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Abstract 

Purpose: Severe genetic diseases affect 7 million births per year, worldwide. Diagnosing these 

diseases is necessary for optimal care, but it can involve the manual evaluation of hundreds of 

genetic variants per case, with many variants taking an hour to evaluate. Automatic gene-ranking 

approaches shorten this process by reporting which of the genes containing variants are most 

likely to be causing the patient’s symptoms. To use these tools, busy clinicians must manually 

encode patient phenotypes, which is a cumbersome and imprecise process. With 60 million 

patients expected to be sequenced in the next 7 years, a fast alternative to manual phenotype 

extraction from the clinical notes in patients’ medical records will become necessary. 

Methods: We introduce ClinPhen: a fast, high-accuracy tool that automatically converts the 

clinical notes into a prioritized list of patient symptoms using HPO terms. 

Results: ClinPhen shows superior accuracy to existing phenotype extractors, and when paired 

with a gene-ranking tool it significantly improve the latter’s performance. 

Conclusion: Compared to manual phenotype extraction, ClinPhen saves more than 5 hours per 

case in Mendelian diagnosis alone. Summing over millions of forthcoming cases whose medical 

notes await phenotype encoding, ClinPhen makes a substantial contribution towards ending all 

patients’ diagnostic odyssey.  

Keywords 

Medical genetics, Mendelian disease diagnosis, Natural language processing, disease phenotypes 
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Introduction 

Every year, 7 million children worldwide1 are born with rare genetic diseases. Diagnosing these 

conditions currently involves determining which (if any) of numerous genetic variants (100-300 

coding variants alone, if there are no sequenced relatives) is causing the patient’s symptoms. 

This is done by spending an average of 54 minutes evaluating each variant2 until the causative 

one is identified (Figure 1). As sequencing technology becomes more time- and cost-efficient, 

the number of clinical applications skyrockets, to the point that over 60 million patients are 

expected to be sequenced by 20253. As more patients with genetic diseases are sequenced, the 

procedure of  manually evaluating the possible causative variants for each patient creates a 

bottleneck in the diagnostic process. 

Although a clinician must make the final decision on the diagnosis, the process leading up to it 

can be greatly expedited by computational tools. Phrank4, hiPhive5, Phive6, PhenIX7, and other 

automatic gene-ranking tools8–16 aim to speed up the process of evaluating potentially causative 

genes. These algorithms require as input a list of symptoms encoded as terms from an existing 

phenotype ontology (notably, the Human Phenotype Ontology, or HPO17). In addition, they 

require a list of genes containing potentially deleterious genetic variants. These tools 

automatically rank the list of candidate genes using their own estimates of each gene’s likelihood 

of causing the patient’s disease. Consequently, the clinician can reach a diagnosis faster by going 

down the ranked list, evaluating the candidate genes until the causative gene is identified. 
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The process of annotating a patient’s genetic variants and filtering them to a list of candidate 

genes is greatly facilitated by tools such as ANNOVAR18, VAAST19, VEP20, and snpEff21. 

However, comparable tools for automatically encoding phenotypes mentioned in the patient’s 

clinical notes into phenotype ontology terms are lacking. While gene-ranking tools can 

considerably shorten the lengthy manual review of a gene list to reach a diagnosis2, their ability 

to do so depends on the phenotypes used (see below). The manual encoding of phenotypes is a 

slow and unstructured process, making gene-ranking tools difficult for clinicians to adopt. 

Existing Natural Language Processing tools that identify patient phenotypes were not designed to 

accelerate the diagnosis of Mendelian diseases22–28. Many of these tools only look for indications 

of specific subsets of phenotypes or diseases27,29,30. Others report and encode all of the 

phenotypes they can find—including negated phenotypes (“The patient does not have symptom 

X”), findings in family members (“The patient’s mother has symptom X”), and phenotypes 

mentioned in the discussion of a differential diagnosis (“Patients with disease W often have 

symptoms X, Y, and Z”)—requiring manual review of the clinical notes to remove the out-of-

context phenotypes24,28. Two general-purpose phenotype extractors, cTAKES26 and MetaMap22, 

aim to extract only the phenotypes that apply to the patient, thus returning a list of patient 

phenotypes that are ready to run through an automatic gene-ranking tool. 

cTAKES and MetaMap, however, have not been optimized for a clinical genetics workflow. 

They have relatively slow runtimes and suboptimal accuracy (see below). Importantly, they do 

not indicate which phenotypes may be more useful in establishing a diagnosis. A patient’s 

clinical notes taken before the diagnosis can have over 100 phenotypes mentioned about the 

patient, but clinicians do not usually list all of them when trying to diagnose. Instead, they list 

only the ones that they think will be the most useful in diagnosing the patient. 
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Here, we introduce ClinPhen: a fast, easy-to-use, high-precision, and high-sensitivity alternative 

to existing phenotype extractors. ClinPhen scans through a patient’s clinical notes in seconds, 

and returns phenotypes that help gene-ranking tools rank the causative gene higher than they 

would with manually-identified phenotypes. Using a cohort of diagnosed patients, we show how 

to accelerate the diagnosis of Mendelian diseases by letting gene-ranking tools run directly on 

phenotypes extracted from the clinical notes by ClinPhen. 

Materials and Methods 

Overview of ClinPhen 

ClinPhen is an algorithm for fast, accurate phenotype extraction from clinical notes (Figure 2). 

ClinPhen extracts phenotypes encountered in the free-text notes and translates them into terms 

from the Human Phenotype Ontology (HPO), a structured database containing 29,107 names and 

synonyms of 12,486 human disease phenotypes. ClinPhen uses the UMLS Metathesaurus31 and 

the Monarch Initiative32 to expand HPO’s synonym list from 29,107 to 69,690 synonyms for the 

same 12,486 phenotypes. 

To extract HPO terms from the clinical notes, ClinPhen proceeds as follows: first, the free text is 

broken into sentences, subsentences, and words. ClinPhen “lemmatizes” the words using the 

Natural Language Toolkit (NLTK) Lemmatizer33. “Lemmatization” refers to a process in which 

inflected forms of words are replaced with normalized forms. The word “lesions”, for instance, is 

lemmatized to “lesion”. This allows ClinPhen to accept phrases such as “localized skin lesions” 

(plural) to match the name “localized skin lesion” (singular). 

Subsequently, ClinPhen uses a custom rule-based heuristic to match subsentences against 

phenotype names and synonyms (Online Methods). ClinPhen does not look for continuous 
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phrases, but instead checks if the subsentence contains all words in the given synonym. As an 

example, “Hands are large” will be a valid mention of the phenotype “Large hands”. For 

efficiency, ClinPhen does not search the entire collection of notes for each phenotype. Instead, it 

uses a hash table34 to pass over the notes once, record which words appeared in which 

subsentences, and then be able to quickly identify which subsentences in the notes contain all of 

the words in a given phenotype name. 

After identification of phenotype terms in free text, ClinPhen uses a rule-based Natural-

Language-Processing (NLP) framework to decide how a phenotype mention should be 

interpreted. The framework relies on an extensive list of keywords to decide if a mentioned 

phenotype applies to the patient. If, for instance, a sentence contains words such as “not” or 

“mother”, then ClinPhen assumes any phenotypes mentioned in the sentence do not apply to the 

patient. 

For each HPO phenotype, ClinPhen counts the number of valid occurrences in the clinical notes, 

and saves where in the notes it first appears. ClinPhen returns a sorted list of all HPO phenotypes 

found, with the most- and earliest-mentioned phenotypes at the top (Figure 2). 

ClinPhen extracts the most accurate phenotype sets 

Real patient cases used to improve and test ClinPhen 

ClinPhen was trained and tested on patient data obtained from the clinical genetics service at 

Stanford Children’s Health (SCH). Two sets of patient data were used. The Training set 

consisted of the clinical notes of 20 patients with presumed but undiagnosed genetic diseases, 

and was used to improve the accuracy of ClinPhen. The Test set consisted of the clinical notes, 

genetic data, and diagnoses of all available (24) patients who had clinical notes from genetics 
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and/or pediatrics, were diagnosed with a genetic disease by Medical Genetics at the Lucille 

Packard Children’s Hospital (LPCH) in Stanford, and consented for research use. This set was 

used to test the accuracy of ClinPhen, as well as the performance of gene-ranking tools when 

using ClinPhen’s phenotypes. For all experiments, only notes created by the clinical genetics and 

pediatrics services at LPCH before the patient’s diagnosis were used. 

Ontology and thesauruses 

ClinPhen uses the Directed Acyclic Graph (DAG) of phenotypic abnormalities provided by the 

Human Phenotype Ontology (HPO)17. The HPO DAG is a large collection of phenotypes, where 

the more-general “parent” phenotypes are linked to their more-specific subcategories, or “child” 

phenotypes. “Generalized tonic-clonic seizures”, for instance, is a child of “Generalized 

seizures”, which is a child of “Seizures”. HPO also has a list of synonyms for every phenotype. 

“Seizures”, “Seizure”, and “Epilepsy”, for instance, all correspond to the same phenotype, 

represented by the ID HP:0001250. ClinPhen looks for these synonyms in the clinical notes to 

determine if the phenotype is mentioned. All phenotypes descending from the node “Phenotypic 

Abnormality” (HP:000018) are considered. Since many of the widely-used synonyms for 

phenotypes are not yet included in HPO, ClinPhen supplements HPO’s thesaurus using the 

metathesauruses provided by the Monarch Initiative32 and the Unified Medical Language System 

(UMLS)31. These two databases provide additional synonyms for the 12,486 HPO phenotypes 

(from the July 2017 release), and expand ClinPhen’s vocabulary from 29,107 to 69,690 

phenotype synonyms. 

Sentence and subsentence splitting and flagging 

To extract phenotypes from clinical notes, ClinPhen splits the notes into sentences using a set of 

sentence delimiters. Each sentence is split into a list of subsentences using a set of subsentence 
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delimiters. ClinPhen additionally records each sentence’s “flags”: words that indicate that a 

phenotype mention may not apply to the patient. For phenotypes such as “Negative chorea”, 

ClinPhen will count the phenotype as validly mentioned, even though the sentence contains the 

flag word “negative”. 

Training flags and delimiters used by ClinPhen 

We used the Training set to manually determine which words and characters are best used as 

flags or delimiters. Phenotypes from the clinical notes of these 20 patients were extracted, once 

manually, and once by ClinPhen. The flags and delimiters used by ClinPhen were optimized so 

that ClinPhen’s phenotypes would be as similar as possible to those found manually. 

The set of sentence delimiters after training consisted of periods, bullet points, tabs, semicolons, 

newlines (Only during a second pass, in which ClinPhen checks for phenotype lists in the format 

“criterion: value”, which are common in EMRs, and often lack periods or other sentence 

delimiters), and the words “but”, “except”, “however”, and “though”. The set of subsentence 

delimiters after training consisted of commas, colons, and the word “and”. The set of flags 

included words that indicate that the mentioned phenotype applies to a family member, not the 

patient (cousin, parent, mom, mother, dad, father, grandmother, grandfather, grandparent, family, 

brother, sister, sibling, uncle, aunt, nephew, niece, son, daughter, grandchild); words that directly 

negate the mentioned phenotype (no, not, none, negative, non, never, normal); and words that 

indicate that the phenotypes are mentioned as part of a differential diagnosis (associated, gene, 

recessive, dominant, variant, cause, patients, literature, individuals). 

Accuracy Testing 

To test the accuracy of the extracted phenotypes, we compared the All set to the phenotypes 

returned by ClinPhen across all of the Test Patients. Due to the nature of the HPO DAG, the 
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presence of a phenotype in a patient implies the presence of all ancestor phenotypes in the 

patient. For instance, the term “Seizures” is an ancestor node of the term “Grand mal seizures”: if 

a patient presents with grand mal seizures, then the patient also presents with seizures. The 

“closure” of a set of HPO terms S consists of S plus all ancestors of the terms in S up to 

“Phenotypic Abnormality” (HP:0000118). We compared the extracted phenotypes to the true 

phenotypes using the closures of the two sets. 

For each of the Test Patients, we found the closure of the All set and that of the phenotype set 

returned by ClinPhen. True positives were defined as the nodes that are present in both the All 

and ClinPhen closures. False positives were defined as the nodes only present in the ClinPhen 

closure. False negatives were defined as the nodes only present in the All closure. The standard 

definitions of precision and sensitivity were used, as given by equations (1) and (2). 

(1) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(2) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

We calculated the 95% confidence interval around the average precision using equation (3). 

(3) 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ±
𝜎

√24
∗ 𝑡23(0.05), 

where σ is the standard deviation of the precision across all 24 Test patients and t23 is the inverse 

of Student’s t distribution with 23 degrees of freedom. The confidence interval around the 

average sensitivity was calculated similarly. 

Since the phenotype extractors cTAKES and MetaMap output UMLS terms, not HPO terms, we 

translated the output of these tools to HPO using the UMLS Metathesaurus, which matches 

UMLS phenotypes to synonymous HPO phenotypes. 
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Automatic extraction of phenotypes accelerates Mendelian disease 

diagnosis 

Per conventions in the field 35 we used Exome Aggregation Consortium36 and 1000 Genomes 

Project37 frequency data to produce a fixed list of candidate causative genes per patient. The lists 

were used to compare all gene-ranking methods. Please see Supplementary Methods and 

Materials for the details. 

ClinPhen consistently runs in less than 10 seconds 

As mentioned above, for each of the 24 Test patients, a licensed physician timed himself reading 

through the clinical notes, manually extracting the phenotypes that he considered useful for 

diagnosis and finding their matching HPO terms, thus creating the Clinician set. The times taken 

by the physician served as reference points for how long a clinician would take to manually 

extract phenotypes from clinical notes. We also timed each of the automatic phenotype extractors 

when running them on the same clinical notes. 

Results 

ClinPhen extracts the most accurate phenotype sets 

A phenotype extractor can best help with disease diagnosis if its extracted phenotypes accurately 

reflect the patient’s symptoms. We compare the accuracy of 3 tools that can automatically 

extract phenotypes from clinical notes: ClinPhen, cTAKES, and MetaMap. 

To determine which extractor is the most accurate, we used a Test set of 24 real patients 

diagnosed with Mendelian diseases. Each patient was associated with next-generation 

sequencing data, a diagnosis (including a single causative gene), and the clinical notes created 

before the diagnosis. For each Test patient, we produced a gold-standard phenotype set called the 
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All set: A licensed physician and a non-physician independently extracted phenotypes from the 

clinical notes. The physician recorded only the phenotypes that he considered useful for 

diagnosis (those that are more likely to pertain to a genetic disease, such as skeletal 

abnormalities, as opposed to allergies) to generate the Clinician phenotype set. The non-

physician recorded all of the phenotypes he found, regardless of predicted usefulness. The 

physician then verified the non-physician’s identified phenotypes to be correctly interpreted and 

applicable to the patient. These verified phenotypes, plus those in the Clinician set, made up the 

All phenotype set. We ran each automatic phenotype extractor on the patient’s clinical notes, and 

measured the extractor’s precision and sensitivity by comparing the extracted phenotypes to the 

All set. 

Across the 24 Test patients, cTAKES had an average precision of 57%, and MetaMap had an 

average precision of 56%. ClinPhen had a precision of 70%, significantly higher than that of 

cTAKES or MetaMap (both p-values < 3.0*10-7; Wilcoxon signed rank text).  

cTAKES had an average phenotype sensitivity of 57%, and MetaMap had an average phenotype 

sensitivity of 71%. ClinPhen had an average phenotype sensitivity of 72%, significantly higher 

than that of cTAKES (p<3.0*10-7), and slightly higher than that of MetaMap (Figure 3a). 

Automatic extraction of phenotypes accelerates Mendelian disease 

diagnosis 

Limiting the number of extracted phenotypes leads to better results with 

automatic gene-ranking methods 

A patient undergoing genome sequencing can have well over 100 candidate genes containing 

variants of uncertain significance, and each gene takes, on average, an hour to evaluate2. Gene-

ranking tools expedite the process of finding the causative gene by sorting the genes based on 
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how well their associated symptoms match the patient’s. The closer the causative gene is to rank 

1, the sooner clinicians will find it. The rankings are dependent on a provided list of patient 

phenotypes, meaning that the ideal phenotype set for diagnosis is the one that helps gene-ranking 

tools rank the causative gene close to the top. We show that this goal is better accomplished not 

by the full set of patient phenotypes, but by a subset thereof. 

For genetic disease diagnosis, a good phenotype set accurately reflects the patient’s symptoms, 

but a great phenotype set excludes the environmentally caused symptoms, and reflects only the 

genetically caused ones. Symptoms caused by a common cold, rather than a genetic variant, can 

easily mislead a gene-ranking tool and make the causative gene harder to identify. ClinPhen, as 

far as we are aware, is the first phenotype extractor to account for this caveat: phenotypes 

extracted from the clinical notes are prioritized, first by number of occurrences in the notes 

(phenotypes that likely pertain to a genetic disease are usually mentioned in multiple clinical 

notes, and even multiple times in the same note), then by earliest occurrence in the notes 

(clinicians usually begin a note with a summary of the phenotypes that seem striking and 

indicative of a genetic disease). 

To determine the ideal number of top-priority phenotypes to use when running gene-ranking 

tools, we ran ClinPhen on the Test patients’ clinical notes, and filtered the extracted phenotypes 

down to the n highest-prioritized phenotypes, for every number n from 1 to 100 inclusive. Each 

set of n highest-priority phenotypes was used as input to four automatic gene-ranking algorithms: 

Phrank4, hiPhive5, Phive6, and Phenix7. For each phenotype-count(n)/gene-ranking-tool pairing, 

we found the average causative gene rank across the 24 Test patients (Figure 3b). 
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The higher-performing gene-ranking tools (Phrank, hiPhive, and PhenIX) generally ranked the 

causative genes higher at phenotype maxima below 10 (n < 10). Phrank, the highest-performing 

of these, showed a clear spike in performance, yielding the best causative gene rankings at a 

phenotype maximum of 4 (n = 4). It was thus approximated that the 4 highest-priority 

phenotypes returned by ClinPhen generally lead to the best causative gene rankings. 

Across the 24 Test patients, Phrank ranked the causative gene at an average rank of 14.0 with 

unfiltered ClinPhen phenotypes, and 7.63 with ClinPhen’s 4 top-priority phenotypes (lower 

number means better ranking). Limiting to the 4 highest-prioritized phenotypes significantly 

improves Phrank’s causative gene rankings (one-sided Wilcoxon Signed Rank test: p<0.00662). 

Gene-ranking tools perform better when using automatically extracted 

phenotypes 

Phrank, when run with the 4 phenotypes found and prioritized highest by ClinPhen, puts the 

causative genes at an average rank of 7.63. If using manually extracted phenotypes were to lead 

to higher-ranked causative genes, then using ClinPhen-extracted phenotypes would not save time 

in identifying the causative gene. 

We thus set out to show that Phrank does not rank causative genes lower when using ClinPhen’s 

extracted phenotypes than when using manually extracted phenotypes. We compare two ways of 

manually extracting phenotypes from clinical notes: manually subsetting all mentioned 

phenotypes to those that a clinician thinks are most likely to help with the diagnosis (represented 

by the Clinician phenotype set); and listing all mentioned patient phenotypes, whether or not 

they are likely to help with the diagnosis (represented by the All phenotype set). The Clinician 

and All phenotype sets were generated for each of the 24 Test patients. 
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The 24 Test patients were each run through the automatic gene-ranking tool Phrank using each 

of 6 phenotype sets: the All set; the Clinician set; ClinPhen(All), the full set of phenotypes 

returned by ClinPhen; ClinPhen(4), the 4 top-prioritized phenotypes returned by ClinPhen; the 

phenotypes returned by cTAKES, and the phenotypes returned by MetaMap (Figure 3c). 

Running Phrank with the All set results in an average causative gene rank of 14.3, using the 

Clinician set results in an average rank of 12.9, and using ClinPhen’s 4 top-prioritized 

phenotypes results in an average rank of 7.63 (lower number means better ranking). Phrank 

ranked the causative genes significantly higher with the Clinician set than with the All set (one-

sided Wilcoxon Signed Rank test: p<0.0380), and, strikingly, significantly higher with 

ClinPhen(4) than with the Clinician set, or with the phenotypes returned by cTAKES or 

MetaMap (all p-values < 0.00980). Assuming a clinician examines a ranked gene list from top to 

bottom, spending an average of one hour evaluating the variants in each gene for their potential 

to have caused the patient’s phenotypes2; using the 4 top-prioritized ClinPhen phenotypes 

(instead of manually extracted phenotypes) as input to an automatic gene-ranking tool can save 

roughly 5 hours per case in the diagnostic process. 

ClinPhen consistently runs in less than 10 seconds 

A good phenotype extractor runs in a short amount of time. More clinical notes take a longer 

time to read through, and some patients have far more clinical notes than others do. Therefore, 

automatic extractors that can quickly extract HPO phenotypes from long collections of clinical 

notes are ideal. 

The Test patients had an average of 4 free-text pre-diagnosis clinical notes per patient. The 

physician who extracted the Clinician set (defined above) of HPO phenotypes from the notes 

measured the time he took to do so for each patient. For the average patient, he identified 25 
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phenotypes in 11:55 minutes. Running cTAKES took an average of 4:07 minutes per patient, and 

running MetaMap took an average of 57 seconds per patient. 

The time taken to extract a patient’s phenotypes scaled with the combined length of the notes: for 

the longest collections of notes, it took over 1,000 seconds to run cTAKES or produce the 

Clinician set, and it took over 100 seconds to run MetaMap. ClinPhen, uniquely, maintained a 

nearly constant runtime of 7 seconds per patient, even when run on the longest collections of 

clinical notes. (Figure 3d). 

Discussion 

Automatic gene-ranking tools expedite genetic disease diagnosis, but they currently require 

manually encoding patient phenotypes found into phenotype ontology terms. We show here that 

an automatic phenotype extractor, ClinPhen, produces an accurate phenotype list in under 10 

seconds, and saves an average of 5 hours of candidate gene evaluation per case. 

Most of the diagnosis time saved by ClinPhen can be attributed to its unique ability to prioritize 

the more-relevant extracted phenotypes. Phenotypes that are likely not caused by a genetic 

disease can derail a diagnosis, and while clinicians use their intuition to filter out these 

phenotypes, automatic phenotype extractors until now have not done such filtering. When we use 

a phenotype filter to limit ClinPhen’s phenotypes to the 4 most-mentioned, then earliest-

mentioned; automatic gene-ranking algorithms rank the causative gene much higher than they 

would with unfiltered phenotypes, or even with phenotypes found and filtered by a clinician. 

ClinPhen thus enables clinicians to search through 8 genes rather than 13 before they find the 

causative gene, thus reaching a diagnosis an average of 5 hours sooner2. 
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The time saved in phenotype extraction is not to be disregarded, either: while manual extraction, 

on average, takes 12 minutes of full-time work, clinicians do not tend to extract phenotypes full-

time. Since it is a monotonous process, a true manual extraction will involve breaks, and multiple 

extractions will often be spread out across multiple days. Some patients will be phenotyped this 

week, some next week, and some a month from now. With ClinPhen, though, a large number of 

cases can be run through a gene-ranking tool right away, allowing the diagnostic rate to catch up 

to the accelerating rate and volume of sequence data generation. 

Compared to other phenotype extractors, ClinPhen produces more-accurate HPO phenotypes in a 

shorter amount of time. We optimized ClinPhen for HPO term extraction because HPO terms are 

commonly used to describe patients with Mendelian diseases25,38,39. Rapidly growing  databases 

like OMIM40 use HPO terms to describe tens of thousands of disease-phenotype associations. 

ClinPhen could be used to accelerate the growth of these databases by quickly analyzing 

patients’ clinical notes and finding new disease-phenotype associations at a rate unachievable by 

clinical experts, or even by other phenotype extractors. 

Upon publication, ClinPhen will be made available at bejerano.stanford.edu/clinphen, as a 

standalone, free-to-use, noncommercial tool. Users can download ClinPhen and run it on a 

patient’s clinical notes to get an encoded list of HPO terms, along with the number of mentions 

and location of the earliest mention of each phenotype. The large number of undiagnosed 

patients11 with presumed Mendelian diseases necessitates a rapid diagnostic process. With the 

help of ClinPhen, clinicians can accurately diagnose patients more than 5 hours ahead of 

schedule, and provide them with faster, more-effective medical care. 
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Figures 

Figure 1.  

 

Figure 1. Steps to diagnose a patient with a Mendelian disease using automated gene-

ranking algorithms. The patient’s genotypic information is encoded using standard formats 

(Variant Call Format (VCF) file, candidate causative gene list) and a list of patient phenotypes 

encoded as ontology terms. Extensive tool support exists for obtaining candidate causative 

variants and genes from an exome sequence. Tool support for obtaining an appropriate list of 

encoded patient phenotypes from the patient’s clinical notes is limited. Encoded phenotypes are 

currently acquired by manually reading through the patient’s clinical notes and recording the 
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phenotypes found as their IDs in a phenotype ontology. We introduce ClinPhen, a tool that 

automates phenotype extraction from clinical notes, optimized for accelerated patient diagnosis. 
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Figure 2. 

 

Figure 2. ClinPhen sentence analysis process. ClinPhen splits the clinical notes into sentences, 

and those sentences into subsentences. It then finds phenotypes whose synonyms appear in the 

subsentences. A high-precision, high-sensitivity, rule-based natural-language-processing system 

decides which phenotypes correspond to true mentions and which are false positives. Since the 

third sentence contains the flag word “father”, for instance, it is assumed that this sentence does 

not refer to the patient, and any phenotype synonyms found in the sentence will not be 

considered. ClinPhen sorts the identified phenotypes first by how many times they appeared in 
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the notes (descending), then by the index of the first subsentence in which they were found 

(ascending), and then by HPO ID (ascending). 
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Figure 3. 

 

Figure 3. Performance of all extraction methods 

(a) Comparison of the extractors’ precision and phenotype sensitivity (higher bars mean higher 

accuracy). We compared the average precision and sensitivity values of ClinPhen, cTAKES, and 

MetaMap, using the 24 Test patients as test subjects, and the All  set (all of the phenotypes found 

manually and confirmed by a physician to apply to the patient) as the “correct” phenotypes. The 
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average (column) and 95% confidence interval (calculated using Student’s t distribution) of the 

precision and sensitivity values across the 24 patients are displayed for each extractor. ClinPhen 

has the highest average precision and sensitivity among the automatic extractors. 

(b) Causative-gene-ranking performance of each gene-ranking tool when run with different 

numbers of phenotypes returned by ClinPhen (lower number means better causative gene 

rankings). ClinPhen was run on the clinical notes of the Test patient set, and the gene-ranking 

tools were called with the patient’s genetic information and the n highest-priority (most-

mentioned, first-occurring) extracted phenotypes, with n running from 1 to 100 inclusive. The 

average causative gene rank across the 24 patients was taken for each phenotype-count-

limit(n)/gene-ranking-tool pairing. The better-performing gene-ranking algorithms rank the 

causative gene higher when run with a few (around 4) high-priority phenotypes than with all 

extracted phenotypes. 

(c) Phrank’s causative-gene-ranking performance across all extraction methods (lower numbers 

mean better causative gene rankings). We compared the causative gene ranks obtained by 

running Phrank on the Test patients, with various extracted sets of phenotypes (All manually 

found, physician-verified phenotypes (All) vs. phenotypes considered by a physician to be useful 

for diagnosis (Clinician) vs. automatically extracted phenotypes using various methods). Phrank 

ranks are sorted lowest-to-highest for each extractor. Phrank performs significantly better when 

run with ClinPhen’s 4 highest-priority phenotypes (the most-mentioned, earliest-occurring 

phenotypes in a patient’s clinical notes) than when run with other phenotype sets, manually or 

automatically extracted. 
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(d) Extractor runtime comparison on each patient (lower number means faster runtime). We 

measured the runtime of each extractor (ClinPhen, cTAKES, and MetaMap) on each patient’s 

clinical notes, in seconds. For each patient, we also measured the time taken for a physician to 

manually scan through the same notes read by the automatic extractors, and encode the 

phenotypes considered useful for diagnosis to produce the Clinician Phenotype set. Each data 

point is one patient whose clinical notes were scanned by one of the extractors. The horizontal 

position is the total number of words in the patient’s clinical notes. The vertical position is the 

time taken for the extractor to run on the notes (logarithmically scaled). While MetaMap’s 

runtime scales linearly and cTAKES’ exponentially with the total length of the clinical notes, 

ClinPhen runs in near-constant time. All automatic extraction tools are much faster than manual 

extraction. 
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