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Abstract 

Background. Chronic kidney disease (CKD) is a common, complex, and heterogeneous disease 
impacting aging populations. Determining the landscape of disease progression trajectories 
from midlife to senior age in a “real-world” context allows us to better understand the 
progression of CKD, the heterogeneity of progression patterns among the risk population, and 
the interactions with other clinical conditions. Genetics also plays an important role. In previous 
work, we and others have demonstrated that African Americans with high-risk APOL1 
genotypes are more likely to develop CKD, tend to develop CKD earlier, and the disease 
progresses faster. Diabetes, which is more common in African Americans, also significantly 
increases risk for CKD.  

Data and Method. Electronic medical records (EMRs) were used to outline the first CKD 
progression trajectory roadmap for an African American population with type 2 diabetes. By 
linking participants in 5 genome-wide association study (GWAS) to their clinical records at Wake 
Forest Baptist Medical Center (WFBMC), an EMR-GWAS cohort was established (n = 1,581). 
Patients’ health status was described by 18 Essential Clinical Indices across 84,009 clinical 
encounters. A novel graph learning algorithm, Discriminative Dimensionality Reduction Tree 
(DDRTree) was implemented, to establish the trajectories of declines in health. Moreover, a 
prediction model for new patients was proposed along the learned graph structure. We 
annotated these trajectories with clinical and genomic features including kidney function, other 
major risk indices of CKD, APOL1 genotypes, and age. The prediction power of the learned 
disease progression trajectories was further examined using the k-nearest neighbor model.  

Results. The CKD progression trajectory roadmap revealed diverse kidney failure pathways 
associated with different clinical conditions. Specifically, we identified one high-risk trajectory 
and two low-risk trajectories. Switching pathways from low-risk trajectories to the high-risk one 
was associated with accelerated decline in kidney function. On this roadmap, patients with 
APOL1 high-risk genotypes were enriched in the high-risk trajectory, suggesting fundamentally 
different disease progression mechanisms from those without APOL1 risk genotypes. The k-
nearest neighbor-based prediction showed effective prediction rate of 87%.   

Conclusion. The CKD progression trajectory roadmap revealed novel diverse renal failure 
pathways in African Americans with type 2 diabetes mellitus and highlights disease progression 
patterns that associate with APOL1 renal-risk genotypes.  
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Introduction  

As a chronic, complex, and heterogeneous disease, chronic kidney disease (CKD) challenges 
traditional clinical research paradigms such as those in clinical trials or observational studies. 
CKD is common, irreversible, and affects organs beyond the kidney. In 2011 – 2014, about 
14.8% of US adults had CKD and one third of the population over age 60 had moderate to 
severe CKD (Stages 3-5) (1). The life expectancy of patients with CKD is shorter than in those 
with normal kidney function. For adults age 50 with moderate or more severe CKD (Stages 3-5), 
life expectancy is reduced by 11 years (31.3%) compared with peers lacking CKD.  

A major analytic challenge is heterogeneity in populations with CKD. CKD populations 
demonstrate dramatically diverse progression patterns, prognosis, risk factors, and responses 
to clinical interventions. Genetic and ancestry-based risk factors may define particular sub-
populations exhibiting unique disease patterns and interactions with other CKD comorbidities. 
For example, it was discovered that in the APOL1 gene (apolipoprotein L1), the “G1” 
(rs73885319, S342G and rs60910145, I384M) and “G2” (rs71785313 6-bp deletion) variants (2-
4) strongly associate with increased risk for non-diabetic CKD (5, 6). The APOL1 risk variants are 
ancestry-specific. These risk alleles are present in >50% of African Americans but rare in other 
ethnic groups (3). Other known CKD sub-populations are patients with the history of acute 
kidney injury (AKI) (7-10), diabetes mellitus (DM), hypertension (HTN), or cardiovascular disease 
(CVD). Understanding the nature of these intrinsic CKD subtypes is crucial for supporting clinical 
decisions such as identifying patient subtypes and determining optimal management strategies.  

Another challenge is due to the complexity of CKD, which requires comprehensive clinical 
indices to study its risk of progression, interactions with its comorbidities, and the impact on 
patient health. CKD is strongly associated with presence of other chronic complex diseases: 
about 40% of patients with DM, 32% with HTN, and 43% with CVD have moderate (Stage 3) or 
worse CKD (1). The known risk factors for CKD progression also result from genetic, 
demographic, and socioeconomic status, to associated disorders such as metabolic syndrome 
and AKI, to medication use and treatment history.  

Electronic medical records (EMRs) provide unique and valuable opportunities to address these 
challenges in clinical decision support for managing the risks of CKD. EMRs cover very large 
cohorts over decades from a wide range of aspects including demographic, clinical, financial, 
and socioeconomic features. Modern advances in big data science significantly improve data 
interoperability, making meta-analysis in cross regional or national EMR-networks possible. 
Thus, an EMR-based clinical decision support system has the potential to revolutionize the care 
of patients with CKD.  

However, the challenges using EMR-related big data have impeded longitudinal studies of CKD 
progression. Although the EMR provides rich and comprehensive information about the 
population across a wide age span, for a specific clinical visit or for an individual patient, EMR 
data are often sparse with irregularly spaced intervals. These factors challenge traditional 
epidemiological approaches. The recent advance of topological learning on big data, especially 
a novel graph learning algorithm, Discriminative Dimensionality Reduction Tree (DDRTree) (11-
14), allows building the trajectory tree according to the similarities among data points from 
highly scattered data. Such an approach can be used to outline the common disease 
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progression trajectories of a population using the EMR data as a whole. This strategy can 
unleash the power of EMR data and avoid the limitation of traditional approaches on data 
completeness and regularity.  

In this manuscript, we focused on the high-risk African American population with type 2 
diabetes mellitus as the study cohort, linked participants from a series of genomics studies with 
their EMRs at Wake Forest Baptist Medical Center (WFBMC), using EMR data in 1,581 patients, 
included 18 essential clinical indices, 84,009 clinical encounters and over 354,398 clinical 
records to learn and annotate the declines in chronic health condition trajectories during aging. 
We examined the chronic renal function declines on these trajectories and highlighted those 
closely associated with patients who have APOL1 renal-risk genotypes. We further examined 
the predictive power of the learned disease progression trajectories. These results cast new 
light on understanding the diversity of CKD progression paths and their associated health 
conditions.  

Data and Methods  

The WFBMC African American genotyping cohort. The cohorts from a series of studies were 
merged and participants linked to the WFBMC EMR according to identifiable information 
including name and date of birth. The genotyping cohort included 9,656 African American 
participants recruited from the following studies between 1993 and 2014: African American-
Diabetes Heart Study (AA-DHS (15)), Diabetes Heart Study (DHS(15)), African American Type 2 
Diabetes Mellitus Cohort (DM2 (16), African Americans with end-stage renal disease (ESRD 
(17)), Family Investigation of Nephropathy and Diabetes (FIND (18)), as well as additional cases 
and controls recruited from WFBMC during this period. In all, 4,325 participants were identified 
as WFBMC patients, including 524 from AA-DHS; 200 from DHS; 169 from DM2; 249 from ESRD; 
98 from FIND, and an additional 1,289 WFBMC cases and 1,247 WFBMC controls from related 
projects.  

The WFBMC EMR cohort. By February 26, 2016, this cohort was composed of 1,646,059 
individuals at the WFBMC over the past three decades. It included 14.6% who were over the 
age of 65, and 22.3% were African American. This patient cohort represents both local and 
regional populations. WFBMC is the only academic medical center within the 12-county 
Piedmont Triad region of northwestern North Carolina. The referral region encompasses a 
population of approximately 8,000,000 in North Carolina, Eastern Tennessee, South Carolina, 
Virginia and West Virginia. The Appalachian population, unique in its demographics, culture, 
and socioeconomic characteristics, is significantly represented. Therefore, WFBMC EMRs have 
unique scientific value for studying diverse populations with special regional characteristics.  

The original WFBMC EMRs are composed of the pre-Epic “Legacy” EMRs (1985 – 2012) 
providing invaluable longitudinal records for chronic disease research and the Epic-based 
“WakeOne” EMRs (since 2012) providing modern and fast-growing EMRs for clinical research as 
well as the major implementation platform for delivering the eCDS4CKD clinical decision 
support tools.  

The WFUHS Translational Data Warehouse (I2B2-based TDW) integrates both Legacy and 
WakeOne EMRs, implement a wide range of biomedical ontologies and terminologies for EMR 
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presentation and annotation, and curate a high-quality data warehouse for biomedical and 
clinical research. The WFUHS Center of the Scalable Collaborative Infrastructure for a Learning 
Health System (SCILHS), the National Patient-Centered Clinical Research Network, an innovative 
initiative of the Patient-Centered Outcomes Research Institute (PCORI), has established a 
comprehensive and cutting-edge EMR system according to Unified Medical Language Systems 
(UMSL) as prescribed in the PCORNET Common Data Model (CDM) 
(www.pcornet.org/resource-center/pcornet-common-data-model) to support large scale 
clinical informatics and phenome mining. The WFUHS TDW (56) I2b2 installation contains over 
1.4 billion facts of demographics, vital status, diagnoses, procedures, labs, and medications 
detailing 1.65 million patients across 30.7 million encounters.  

The Working cohort (n = 1,581). This cohort was established by recruiting patients from the 
WFBMC African American genotyping cohort and the WFBMC EMR according to the following 
criteria:  

 African American  

 Available genotypic data  

 Type 2 diabetes mellitus (T2D)-affected  

 >= 3 EMR-derived eGFR records   

CLINIC CDM. We defined a minimum information CDM, the Common cLINic Index for Chronic 
diseases (CLINIC) CDM, to comprehensively outline the general health conditions during the 
development and progression of common chronic diseases. The CLINIC CDM is composed of the 
following categories:  

 Demographics (3 features): date of birth (DoB), sex, self-reported race;  

 Vitals (5 features): diastolic and systolic blood pressure, height, weight, and body mass 
index (BMI); 

 Laboratory tests (14 features): alanine aminotransferase (a.k.a. serum glutamic pyruvic 
transaminase), aspartate aminotransferase (a.k.a. serum glutamic oxaloacetic 
transaminase), alkaline phosphatase (ALK), total cholesterol, low density lipoprotein 
cholesterol (LDL), and high density lipoprotein cholesterol (HDL), creatine kinase, 
estimated glomerular filtrating rate (eGFR), hemoglobin, hemoglobin A1c (HbA1c), 
triglycerides, international normalized ratio of prothrombin time (INR), serum 
creatinine, total bilirubin (TBIL), and troponin;  

 Diagnosis: ICD9 and ICD10 codes; 

 Procedures: HCPCS, ICD9-CM, and ICD10-PCS codes;  

 Medications: RxNorm codes.  

The BMI and eGFR are derived from height/weight/age and serum creatinine/age/sex/race, 
respectively. The CLINIC CDM is compatible with Carolinas Collaboratives Common Data Model 
(CDM) and PCORI CDM. The data dictionary of the CLINIC CDM is provided in Supplement S1.  

The Essential Clinical Indices of clinical encounters. We defined an 18-feature Essential Clinical 
Indices (Supplement Table S2) for each clinical encounter to quantitatively describe the overall 
health conditions of patients. These indices are composed of all vital and laboratory variables in 
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the CLINIC CDM except BMI since BMI was highly correlated with height and weight. The 
selection of these clinical indices was a tradeoff of the following considerations:  

 Reflect health status and risks of chronic disease with aging.  

 Clinically measured, providing strong evidence.  

 Generally available in EMR.  

 Readiness to use. Most of these indices had already been cleaned and aggregated by 
CTSI at WFBH as part of the Carolinas Collaborative infrastructure.  

EMR data aggregation. The WFBMC EMR were extracted from both the WakeOne (WFBMC’s 
implementation of the Epic system) and pre-Epic systems. Therefore, a clinical feature is often 
referred by different names in the EMR. The mapping between original EMR features and the 
CLINIC CDM is listed in Supplement Table S3.  

Data cleaning and imputation. At record level, extreme numerical records were discarded 
according to the false discovery rates (FDRs) of z-test (FDR ≤ 0.01). Weight records above 500lb 
were also discarded. At encounter level, missing features in Essential Clinical Indices were 
imputed by smoothing the continuous testing values along the increase of ages before the 
interpolation of neighborhood values in terms of ages is used as the imputed value. After data 
cleaning and imputation, a learning cohort of 435 patients with 49,357 clinical encounters were 
established. Details can be found in Supplement Methods (Section: Imputation).  

Data availability patterns. The concordance of feature occurrence across all encounters in the 
Learning cohort was measured in pairwise fashion with the L-1 distance (Manhattan distance). 
Essential Clinical Indices were then hierarchically clustered by complete linkage method (19).  

Learning disease progression trajectories. To reveal the common trajectories of disease 
progression from a dataset consisting of many patients with multiple types of diseases, we 
treated all (imputed) values of the Essential Clinical Indices (ECI) from one patient at each 
encounter as individual data points. Our goal was to learn the relationship between these 
clinical encounters to reveal topological structure correlated to clustering structure or 
embedded disease develop structures. We used DDRTree (13) to fulfill this task. It projects data 
points in a high-dimensional space to latent points in the low-dimensional space that directly 
form a tree structure. At the same time, the tree structure can incorporate the discriminative 
clustering information so that similar points are grouped together.  

Let {𝑦𝑖}𝑖=1
𝑁  be a set of the 𝐷-dimensional column vectors consisting of ECI values corresponding 

to encounters of patients, where 𝑁 is the total number of encounters. We define the latent 

points as {𝑧𝑖}𝑖=1
𝑁  such that 𝑧𝑖 is the 𝑑-dimensional latent counterpart of 𝑦𝑖. To transform 𝑧𝑖 to 

𝑦𝑖, a linear projection matrix 𝑊 ∈ ℝ𝐷×𝑑  is used with 𝑑 ≤ 𝐷. Moreover, in order to model the 
discriminative information via clustering, a set of latent points {𝑐𝑘}𝑘=1

𝐾  are introduced as the 

centroids of the latent points {𝑧𝑖}𝑖=1
𝑁  where 𝑐𝑘 ∈ ℝ𝑑. The tree structure is represented by a 

connectivity indicator matrix 𝑆 between cluster centroids with the (𝑘, 𝑘′)th element as 𝑠𝑘,𝑘′ 
that is, 𝑠𝑘,𝑘′ = 1 means that the 𝑘th centroid and the 𝑘′th centroid are connected in the graph, 
and 0 otherwise. Specifically, a set of tree structures are denoted by 𝒮𝑇. By combining the 
above ingredients, DDRTree is formulated as the following optimization problem   
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min
𝑊,𝑍,𝑆,𝐶,𝑅

∑ ||𝑦𝑖 − 𝑊𝑧𝑖||
2

𝑁

𝑖=1

+
𝜆

2
∑ 𝑠𝑘,𝑘′‖𝑐𝑘 − 𝑐𝑘′‖

2

𝑘,𝑘′

+ 𝛾 [∑ ∑ 𝑟𝑖,𝑘

𝐾

𝑘=1

𝑁

𝑖=1

(‖𝑧𝑖 − 𝑐𝑘‖2 + 𝜎 log 𝑟𝑖,𝑘)]           Eqn. 1 

s. t.  𝑊𝑇𝑊 = 𝐼, ∑ 𝑟𝑖,𝑘

𝐾

𝑘=1

= 1, 𝑟𝑖,𝑘 ≥ 0, ∀𝑖, 𝑘, 𝑆 ∈ 𝒮𝑇 ,                                                                      

where the first term projects data into a low-dimensional space, the second term is responsible 
for structure learning, and the third term is interpreted as the objective function of soft K-
means (20). Three hyper-parameters are added to connect the three terms: 𝜆 ≥ 0 is used for 
the reversed graph embedding, γ ≥ 0 is to balance the contribution of deterministic clustering, 
and 𝜎 ≥ 0 is to regulate the negative entropy regularization. Matrix 𝑅 ∈ ℝ𝑁×𝐾with the (𝑖, 𝑘)th 
entry as 𝑟𝑖,𝑘 can be interpreted as the probability of assigning 𝑧𝑖 to cluster 𝑐𝑘. Details can be 

found in Supplement Method DDRTree. Details can be found in Supplement Methods (Section: 
DDRTree).  

Due to the heterogeneity of data availability, we used a sub-group of patients with high data 
availability (the Learning cohort, n = 435) to understand disease progression trajectories and we 
projected data from the remaining patients (the Annotation Cohort, n = 1,146) to the learned 
trajectories for annotation and association analysis. The inclusion criteria of the Learning cohort 

were: ≥ 50 encounters and every ECI had values from at least one encounter.  Details can be 
found in Supplement Methods (Section: Imputation). 

Annotation of discovered clusters of clinical encounters. We comprehensively annotated each 
discovered cluster with corresponding clinical conditions including age, kidney function, APOL1 
genotype, hypertension, glucose control, obesity, liver function, and cardiovascular risk. Details 
are listed in Supplement Methods (Section: Annotation). Specifically, the enrichment of risk 
genotypes in discovered clusters was measured by robust z-test of the log fold changes of odds 
ratios against randomized controls (repeats = 10,000). In robust z-test, mean and standard 
deviation were substituted by median and median absolute deviation, respectively, to reduce 
sensitivity to outliers (21). The enrichment results were listed in Supplement Table S4.  

Classifying new encounters. To project each new patient’s encounters onto the learned 
structure and clusters, we still assume that the projection matrix 𝑊, the centroids 𝐶, and the 
graph structure 𝑆 are the same as the learned variables from training data by solving the 
problem in Eqn. 1. Hence, the reformulated optimization problem for a new set of encounters 
{𝑦̃𝑖}𝑖=1

𝑚  and the embedding points denoted by {𝑧̃𝑖}𝑖=1
𝑚  is formulated as  

            min
𝑍̃,𝑅

∑‖𝑦̃𝑖 − 𝑊𝑧̃𝑖‖

𝑚

𝑖=1

+ 𝛾 [∑ ∑ 𝑟𝑖,𝑘(‖𝑧̃𝑖 − 𝑐𝑘‖2 + 𝜎 log 𝑟𝑖,𝑘)

𝑚

𝑖=1

𝐾

𝑘=1

]                         Eqn. 2 

s.t. ∑ 𝑟𝑖,𝑘

𝐾

𝑘=1

= 1, 𝑟𝑖,𝑘 ≥ 0, ∀𝑖, ∀𝑘.                                                                  

The objective function is  

𝑓(𝑍̃) = 𝛾[𝑇𝑟(𝑍̃𝑍̃𝑇) − 2𝑇𝑟(𝑅𝑇𝑍̃𝑇𝐶) + 𝑇𝑟(𝐶𝑇ΓC)] + ‖𝑌̃ − 𝑊𝑍̃‖
𝐹

2
. 
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where Γ is a diagonal matrix with the (𝑘, 𝑘)th entry as ∑ 𝑟𝑖,𝑘
𝑚
𝑖=1 . Problem in Eqn. 2 has the 

closed form solution by setting the first derivative to zero, we get  

𝑍̃ =
𝛾

𝛾 + 1
𝐶𝑅𝑇 +

1

𝛾 + 1
𝑊𝑇𝑌̃ 

As a result, the alternating optimization algorithm can be used to solve this problem. Once the 
optimal 𝑍̅ and 𝑅 are obtained, we can consider 𝑧̃𝑖 as the low-dimensional projection of new 
patent 𝑖 and 𝑟𝑖,𝑘 is the probability of assigning the 𝑖th encounter to cluster 𝑘.  

The EMR data for the clinical encounters of Annotation Cohort (n = 1,146) was projected onto 
the learned progression trajectories and classified to the learned clusters.  

Prediction capability. To evaluate the power of predicting disease progression using Essential 
Clinical Indices EMR data and the learned disease progression trajectories, we used the k-
nearest neighbors approach for prediction and leave-one-out for validation. The rationale was 
that patients with similar progression trajectories in the past were more likely to share similar 
future progression. For a given new patient with a sequence of encounters, we aimed to select 
a set of similar patients from the learning cohort. We leverage the progression tree structure 
learned by DDRTree model as a unified reference to the aligned sequence of the states of each 
patient. We developed a novel structure-based similarity function to measure the similarity 
between two patients. The basic idea was illustrated in Supplement Figure S1. For the obtained 
graph structure 𝑆 and the clusters {𝑔1, ⋯ , 𝑔𝑟} from a set of visits of many patients, each cluster 
was denoted by the disease state and there were 𝑟 states in total. Let 𝑐𝑔1

, ⋯ , 𝑐𝑔𝑟
 be the cluster 

centers. Note that disease states are different from centroids 𝐶 ∈ ℝ𝑑×𝐾 used in the DDRTree. 
The relationships among {𝑔1, ⋯ , 𝑔𝑟}, 𝐶 and visits of patients 𝑋 were: each visit was assigned by 
one disease state, and each visit can also be mapped to its closest centroid on the tree. These 
relationships were useful to compute the evolutionary path via the tree structure given a 
sequence of visits of one new patient.  

To accomplish this, we built a disease state tree via tree simplification from the 800 landmarks 
to 30 disease states (clusters) as shown in Supplement Figure S1 B, then aligned the clinical 
encounters of a patient to this tree to infer a sequence of disease states as shown in 
Supplement Figure S1 A. We defined the similarity between the disease state sequences of two 
patients according to the longest common subsequence. Thus, the simplified disease state tree 
could be used to predict disease progression using k-nearest neighbor approach.  

We then performed an approximate leave-one-out validation to evaluate the performance of 
the learned trajectories in predicting disease progression. We took one patient out of the 
learning set as the query patient and the rest of patients as the database. For each query 
patient, we temporarily split the sequence of 𝑡 visits ordered by the time into two sub-
sequence at a split ratio of 𝑟 ∈ [0,1]: the first subsequence with 𝑟 ∙ 𝑡 disease states was used to 
predict the disease progression, and the latter subsequence with (1 − 𝑟) ∙ 𝑡 disease states was 
used to evaluate the prediction accuracy. This leave-one-out validation was approximate 
because the tree structure was not re-learned. We assumed that the overall tree structure 
would not change significantly when it was re-learned using the 𝑛 − 1 patients from the 
learning cohort.  
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Mathematical details are provided in Supplement Material Methods (Section: Validation).  

Results and Discussion 

Demographical characteristics.  

The identification of the study cohort is outlined in Figure 1 and demographic characteristics 
are summarized in Table 1. As expected, patients in the Learning Cohort were followed longer 

(15.1  4.77yr) than those in the Annotation Cohort (9.48  6.48yr). Patients with high-risk 
APOL1 genotypes were more likely to have more clinical visits and thus to be selected in the 
Learning Cohort, with percentages of 18.9% versus 14.3% if including patients with uncertain 
APOL1 genotypes, and 21.0% versus 15.4% if only including patients with known APOL1 
genotypes. There were fewer males (43.6%) than females in our cohort, which was common for 

longitudinal studies of a midlife to senior age population (age: 57.2  12.2yr). Interestingly, 
males were less represented in the Learning Cohort (39.5%) than the Annotation Cohort 

(45.1%) with a p-value of Chi square test  2.2e-16, suggesting that males had fewer clinic visits. 
Clinical conditions such as blood pressure and blood glucose level were similar in the two 
cohorts.  

Data coverage.  

The EMR data in the 435 patients from the learning cohort was rich in records and features. 
They covered 58.75% of the overall encounters (49,357 of 84,009) for the working cohort of 
1,581 patients and 58.11% (205,940 of 354,398) of Essential Clinical Index records. As shown in 
Figure 2, the learning cohort was intensively covered by EMR data. The longitudinal coverage 
(Figure 2 A) for each patient was 15.14 ± 4.77 years, with 13.79 ± 4.15 years having at least one 
clinic visit. The clinical encounters from the midlife-to-senior age ranges (35 – 80), which 
describe the development of a series of chronic diseases during aging are shown in Figure 2 B. 
Each patient had 113.46 ± 66.35 documented encounters (range 51 to 657) (see Figure 2 C and 
Supplement Figure S2). The most abundant Essential Clinical Indices were hemoglobin, TBIL, 
ALK, AST/SGOT, ALT/SGPT, blood pressure, eGFR, and weight, which were available in more 
than 10,000 encounters (Figure 2 D). Patients’ encounter counts and longitudinal coverage 
demonstrated weak correlation (Pearson's product-moment correlation: 0.29, 95% CI: 0.23 to 
0.36; p-value by t-test: 4.88e-15 Supplement Figure S3). That is, there were more visits the 
longer a patient stayed with our hospital for healthcare. Data completeness was low. As 
demonstrated in Figure 2 D and Figure 2 E, many of the Essential Clinical Indices were not 
available from most encounters. Data availability was 23.18% in the Learning Cohort and 4.27% 
in the Working Cohort. The availability of the Essential Clinical Indices showed strong 
correlations (Figure 2 E). The 18 clinical features formed four clusters, labeled C.1 through C.4.  

For the overall cohort, EMR data was rich and abundant in longitudinal coverage and clinical 
features. The learning cohort intensively covered the trajectories of common clinical features 
over 45 years, from age 35 when early risk factors and symptoms of a chronic condition 
typically begins, up to age 80 when many chronic diseases have become end-stage. Data was 
abundant for recording the clinical health status accompanied with the progression of chronic 
diseases. A total of 49,357 encounters and 205,940 records were available for the 435-patient 
cohort, describing risks and status of chronic kidney disease, diabetes, hypertension, and 
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cardiovascular disease. The rich EMR data provided deep learning of chronic disease 
progression from different perspectives and at multiple time scales. Meanwhile, EMR data were 
also sparse. The longitudinal coverage was nearly 14 years for most patients. Even for the most 
common clinical features (the 18 Essential Clinical Indices), the data availability was only 4.27%. 
This extreme sparseness challenges data analysis and machine learning approaches. To address 
these challenges, we used a subset of patients and encounters with more complete data to 
reliably understand disease progression patterns, and then mapped the remaining encounter 
data to the learned trajectories for further annotation. Meanwhile, the data availability showed 
strong patterns. The four clusters demonstrated in Figure 2 F represented different clinical 
practices. Essential Clinical Indices in cluster C.1 were often measured together for liver 
function. C.2 features were commonly measured at regular check-ups. Clinical assays in C.3 
were often tested together to profile lipids and metabolic markers. Included in cluster C.4 were 
risk factors for cardiovascular disease.  

Chronic trajectories of health.  

The progression of chronic disease during aging was learned from the EMR-derived Essential 
Clinical Indices of 49,357 encounters on the 435-patient Learning Cohort using DDRTree (13). 
The trajectories (Figure 3 A) were represented in a latent graph space as a tree composed of 
800 “landmarks” denoting the gradual development of clinical conditions. Encounters were 
clustered to 30 classes using k-means according to their locations on the trajectory tree 
(Figure 3 B). These encounter classes were annotated by patient age (Figure 3 C), kidney 
function (Figure 3 D), blood glucose control, hypertension, and BMI (Supplement Figures S4, S5, 
and S6, respectively).  

The disease progression in an individual patient could be visualized on the learned trajectory 
tree. As shown in Figure 3 E, a patient (Study ID: 62497) started to show kidney functional 
impairment at age 43, which quickly progressed to stage G3 at age 45 and recovered to normal 
at age 46. However, the patient subsequently developed rapid progression of kidney disease 
and advanced to kidney failure at age 52. Interestingly, when projected to the learned chronic 
trajectory tree (Figure 3 F), the progress of the CKD shifted from the low-risk trajectory (green 
trend line) to the high-risk trajectory (orange trend line) at age 46. Although kidney function 
apparently recovered at age 46, the nature of disease progression had changed.  

The disease progression trajectories captured the gradual deterioration of kidney function. The 
directions of the progression of kidney disease along the trajectories (Figure 3 D) were 
consistent with aging (Figure 3 C). Multiple progression trajectories were discovered, reflecting 
the diversity of the disease. Meanwhile, when viewed from the perspective of individual 
patients, CKD progression could either remain on a major trajectory, or dynamically shift 
between trajectories, or switch trajectories. This exemplifies the complexity and heterogeneity 
of CKD development in populations. For patients who demonstrated competing trajectories and 
outcomes, further studies may reveal the risk factors that drove them toward trajectories of 
worse prognosis and suggest potential interventions to prevent changes in trajectory.  

Chronic trajectories in patients with APOL1 renal-risk genotypes.  
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Patients with APOL1 high-risk genotypes were more likely to progress along a trajectory branch 
featured with classes 17, 10, and 18, with odds ratios higher than 2 (Figure 4 A). This branch 
was also associated with severe kidney function loss (Figure 4, Figure 3 D, Supplement Figure 
S7). In contrast, two low-risk branches (composed of classes 12, 7, 25 and 24, 16, 26, 9, 
respectively) were enriched with patients with non-renal-risk APOL1 genotypes. During the 
clinical visits mapped to these two branches, the majority of patients demonstrated no sign of 
kidney disease (Normal or stage G1) or very early symptoms of kidney functional impairment 
(stage G2) (Figure 4, Figure 3 D, Supplement Figure S5).  

We further examined whether the high-risk trajectory was associated with older age. 
Interestingly, the age distributions of these three branches were similar, with the high-risk 
branch slightly younger (age 51.95 ± 12.23, 52.82 ± 9.33, and 54.51 ± 12.45 for the high-risk and 
the two low-risk branches, respectively). This suggests that the more severe renal functional 
change in the high-risk trajectory is independent from age.  

Acute kidney injury (AKI) is a known risk factor for CKD. We assessed the enrichment of AKI on 
the high-risk branch with respect to the two low-risk branches according to the ICD9 codes 
(584.*). The odds ratios were 20.26 (95% CI: 15.01, 27.35) and 34.08 (95% CI: 25.49, 45.57), 
respectively (Supplement Table S5). However, the overall association between AKI and CKD was 
independent from APOL1 renal-risk genotypes, with an odds ratio of 1.13 and p-value of 0.84 
(Pearson's Chi-squared test with Yates' continuity correction). Stratified analysis (Supplement 
Table S5) further showed that patients without APOL1 renal-risk phenotypes were more likely 
to change to the high-risk trajectory once they suffered an AKI event (odds ratios 61.5 and 
49.2). This was consistent with the previously described case (Figure 3 E and F): patient 62497 
had AKI at age 45.7 and at the same time changed from the low-risk to the high-risk trajectory. 
Patients progressing on the high-risk trajectory often experienced recurrent episodes of AKI. 
For example, patient 62497 experience 8 episodes of AKI at ages 47.5, 48.4, 48.8, 49.2, 49.5, 
50.8, 51.4, and 52.6 before advancing to kidney failure. This is consistent with other studies on 
the concordance of AKI with CKD (22-26).   

The genotype enrichment analysis strongly supported the validity of this study. Genotyping 
information was not used in trajectory learning, but patients with different APOL1 genotypes 
were still enriched in different trajectories. This suggested that trajectories learned from the 18 
Essential Clinical Indexes were able to capture kidney disease progression from different 
causes.   

Prediction of chronic disease progression.  

The predictive power of the learned trajectories for the projection of patient’s chronic health 
status using the kNN approach was compared with random control or with all neighbors by two 
metrics: proportion of good prediction and the Kolmogorov–Smirnov test of the cumulative 
distribution functions. We initially examined the proportion of patients with better predicted 
disease progress than random controls. As shown in Figure 5 A, at 𝑘 = 7, the kNN model 
generated more accurate predictions in 87% of patients. The average similarity peaked at 𝑘 =
9. The cumulative distribution functions of progression prediction by the kNN prediction model 
with 9 nearest neighbors (𝑘 = 9) or with all neighbors were shown in Figure 5 B. The trajectory-
based kNN model demonstrated better prediction with p-value = 0.01255.  
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The prediction power analysis was used to evaluate the potential of implementing the learned 
trajectories in projecting patient’s chronic health conditions. With a modest library size (n = 
435), a simple trajectory-based similarity metric, and a non-parametric prediction model (kNN), 
the disease progression trajectories already demonstrated promising prediction power. The 
prediction power would be improved significantly with a larger library. Additional demographic 
and clinical features (e.g., age, sex, race, medication, diagnosis, and clinical procedures), widely 
available in the EMR, will significantly improve the prediction of patients’ health trajectories. 
Handling large libraries with multi-dimensional data are challenging. The performance of the 
kNN model also suggested that approximate nearest neighbor techniques such as k-d tree and 
locality sensitive hashing are promising for clinical use when cohort sizes are large. As 
suggested by Guo et. al., kNN predictive model shows good performance (power > 90% when 
effect size > 0.45) when the sample size of the corresponding class reaches 150 (27). That is, for 
any distinct trajectory pattern, when there are more than 150 patients in the cohort sharing 
this pattern, the prediction for new patients who also have this trajectory pattern will be 
accurate. Since patient numbers in EMR data can easily reach into the million range, it is 
promising to build a large database of trajectory patterns in existing patients and use locality 
sensitive hashing (28-31) and approximate nearest neighbor query techniques (32, 33) to 
predict disease progressions in new patients.  

Acknowledgments 

The authors acknowledge grants NIH R01 DK071891 (BIF), NIH R01 DK070941 (BIF), NIH R01 
DK084149 (BIF), NIH U01 DK57298 (BIF), NIH R01 DK53591 (DWB), and National Science and 
Technology Support Program of China 2015BAK41B03 (XZ) for funding this study. The authors 
also acknowledge the DEMON high performance computing cluster, the Greengplum massively 
parallel processing database and the Data Lake cloud storage and computing facility at Wake 
Forest University School of Medicine, the Texas Advanced Computing Center (TACC) at The 
University of Texas at Austin (http://www.tacc.utexas.edu), and the Extreme Science and 
Engineering Discovery Environment (XSEDE, which is supported by National Science Foundation 
grant number ACI-1548562) for providing HPC resources that have contributed to the research 
results reported within this paper.  

References 

 

1. R. Saran et al., US Renal Data System 2016 Annual Data Report: Epidemiology of Kidney 
Disease in the United States. Am J Kidney Dis 69, A7-A8 (2017). 

2. A. Parsa et al., APOL1 risk variants, race, and progression of chronic kidney disease. N 
Engl J Med 369, 2183-2196 (2013). 

3. G. Genovese et al., Association of trypanolytic ApoL1 variants with kidney disease in 
African Americans. Science 329, 841-845 (2010). 

4. B. I. Freedman et al., The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy 
in African Americans. J Am Soc Nephrol 21, 1422-1426 (2010). 

5. B. I. Freedman, M. Murea, Target organ damage in African American hypertension: role 
of APOL1. Curr Hypertens Rep 14, 21-28 (2012). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/361956doi: bioRxiv preprint 

https://doi.org/10.1101/361956


13 
 

6. M. S. Lipkowitz et al., Apolipoprotein L1 gene variants associate with hypertension-
attributed nephropathy and the rate of kidney function decline in African Americans. 
Kidney Int 83, 114-120 (2013). 

7. A. Zuk, J. V. Bonventre, Acute Kidney Injury. Annu Rev Med 67, 293-307 (2016). 
8. L. S. Chawla, P. L. Kimmel, Acute kidney injury and chronic kidney disease: an integrated 

clinical syndrome. Kidney Int 82, 516-524 (2012). 
9. S. G. Coca, S. Singanamala, C. R. Parikh, Chronic kidney disease after acute kidney injury: 

a systematic review and meta-analysis. Kidney Int 81, 442-448 (2012). 
10. L. S. Chawla, R. L. Amdur, S. Amodeo, P. L. Kimmel, C. E. Palant, The severity of acute 

kidney injury predicts progression to chronic kidney disease. Kidney Int 79, 1361-1369 
(2011). 

11. Q. Mao, L. Wang, S. Goodison, Y. Sun, paper presented at the Proceedings of the 21th 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 
Sydney, NSW, Australia,  2015. 

12. X. Qiu et al., Reversed graph embedding resolves complex single-cell trajectories. Nat 
Methods 14, 979-982 (2017). 

13. L. Wang, Q. Mao, Probabilistic Dimensionality Reduction via Structure Learning. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 1-1 (2017). 

14. Q. Mao, L. Wang, I. W. Tsang, Y. J. Sun, Principal Graph and Structure Learning Based on 
Reversed Graph Embedding. Ieee Transactions on Pattern Analysis and Machine 
Intelligence 39, 2227-2241 (2017). 

15. G. C. Chan et al., FGF23 Concentration and APOL1 Genotype Are Novel Predictors of 
Mortality in African Americans With Type 2 Diabetes. Diabetes Care 41, 178-186 (2018). 

16. J. M. Keaton et al., Genome-wide interaction with the insulin secretion locus MTNR1B 
reveals CMIP as a novel type 2 diabetes susceptibility gene in African Americans. Genet 
Epidemiol,  (2018). 

17. C. D. Langefeld et al., Genome-wide association studies suggest that APOL1-
environment interactions more likely trigger kidney disease in African Americans with 
nondiabetic nephropathy than strong APOL1-second gene interactions. Kidney Int,  
(2018). 

18. S. K. Iyengar et al., Genome-Wide Association and Trans-ethnic Meta-Analysis for 
Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes 
(FIND). PLoS Genet 11, e1005352 (2015). 

19. D. S. Wilks, in International geophysics. (Elsevier, 2011), vol. 100, pp. 603-616. 
20. M. Filippone, F. Camastra, F. Masulli, S. Rovetta, A survey of kernel and spectral 

methods for clustering. Pattern Recognition 41, 176-190 (2008). 
21. P. J. Rousseeuw, M. Hubert, Robust statistics for outlier detection. Wires Data Min 

Knowl 1, 73-79 (2011). 
22. R. K. Hsu, C. Y. Hsu, The Role of Acute Kidney Injury in Chronic Kidney Disease. Semin 

Nephrol 36, 283-292 (2016). 
23. C. V. Thakar, A. Christianson, J. Himmelfarb, A. C. Leonard, Acute kidney injury episodes 

and chronic kidney disease risk in diabetes mellitus. Clin J Am Soc Nephrol 6, 2567-2572 
(2011). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/361956doi: bioRxiv preprint 

https://doi.org/10.1101/361956


14 
 

24. I. D. Bucaloiu, H. L. Kirchner, E. R. Norfolk, J. E. Hartle, 2nd, R. M. Perkins, Increased risk 
of death and de novo chronic kidney disease following reversible acute kidney injury. 
Kidney Int 81, 477-485 (2012). 

25. M. A. Venkatachalam, J. M. Weinberg, W. Kriz, A. K. Bidani, Failed Tubule Recovery, AKI-
CKD Transition, and Kidney Disease Progression. J Am Soc Nephrol 26, 1765-1776 (2015). 

26. N. Pannu, M. James, B. Hemmelgarn, S. Klarenbach, N. Alberta Kidney Disease, 
Association between AKI, recovery of renal function, and long-term outcomes after 
hospital discharge. Clin J Am Soc Nephrol 8, 194-202 (2013). 

27. Y. Guo, A. Graber, R. N. McBurney, R. Balasubramanian, Sample size and statistical 
power considerations in high-dimensionality data settings: a comparative study of 
classification algorithms. BMC Bioinformatics 11, 447 (2010). 

28. M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni, paper presented at the Proceedings of 
the twentieth annual symposium on Computational geometry, Brooklyn, New York, 
USA,  2004. 

29. S. Kanj, T. Bruls, S. Gazut, Shared Nearest Neighbor Clustering in a Locality Sensitive 
Hashing Framework. Journal of Computational Biology 25, 236-250 (2018). 

30. L. Liu, T. Y. Ji, M. S. Li, Z. M. Chen, Q. H. Wu, Short-term local prediction of wind speed 
and wind power based on singular spectrum analysis and locality-sensitive hashing. J 
Mod Power Syst Cle 6, 317-329 (2018). 

31. K. J. Lu, H. Y. Wang, Y. Y. Xiao, H. Song, Why locality sensitive hashing works: A practical 
perspective. Inform Process Lett 136, 49-58 (2018). 

32. S. Har-Peled, P. Indyk, R. Motwani, Approximate Nearest Neighbor: Towards Removing 
the Curse of Dimensionality. Theory of computing 8, 321-350 (2012). 

33. P. Indyk, R. Motwani, paper presented at the Proceedings of the thirtieth annual ACM 
symposium on Theory of computing, Dallas, Texas, USA,  1998. 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/361956doi: bioRxiv preprint 

https://doi.org/10.1101/361956


15 
 

Figure 1. Outline of cohort identification.  
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Table 1. Cohort demographic characteristics.  
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Figure 2. Data coverage of the Learning Cohort. (A) The distribution of longitudinal data 
availability for individual patients. Each line represent the encounter pattern of a patient, with 
orange sections for the years when a patient had EMR data, and gray section for years without 
visiting WFBH. Totally 200 randomly selected patients from the Learning Cohort were visualized 
for clarity. (B) Coverage of age range by EMR data at population level. (C) Distribution of 
encounters per patient. (D) The data availability of each Essential Clinical Indexes in terms of 
total counts, counts per encounter, and counts per patient. (E) The associations of data 
availability between Essential Clinical Indexes. Orange: available; gray: not available. Essential 
Clinical Indexes were clustered according to availability to four clusters, C.1 through C.2.  
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Figure 3 Chronic disease progression trajectories. (A) Learned trajectories represented by 800 
landmarks. (B) Encounters (represented as dots) supporting the learned trajectories. 
Encounters were clustered into 30 classes and color coded. (C) Encounters color-coded with 
median age of corresponding clusters. (D) Encounters color-coded with ranked kidney functions 
of corresponding clusters, from normal kidney function (blue) to worst kidney function (red). (E) 
The progression of chronic kidney disease of a patient represented by estimated glomerular 
filtration rate (eGFR, unit: ml/min/1.73m2). (F) Encounter of the same patient mapped to the 
learned trajectories and color-coded according to age.  
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Figure 4. Enrichment of APOL1 risk genotypes on disease progression trajectories. (A) Left: the 
encounter clusters color-coded by kidney functions (blue: good, red: impaired); clusters 
enriched with encounters of patients of high- or low- risk APOL1 genotypes (middle and right, 
correspondingly). Encounter clusters of good, impaired, and severely damaged renal functions 
were colored coded in green, yellow, and red, respectively. The high-risk branch and the low-
risk-1 and low-risk-2 branches were denoted by the orange, green, and blue arrows, 
respectively. (B) Encounter clusters were sorted by corresponding kidney functions, from good 
to impaired (middle). The distribution of chronic kidney disease stages in each encounter 
clusters were color-coded, from stage G1/normal through G5. Encounter clusters enriched with 
high- or low- APOL1 risk genotypes were indicated by arrows.  
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Figure 5: Prediction performance. (A) The average prediction similarity (gray) and the 
proportion of predictions with good alignment (orange) with respect to the number of nearest 
neighbors (𝑘) were visualized. (B) The cumulative probability functions. Orange: for predictions 
using the k-nearest neighbor model (𝑘 = 9); black: using all samples.  
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