Even though the minimization of total import fluxes favors simpler media compositions, most 344 

samples showed a diverse consumption of metabolites from the gut, particularly in the wide array 345 

of carbon and nitrogen sources (Fig. 4A). There was a large set of metabolites that were 346 

consumed across all samples but we also observed many metabolites with differential import 347 
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fluxes across individuals. In particular, we observed a bimodal distribution where microbiota either 348 

consumed fibers and starches or branched chain amino acids (see indicated metabolites in Fig. 349 

4A). This bimodal pattern did not correlate with health or disease states. As expected, all 350 

communities showed net anaerobic growth.  351 

 352 

Given the observed heterogeneity in taxon growth rates and the large number of interactions we 353 

were interested in looking at the uptake rates of metabolites from the gut lumen by each genus. 354 

There was overlap of metabolite usage across genera. On average 32% of the metabolites were 355 

shared between any two genera in any sample (standard deviation of 13%, see Methods). 356 

  357 

 358 
Figure 4: Microbiota import fluxes across samples. Exchange fluxes were calculated as the smallest set of 359 
import fluxes that could maintain the genera growth rates obtained by the cooperative trade-off. (A) Import 360 
fluxes across samples. Rows were normalized to their absolute maximum and colors denote the import 361 
rate ranging from 0% to 100% maximum import. Metabolite groups of interest are marked by blue and red 362 
lines (BCAA = branched chain amino acids). Column headers are colored by host metabolic health state 363 
(CTRL = metabolically healthy, T1D = type 1 diabetes, T2D = type 2 diabetes, metformin +/- = 364 
with/without metformin treatment). (B) Growth niche map for gut genera. Import fluxes for each genus in 365 
each sample were reduced to two dimensions using t-SNE. Each point denotes a genus in one sample 366 
and is colored and named by its genus. 367 
 368 

 369 

Consequently, more than two thirds of metabolites were used differentially between pairs of 370 

genera. To visualize the structure of metabolite consumption by individual bacterial genera in the 371 

gut we used t-SNE dimensionality reductions on the individual genus-specific import fluxes (43). 372 

This revealed clear genus-specific niche structure across samples, where individual genera could 373 
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be uniquely identified by their particular set of import fluxes (Fig. 4B). Here, taxa closer to one 374 

another overlap more in consumed metabolites (Fig. 4B). For instance, Bacteroides and 375 

Prevotella were relatively close to each other in the center of the map, which may help explain 376 

the observed tradeoff between Bacteroides and Prevotella abundances across humans (44). 377 

Blautia, Desulfovibrio, Bifidobacterium and Eubacterium had the most unique growth niches 378 

overall. Genus identity alone explained 61% of the variance in import fluxes (Euclidean 379 

PERMANOVA p=0.001). Thus, there was extensive growth niche partitioning between bacterial 380 

genera.  381 

 382 

 383 
Figure 5: SCFA fluxes. (A) Production capacities of the major SCFAs stratified by population. Fluxes 384 
denote total amount of SCFA produced by 1g of bacterial biomass in the gut. Stars denote significance 385 
under Welch’s t-test (* p<0.05, ** p<0.01).  (B) Genus-specific fluxes for the three major SCFAs. Shown 386 
are only genera with a relative abundance >1%. Fluxes denote total production/consumption for each 387 
genus (see Methods) and are directed towards exports. Thus, positive fluxes denote production of the 388 
metabolite and negative fluxes consumption. Genera are ordered by average relative abundance (relative 389 
abundances shown in the first column) from top to bottom. 390 

SCFA production is driven by extensive cross-feeding within the microbiota 391 

and can be modulated by personalized interventions 392 

 393 

Given the association between SCFAs and disease phenotypes we investigated the degree of 394 

SCFA production by the model microbiota (2, 45, 46). Intestinal cells have access to the full pool 395 

of SCFAs in the gut lumen and would probably take up a significant fraction of those extracellular 396 

SCFAs. Thus, the total export flux of any SCFA into the gut lumen by all taxa in a specific model 397 

is a measure of host-available SCFA production by the microbiota (see Methods for details on 398 
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computation). Overall SCFA production for the major SCFAs showed large variations even in 399 

healthy individuals, which indicates a large impact of gut microbiota composition on SCFA 400 

availability. In particular we observed that Swedish individuals showed higher SCFA production 401 

rates than the Danish individuals in the study. Butyrate production was diminished by about 2-fold 402 

in Danish individuals with type 1 diabetes (Welch’s t-test, p=0.004) but not in Swedish individuals. 403 

Danish and Swedish individuals with type 1 diabetes had microbiota that produced more acetate 404 

than healthy individuals (Welch’s t-test, p=0.02 and 0.003, respectively; Fig. 5A). Metformin 405 

treatment had a moderate effect in increasing butyrate productions in both cohorts, however this 406 

effect was strongest when comparing Danish individuals with T1D and metformin-treated danish 407 

individuals with T2D (Welch’s t-test, p=0.003). Higher production of SCFAs was usually 408 

accompanied by an increased consumption of SCFAs within the gut microbiota (Fig. S4).  This is 409 

consistent with prior findings in Danish and Chinese populations (4, 27, 47).  410 

 411 

Decreases in butyrate production were usually accompanied by increases in acetate production. 412 

This appeared to indicate SCFA cross-feeding within the microbiota, which we confirmed by 413 

comparing the total production and consumption fluxes for each bacterial genus across all 414 

samples (Fig. 5B). We observed that butyrate was almost exclusively formed in an acetate-415 

dependent manner from acetyl-CoA, which is the most prevalent butyrate-production pathway in 416 

bacteria (48). In particular, production of butyrate depended on acetate production in the 417 

community. This was enabled by an extensive cross-feeding between the genera. All SCFAs were 418 

produced by a heterogeneous set of taxa, with acetate and propionate production being spread 419 

out across most taxa in the system and butyrate produciton being somewhat more restricted to a 420 

smaller set of taxa (Fig. 5B). Across samples, the most efficient butyrate producers were 421 

Faecalibacterium, Coprococcus, Roseburia, Anaerostipes and Lachnoclostridium, all of which are 422 

known butyrate producers (48, 49). However, the models also predicted consumption of acetate 423 

by Bacteroides and consumption of butyrate by Eubacterium, which is not commonly observed in 424 

vivo. Production of SCFAs was complemented by several other genera, generating a network of 425 

SCFA cycling within the microbiota. SCFA production by any genus showed high variation across 426 

samples and in some cases would even switch between consumption and production of a 427 

particular SCFA, which shows how specific SCFA production is to a particular microbial 428 

community (compare Fig 5B). Net production of SCFAs was low compared to overall production 429 

(Fig. 5A and S4B) which indicates that most SCFAs in our models were cycled within the bacterial 430 

community.  431 

 432 
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Finally, as a proof of concept for the utility of MICOM, we aimed to quantify the impact of targeted 433 

interventions on the net consumption or production of SCFAs by the microbiota. For this we chose 434 

three Swedish samples (normal, T2D metformin-, T2D metformin+). The impacts of a particular 435 

univariate interventions were then quantified by using elasticity coefficients (50, 51), which are 436 

dimensionless measures of how strongly a parameter affects a given flux (see Methods). 437 

Univariate interventions included increasing the availability of a single metabolite in the diet or 438 

increasing the abundance of a single bacterial genus. We observed that the effect of these single 439 

interventions were very heterogeneous across all 3 samples (see Fig. 6). The strongest and most 440 

common observed effects were to diminish overall SCFA production. However, we observed a 441 

few interventions that were able to weakly increase SCFA production. There was a distinct set of 442 

metabolites that would increase butyrate production in the T2D individuals but not in the healthy 443 

individual. This was also dependent on metformin status. For instance, Arabinan increased 444 

butyrate production in the metformin positive individual and D-Xylose increased butyrate 445 

production in the metformin negative individual, but not vice versa.  Thus, MICOM is able to 446 

explore the potential functional consequences of targeted dietary or probiotic interventions, which 447 

can differ greatly depending on the context of the microbiota in which the interventions are made. 448 

 449 

 450 
Figure 6: Effect of interventions on SCFA production in 3 samples. Each row denotes a SCFA in a specific 451 
individual and each column either denotes a diet component or bacterial genus. Colors denote the elasticity 452 
(i.e. the percent change in SCFA production given a percent increase in the specific effector). Red denotes 453 
interventions that would increase SCFA production and blue interventions that would decrease production. 454 
Shown are only interventions with non-zero elasticities in at least one sample. 455 
 456 

Discussion 457 

There is a large amount of sequencing data on microbial communities available today. This is 458 

mostly due to the falling cost of 16S rRNA sequencing or shallow shotgun sequencing (52). There 459 
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is wide interest in extracting information from sequencing data that goes beyond bacterial 460 

proportions (53). Metabolic modeling incorporates a rich knowledge base from genomics and 461 

biochemistry and is a valuable resource for adding value to existing datasets. Specifically, MICOM 462 

allows for the integration of genome-scale metabolic models, dietary information in the form of 463 

import flux bounds, and abundance data from metagenomic shotgun or marker gene sequencing. 464 

This framework enables in silico mechanistic predictions concerning ecological interactions within 465 

microbial communities, inferred exchanges between microbial communities and their 466 

environment, and mechanistic hypotheses for how metabolic interactions can be modulated by 467 

changes in the environment. The design of a reasonable metagenome-scale metabolic models is 468 

challenging due to apparent tradeoffs between individual and community growth rates and issues 469 

with computational tractability. Here, we provided a viable strategy that allows for complex 470 

analysis of the metabolic consequences of variation in microbial community composition. Our 471 

regularization strategy allows for fast identification of unique sets of individual growth rates, which 472 

operate in biologically realistic ranges. Our assumption that there is a tradeoff between community 473 

growth rate and individual taxon growth rates is supported by the observation that most microbial 474 

communities are composed of a large number of species with non-negligible abundances. 475 

Individual growth rates for bacterial genera varied greatly across samples (Fig. 2) and were tightly 476 

coupled to genus abundances within a sample (Fig. 3A). However, there may be other 477 

regularization strategies that provide better agreement with the underlying biology. Our validation 478 

strategy using replication rates obtained directly from metagenomic data provides a simple 479 

framework to test new regularization functions in the future. It seems that the large variation of 480 

growth rates can be explained by a dependency of the growth rate on the presence of other 481 

bacteria in the sample (Fig. 3B). Thus, bacterial growth in the gut microbiota is not only dictated 482 

by abundance but also by taxon-taxon interactions. 483 

 484 

Our predictions are somewhat limited by a variety of factors. For instance, the lack of metabolic 485 

models for the major cell types of the gut epithelium (especially goblet cells, enterocytes and 486 

colonocytes) and sample-specific metabolite availability in the gut lumen limits the accuracy of 487 

MICOM’s predictions. Additionally, the use of representative models for bacterial genera may also 488 

have caveats. Available metabolic reconstructions are often based on laboratory strains that may 489 

not represent the exact metabolic capacity of strains in the human gut. Thus, reconstructions may 490 

lack certain metabolic pathways present in the sample and yield inaccurate results, especially 491 

when not applying appropriate bounds for the underlying diet (33, 54). Model-predictions may 492 

become more quantitative as better personalized data becomes available.  The incorporation of 493 
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personalized data on diet and a better grasp on what fraction of metabolites are absorbed in the 494 

small intestine should help to improve model-based predictions. Personalized reconstruction of 495 

microbial community metabolic models directly from metagenomic sequencing data may provide 496 

more accurate predictions as well, but this approach is currently limited by insufficient sequencing 497 

coverage for low abundance taxa.  498 

 499 

MICOM provided valuable ecological insights into the gut microbiota. For instance, the 500 

cooperative tradeoff in Equation 2 indicates that a more diverse microbiome (i.e. higher evenness) 501 

results in higher individual growth rates (on average) due to the magnitude scaling of the 502 

abundance vector (denominator in Equation 2). We also found strong niche partitioning in the 503 

model, where taxa showed minimal overlap with each other in resource utilization space. This 504 

minimal overlap implies that there is likely an upper bound on alpha diversity in the gut, due to 505 

the fact that growth niches eventually saturate and limit the number of taxa that can engraft. Even 506 

though only about a third of metabolites were consumed by any pair of taxa in the models, this 507 

small amount of niche overlap still resulted in resource competition between taxa. This was 508 

particularly true for dominant taxa (e.g. Bacteroides), which tended to show competitive 509 

interactions with many other genera, likely due to the comparatively higher resource requirements 510 

of these abundant taxa for maintaining growth. This community-wide resource competition fits 511 

well with the observed growth dependency on amino acid import fluxes across all taxa (Fig. 3A), 512 

which is consistent with prior work that suggest that nitrogen may be the global limiting factor for 513 

microbial growth in the gut (55). Finally, the methods here extend to any ecosystem containing 514 

many microbial taxa and is applicable to abundance data summarized at various phylogenetic 515 

ranks. As such MICOM can be employed to perform functional analyses on a wide range of 516 

microbial ecosystems.     517 

 518 

It has been difficult and time-consuming to obtain empirical evidence for the mechanistic basis of 519 

gut-microbiota interactions. MICOM provides a high-throughput platform for generating 520 

mechanistic hypotheses and running in silico experiments that would be impossible to perform in 521 

vivo. Thus, we feel that the major application for MICOM is to provide detailed functional 522 

hypotheses that can serve as targets for experimental validation. For example, MICOM reveals 523 

widespread SCFA cross-feeding in the gut microbiota. The mere presence of butyrate producers 524 

was not enough for stable SCFA production - acetate production was also required. Furthermore, 525 

MICOM generated personalized predictions for how dietary and probiotic interventions influenced 526 

SCFA production capacity. This basic approach could be extended to any number of clinically-527 
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relevant metabolites. Thus, we hope that the method presented here will aid researchers in 528 

leveraging existing gut microbiome data to design and test personalized intervention strategies.  529 

 530 

Methods 531 

Data availability and reproducibility 532 

 533 

All data to reproduce the manuscript, intermediate results as well as Python scripts to reproduce 534 

the figures in this manuscript are available in a data repository at 535 

https://github.com/resendislab/micom_study.  Metagenomic reads for the 186 individuals were 536 

obtained from Forslund et. al. (27) and can be downloaded from the Sequence Read Archive 537 

(https://www.ncbi.nlm.nih.gov/sra) with the SRA toolkit 538 

(https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/). A full list of run accession IDs for the 539 

individual samples is provided in the data repository (“recent.csv”). All algorithms and methods 540 

used here were implemented in a Python package and can be easily applied to different data 541 

sets. The Python package “MICOM” (MIcrobial COMmunities) along with documentation and 542 

installation instructions are available at https://github.com/resendislab/micom. MICOM is based 543 

on the popular COBRApy Python package for constraint-based modeling of biological networks 544 

and is compatible with its API (56). The cooperative trade-off strategy as described here was 545 

introduced to MICOM in version 0.9.0. The AGORA reference reconstructions with an already 546 

applied average Western diet can be downloaded from https://vmh.uni.lu/#downloadview. Several 547 

methods used in MICOM require an interior point solver with capabilities for quadratic 548 

programming problems (QPs) for which there is currently only commercial software available. 549 

MICOM supports CPLEX (https://cplex.org) and Gurobi (https://gurobi.org) both of which have 550 

free licenses for academic use. Intermediate results that required those solvers are also provided 551 

in the data repository to permit reproduction of our major conclusions.  552 

Metagenomic shotgun data analysis 553 

All metagenomic analyses were performed in R using an in-house pipeline which is available as 554 

an open source package along with documentation at https://github.com/resendislab/mbtools. 555 

Sample FASTQ files were downloaded using the SRA toolkit and trimmed and filtered using the 556 

DADA2 “filter_and_trim” function (57) with a left trimming of 10 bp, no right trimming, a quality 557 
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cutoff of 10 and a maximum  number of 2 expected errors under the Illumina model. Abundances 558 

across different taxa levels were then obtained using SLIMM (29) which was chosen because it 559 

supported one of the largest references (almost 5,000 reference bacterial genomes). In brief, all 560 

sample FASTQ files were first aligned to the SLIMM reference using Bowtie2 saving the 100 best 561 

matches for each read. Taxa abundance profiles were then obtained using SLIMM with a window 562 

size of 100bps and assembled into a single abundance file. SLIMM coverage profiles resolved to 563 

single strains where then used to infer replication rates using the iRep method (58). In brief, 564 

coverage profiles were first smoothed with a rolling mean over 5kbp windows and only genomes 565 

with at least a mean coverage of 2 and with at least 60% of total length covered were considered. 566 

Coverage values were log-transformed, sorted, and the lowest and highest 10% of the data points 567 

were removed to obtain the linear part of the curve. Replication rates were then inferred from the 568 

slope of a regression on that linear part. An estimate for the minimum coverage was then obtained 569 

from the intercept of the regression and only replication rates for strains with a minimum coverage 570 

>2 were kept. No correction for GC content was performed. Before model construction, genus-571 

level and species-level quantifications for each sample were matched separately to the AGORA 572 

models by name. The final quantification and mapping is provided in the data repository 573 

(“genera.csv” and “species.csv” at https://github.com/micom-dev/paper).  574 

Strategies used in MICOM 575 

Flux balance analysis obtains approximate fluxes for a given organism by assuming a steady 576 

state for all fluxes in the biological system and optimizing an organism-specific biomass reaction. 577 

Using the stoichiometric matrix S which contains reaction in its columns and metabolites in its 578 

rows this can be formulated as a constrained linear programming problem for the fluxes vi (in 579 

mmol/[gDW h]):  580 

 581 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑣34 582 

𝑠. 𝑡. 𝑆𝑣	 = 	0 583 

						𝑙𝑏& 	≥ 𝑣& ≥ 𝑢𝑏& 584 

 585 

The biomass reaction vbm is usually normalized such that it will produce 1g of biomass which 586 

results in a unit 1/h corresponding to the growth rate μ of the organism. The upper and lower 587 

bounds (lbi and ubi, respectively) impose additional thermodynamic constraints on the fluxes or 588 

restrict exchanges with the environment (in the case of exchange fluxes). In order to describe a 589 

community model containing several organisms each with a particular abundance ai (in gDW) one 590 
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usually embeds each organism in an external compartment which represents the community 591 

environment (for instance the gut lumen for models of the gut microbiota). Adding exchanges for 592 

the environment compartment and exchanges between a particular organism and the 593 

environment one obtains a community model with the following constraints: 594 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝜇> =?𝑎& ⋅ 𝜇&
&

 595 

𝑠. 𝑡. ∀𝑖: 𝑆𝑣	 = 	0	 596 

												𝜇& = 𝑣& 34 ≥ 𝜇& 4&C 597 

												𝑙𝑏& 	≥ 𝑣& ≥ 𝑢𝑏& 598 

												𝑙𝑏& DE 	≥ 𝑎& ⋅ 𝑣& DE ≥ 𝑢𝑏& DE 599 

						𝑙𝑏& 4 ≥ 𝑣& 4 ≥ 𝑢𝑏& 4 600 

Here, ai denotes the relative abundance of genus i, μi its growth rate, vi
bm its biomass flux, μi

min a 601 

user specified minimum growth rate, vi
ex the exchange fluxes with the external environment, and 602 

lb and ub the respective lower and upper bounds. Additionally, μc denotes the community growth 603 

rate and vi
m the exchanges between the entire community and the gut lumen. The described 604 

constraints are identical to the ones employed in SteadyCom (22, 29). We assigned an upper 605 

bound of 100 mmol/[gDW h] for the internal exchange fluxes vi
ex. Assuming a total microbiota 606 

biomass of 200 g and a representative bacterial cell dry weight of 2 pg (59), this corresponds to 607 

a maximum import or export of more than 100,000 molecules/[cell s]. Diet derived lower bounds 608 

with values smaller 10-6 mmol/[gDW h] were set to zero as they would have been lower than the 609 

numerical tolerance of the solver. Taxa with relative abundances ai smaller 10-3 for the genus 610 

models or 10-4 for the species models were discarded since they would not be able to affect the 611 

external metabolite levels in a significant way but do increase computation time. Internal fluxes vi 612 

received respective bounds of 1000.0 (or 0 if irreversible) making them essentially unbounded. 613 

The described constraints are applied to all optimization problems in MICOM and will be further 614 

called the “community constraints”. 615 

 616 

The cooperative trade-off method consists of two sequential problems. First, maximize the 617 

community growth rate μc to obtain μc
max. Using a user specified trade-off α now solve the following 618 

quadratic minimization problem: 619 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	?𝜇&G
&

 620 

𝑠. 𝑡. 𝜇> 	≥ 𝛼 ⋅ 𝜇>4*E 621 
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																			𝑎𝑛𝑑	𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 622 

  623 

The knockout for a genus i was performed by setting all fluxes belonging to this genus along with 624 

its exchanges with the external environment to zero (lb=0 and ub=0). This is followed by running 625 

cooperative trade-off on the knockout model and comparing the growth rates after the knockout 626 

with the ones without the knockout. 627 

 628 

Solvers and Numerical stabilization       629 

Most genome-scale metabolic models usually do not treat more than 10,000 variables in the 630 

corresponding linear or quadratic programming problems. However, in microbial community 631 

models we usually treat 10s to 100s of distinct genome-scale models, which makes the 632 

corresponding problem much larger. Unfortunately, many open and commercial solvers have 633 

difficulties solving problems of that scale, so we also implemented strategies to increase the 634 

success rate of those optimizations. All linear and quadratic programming problems were solved 635 

using interior point methods as those were much faster than simplex methods for problems with 636 

more than 100,000 variables. Here, we used CPLEX (https://www.ibm.com/analytics/cplex-637 

optimizer) but also tested all methods with Gurobi (https://www.gurobi.com). Since growth rates 638 

tend to be small we also multiplied the objectives used in the cooperative tradeoff (maximization 639 

of community growth rate and minimization of regularization term) with a scaling factor in order to 640 

avoid near-zero objective coefficients. A scaling factor in the order of the largest constraint 641 

(1000.0) seemed to work well. Nevertheless, the default interior point methods for quadratic 642 

problems in CPLEX or Gurobi were usually not capable of solving the minimization of the 643 

regularization term to optimality and usually failed due to numerical instability. The solutions 644 

reported by the aborted optimization run were usually close to the optimum, but tended to violate 645 

some numerically ill-conditioned constraints. To alleviate this problem, we implemented a 646 

crossover strategy where we took the solution of the numerically ill-conditioned quadratic interior 647 

point method as a candidate solution set μi
ca. Based on that we then optimized the following linear 648 

programming problem in order to restore feasibility: 649 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝜇> =?𝑎& ⋅ 𝜇&
&

 650 

𝑠. 𝑡. 𝜇& ≤ 𝜇&>* 651 

      𝑎𝑛𝑑	𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 652 
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Linear interior point methods are usually numerically stable so this linear programming problem 653 

can usually be solved to optimality. The maximization together with the new constraints will push 654 

the individual growth rates towards the candidate solution as long as it is numerically feasible.  655 

Minimal media and exchange fluxes 656 

By convention MICOM formulates all exchange fluxes in the export direction so that all import 657 

fluxes are positive and export fluxes are negative. Based on this, the minimal medium for a 658 

community was obtained by minimizing the total import flux: 659 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑣OPO =?{|𝑣&
4|, 𝑣&4 < 0}

&

 660 

𝑠. 𝑡. ∀𝑖:	𝜇&	 ≥ 𝜇&>O 661 

													𝜇>	 ≥ 𝛼 ⋅ 𝜇>4*E 662 

																								𝑎𝑛𝑑	𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 663 

Here μi
ct denotes the optimal genera growth rates obtained by cooperative trade-off. The 664 

community exchanges were then obtained by extracting all vi
m, whereas genus-specific 665 

exchanges were given by all vi
ex as defined earlier.  666 

 667 

Overall production fluxes were calculated as 668 

𝑣OPO4 = ∑ 𝑎& ⋅ 𝑣&4&,VWXYZ , 669 

where vi
m denotes an exchange flux for the metabolite m in taxon i. Overall consumption rates 670 

were calculated in a similar manner but restricting fluxes to ones with vi
m<0 (imports). 671 

 672 

Single target intervention studies 673 

We used elasticity coefficients (50, 51) to evaluate the sensitivity of exchange fluxes to changes 674 

in exchange flux bounds (ergo diet changes) or changes in genus abundances. The logarithmic 675 

formulation of elasticity coefficients is given by 676 

 677 

𝜀\V =
𝜕 𝑙𝑛 |𝑣|
𝜕 𝑙𝑛 |𝑝|

 678 

 679 

where v denotes the exchange flux of interest and p the changed parameter. Since the absolute 680 

value removes information about the directionality of the flux this was logged separately to 681 
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maintain this information. We used a value of 0.1 as differentiation step size in log space, which 682 

corresponds to a bound or abundance increase of about 10.5% in the native scale. To enable 683 

efficient computation, elasticity coefficients were grouped by the p parameter, then the 684 

cooperative trade-off was run once without modification, the p parameter was increased, the 685 

cooperative trade-off was run again, and differentiation was performed for all exchange fluxes at 686 

once.    687 

 688 
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Supplemental Figures 704 

705 
Figure S1. (A) Pearson correlations between inferred growth rates and replication rates across all 706 
samples (n=1,062). Stars denote significance of a Pearson test (ns - p>0.05, * - p<0.05, ** - p<0.01, *** - 707 
p<0.001). The dashed line denotes a zero correlation coefficient. (B) Fraction of observed genera growing 708 
in each sample. Each dot denotes a single sample. A trade-off of “none” means optimization without L2 709 
regularization and only maximizing the community growth rate. 710 
 711 

 712 
Figure S2. Metrics on the species level. (A) Effect of different trade-off values (fraction of maximum 713 
community growth rate) on the distribution of individual species growth rates. Zero growth rates were 714 
assigned a value of 10-16 which was smaller than the observed non-zero minimum. Growth rates smaller 715 
than 10-6 were considered to not represent growth. (B) Pearson correlation between replication rates and 716 
inferred species growth rates under varying trade-off values. “None” indicates a model without 717 
regularization returning arbitrary alternative solutions (see Methods). The dashed line indicates a 718 
correlation coefficient of zero. (C) Pearson correlations between inferred species growth rates and 719 
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replication rates across all samples (n=1,113). Stars denote significance of a Pearson test (ns - p>0.05, * 720 
- p<0.05, ** - p<0.01, *** - p<0.001). The dashed lines denotes a zero correlation coefficient. 721 

  722 
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 723 

 724 
 725 
Figure S3. Strong interactions are heterogeneously distributed across samples. (A) Histogram of the 726 
number of samples a particular interaction occurs in. Lower numbers on the x-axis denote sample-specific 727 
interactions and higher numbers denote ubiquitous interactions. (B) Interactions observed across all 728 
samples stratified by genus and type.  729 
 730 
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 731 
Figure S4. Total consumption and net flux of SCFAs by the microbiota. (A) Total consumption flux of 732 
SCFAs. (B) Net production of SCFAs (i.e. difference of total production and total consumption). 733 

  734 
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