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Summary 

Acute myeloid leukaemia is a neoplasia in need of new treatment approaches. PARP 

inhibitors are a class of targeted therapeutics for cancer that disrupts dysfunctional DNA 

damage response in various neoplasia. MLL-AF9 mutated leukaemias are sensitive to 

combinations of PARP inhibitors and cytotoxic drugs. Moreover, DNMT3A and NPM1 

mutations are linked to dysfunctions in DNA damage response. Therefore, we investigated if 

DNMT3A-NPM1 mutated AML cell line is sensible to PARP inhibitors combined with 

anthracyclines. Our results show that DNMT3A-NPM1 mutated AML is as sensible to 

combinations of PARP inhibitors and anthracyclines as MLL-AF9 mutated leukaemias, in an 

in vitro setting. 
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Acute myeloid leukaemia (AML) is a malignant disorder characterised by the accumulation 

of genetic aberrations in the myeloid haematopoiesis linage, that can be risk classified 

according to specific gene mutations (1). Understanding the AML genome promises new 

therapeutic strategies that involve synthetic lethal interactions (2). Thus, in this study we 

compare the effects of combining olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor 

that induces synthetic lethality in malignancies bearing homologous recombination 

deficiencies (2) and daunorubicin (ODC) with the standard daunorubicin-cytarabine (CDR) 

that models the “7+3” induction regimens. Two AML cell lines were chosen: OCI/AML3 and 

THP-1. OCI/AML3 is characterised by a common and impactful co-occurrence of mutations 

in both nucleophosmin gene (NPM1), involved in DNA single strand break repairs and DNA 

methyltransferase 3 alpha gene (DNMT3A), involved in resistance to anthracycline-induced 

DNA damage (3)(4)(5). THP-1 is characterised by mutations and deletions in PTEN, MLL-

AF9, MLLT3, TP73, CDKN2A/B (6), which makes it susceptible to the effects of olaparib, 

particularly through the presence of a partial deletion in PTEN gene (2). 

 

Firstly, we subjected OCI/AML3 (DSMZ, Braunschweig, Germany) and THP1 (ATCC, 

Manassas, USA) cells to an in vitro drug treatment, by plating them in 96-well plates, at 

104cells/200µL/well in 2 types of media: 80% alpha-MEM (Invitrogen, Paisley, UK ) with 

20% FBS (Invitrogen, Paisley, UK) for OCI/AML3 and RPMI1640 (Invitrogen, Paisley, UK) 

with 10% FBS, 2 mM L-glutamine for THP1 for 48h/72h with 37.5µM olaparib 

(Selleckchem, Houston, USA), 100µM cytarabine (Sigma Aldrich, Taufkirchen, Germany), 

1.4µM daunorubicin (Sigma Aldrich, Taufkirchen, Germany) alone or in combination. Cells 

were maintained in cell culture incubators at 37°C and 5%CO2 atmosphere. Cell proliferation 

was assessed with the CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay 

(Promega, Madison, USA) and analysed with a BioTek Synergy H1 Hybrid Multi-Mode 

Reader (BioTek Instruments, Winooski, USA). Cell cycle arrest was assessed using a flow 

cytometry-based approach at 48h of treatment, as described elsewhere (7).  DNA double 

breaks (DSB) levels after 48h and 72h treatments were determined as an increase in 

phosphoSer139 γH2AX foci, a DSB marker, using flow cytometry method as described 

elsewhere (8). Gene expression analysis for DNA damage associated genes, ATM, RAD51, 
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LIG3, LIG4, PARP1, PTEN and B2M, as internal normaliser, was performed using qRT-PCR 

as described elsewhere (9) and custom-made primers. All the experiments were conducted in 

triplicate and represented as means ±SEM/SD. We analysed all the data using the GraphPad 

Prism 6 software suite and applied ANOVA statistics and Dunnett or Sydak tests. Results 

were considered significant for p values ≤ 0.05. 

 

Moving to results, ODC was as effective as CDR and daunorubicin in arresting the relative 

viability of the treated cells (Fig. 1A – OCI/AML3:  54.9% vs. 56.1% vs. 58.13% ; 

THP1:38.5% vs. 30.1% vs. 31.57%, Dunnett test for multiple comparisons, p>0.982). 

Moreover, ODC reproduced the effects of CDR and daunorubicin monotherapy on the 

distribution of cells in each cell cycle stage, regardless of cell line tested (Fig.1B Dunnett's 

multiple comparisons test p>0.05). Furthermore, at 48h time point, there was no significant 

difference in DSB induction by ODC, CDR or daunorubicin monotherapy, regardless of 

treated cell line. However, at the 72h time point, significant differences were observed 

between ODC, CDR and daunorubicin DSB production, regardless of cell line (Fig.1C 

relative signal intensity - OCI/AML3 - ODC vs CDR vs daunorubicin: 131% vs. 122% vs. 

141.2%; THP1 - ODC vs CDR vs daunorubicin: 127% vs. 146% vs. 136.6%, Sidak’s test for 

multiple comparisons, p=0.0211). 

 

ODC and CDR treatments induced downregulations in all the evaluated genes, when 

compared to the untreated control, in both cell lines. For OCI/AML3, daunorubicin 

monotherapy did not lower expression levels more than ODC and CDR for any studied 

genes. However, for THP1, daunorubicin alone downregulated LIG3 and PTEN more than 

ODC and CDR (Fig.1 D. I). When comparing the gene expression for OCI/AML3 cells 

treated with ODC relatively to the ones treated with CDR, ATM, PTEN, LIG3, LIG4 where 

found to be upregulated, and RAD51 and PARP1 downregulated. When the same analysis 

was performed for THP-1 cells, all the genes registered as downregulated (Fig 1 D. II). Gene 

expression levels induced by ODC and CDR were significantly different from those 

generated by daunorubicin monotherapy, regardless of cell line (Dunnett's multiple 

comparisons test, p <0.05). 

 

To conclude, the effects produced by ODC on blast proliferation, cell cycle and DNA damage 

levels mirrored the ones induced by CDR and daunorubicin regardless of the cell lines tested, 

but ODC generated gene expression patterns different from daunorubicin monotherapy and 

CDR. Our results show that NPM1-DNMT3A mutated AML is susceptible to the action of 

ODC in this in vitro setting and reinforce the reports that so does THP1, too (10). This 

phenomenon can be attributed to increased amounts of DSB, but also probably, to the effects 

of ODC on the expression of RAD51 and PARP1 genes on both cell lines. This observation is 

intriguing since inhibition of PARP1 delays the onset of starvation and ROS-induced 

autophagy (11) with potential effects on blast survival. The in vitro effects of ODC on these 

AML cell lines suggest that combining PARP inhibitors with anthracyclines could capitalise 

on two defective signalling machineries in AML: DNA repair and probably, autophagy. This 

is of potential clinical impact, as it can ease the side effect burden of AML treatment by 
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substituting cytarabine with olaparib in treating patients with NPM1-DNMT3A mutated AML 

without jeopardising efficacy. 
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Figure 1 legend caption: 

 

Effects of the individual and combined treatments of 37.5 μM olaparib, 1.4 μM daunorubicin 

and 100 μM cytarabine on OCI/AML3 and THP-1, at both functional and gene expression 

level.  

A) MTS cell viability analysis performed 48 h after the treatment. Data is represented as 

mean ± SD. *p<0.05, **p<0.001, ***p<0.0001. 

B) Effects of ODC and CDR in both OCI/AML3 and THP-1 cell lines on G2/M cell cycle 

arrest after 48 h. Experiments were performed in triplicates and results depicted as mean 

±SD. 

C)Time dependent DNA DSB accumulation. Mean signal strength generated by the antibody-

Alexa Fluor 488 labeled phosphoSer139 γH2AX foci in treated and untreated cells, relative to 

untreated control. Data from 48 and 72h time points. 

D. I) qRT-PCR gene expression profile of key components in PARP signaling pathway 

related to the previous established treatment strategy, 48h drug treatment. All the treatments 

were reported to the untreated control as a baseline. Three biological replicates were analyzed 

and expressed as mean ± SEM. *p<0.001 

D. II) qRT-PCR gene expression profile of key components in PARP signaling pathway 

related to the previous established treatment strategy, 48h drug treatment. CDR was used as 

base line for the comparisons. Three biological replicates were analyzed and expressed as 

mean ± SEM. *p<0.001 
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