Bleicher et al. Interviews 1

1 Divergent Behavior Amid Convergent Evolution: A Case of Four Desert Rodents Learning

2 to Respond to Known and Novel Vipers

3 Sonny S. Bleicher^{1,2,3*}, Kotler Burt P.², Shalev, Omri², Dixon Austin², Keren Embar², Brown Joel

4 S.^{3,4}

- 5 1. Tumamoc People and Habitat, Department of Ecology and Evolutionary Biology, University
- 6 of Arizona, 1675 W. Anklem Rd, Tucson, AZ, 85745, USA. 2. Mitrani Department for Desert

7 Ecology, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde-

- 8 Boker 84-990, Israel. 3. Department of Biological Science, University of Illinois at Chicago, 845
- 9 West Taylor Street (MC 066), Chicago, IL, 60607, USA. 4. Moffitt Cancer Research Center,
- 10 Tampa, FL, 33612, USA.
- 11 *Corresponding Author: <u>bleicher@email.arizona.edu</u>; orcid.org/0000-0001-8727-5901

Bleicher et al. Interviews 2

13

ABSTRACT

Desert communities word-wide are used as natural laboratories for the study of convergent 14 15 evolution, yet inferences drawn from such studies are necessarily indirect. Here, we brought 16 desert organisms together (rodents and vipers) from two deserts (Mojave and Negev). Both predators and prey in the Mojave have adaptations that give them competitive advantage 17 18 compared to their middle-eastern counterparts. Heteromyid rodents, kangaroo rats and pocket mice, have fur-lined cheek pouches that allow the rodents to carry larger loads under predation 19 20 risk compared to gerbilline rodents. Sidewinder rattlesnakes have heat-sensing pits, allowing 21 them to hunt better on moonless nights when their Negev sidewinding counterpart, the Saharan horned vipers, are visually impaired. In behavioral-assays, we used giving-up density (GUD) to 22 23 gage how each species of rodent perceived risk posed by known and novel snakes. We repeated this for the same set of rodents at first encounter and again two months later following intensive 24 "natural" exposure to both snake species. Pre-exposure, all rodents identified their evolutionarily 25 26 familiar snake as a greater risk than the novel one. However, post-exposure all identified the heat-sensing sidewinder rattlesnake as a greater risk. The heteromyids were more likely to avoid 27 encounters with, and discern the behavioral difference among, snakes than their gerbilline 28 29 counterparts.

30

31

Bleicher et al. Interviews 3

33 Introduction

Deserts, and desert rodents in particular, provide a model system for studying parallel and 34 35 convergent evolution. Deserts around the world form at least five evolutionarily independent 36 laboratories of adaptation, ecology, and evolution [1–6]. Shared environmental conditions of temperature, precipitation, and aridity force evolutionary processes in a manner that results in 37 38 similar adaptations in species that fill similar ecological roles. Not only do species converge, but communities may too [7–10]. A good example of this can be studied in desert dunes of the 39 40 Mojave and of the Negev deserts. In both of these systems we find an array of plants that drop their seeds onto the sand (creating a seed bank); a variety of rodent species feed on these seeds 41 [11–13]; and medium-sized sidewinding vipers feed on the rodents [14,15]. 42

The Mojave and Negev deserts of North America and the Middle East, respectively, 43 possess rodents with similar ecologies [5,7,13,16,17]. These rodents are nocturnal, semi-44 fossorial, seed-eating, and seed caching. However, the heteromyid rodents of the Mojave may 45 have a constraint breaking adaptation compared to their convergent counterparts in the Negev, 46 the gerbilline rodents. A constraint-breaking adaptation is a game-changing evolutionary 47 adaptation that alters, relaxes or eliminates tradeoffs and confers a competitive advantage to its 48 holder over those lacking the trait as defined by Rosenzweig and McCord [18]. The heteromyids 49 have external fur lined cheek pouches that allow them to stow large quantities of food (in good 50 dry conditions) before having to return to a burrow for caching [11]. In contrast, the gerbilline 51 rodents carry their grain in their mouths, logically requiring more trips to collect the same 52 quantity of grain and thus increasing exposure to predators. 53

Similar to the rodents, rattlesnakes from North America and horned vipers from the
Middle East provide a textbook example of convergence [19]. Despite being separated by 18

Bleicher et al. Interviews | 4

56 million years from their most recent common ancestor [20], each has evolved the same locomotion method, similar coloration patterns, and a similar adaptation of scales over the eye 57 ridge, protruding as horns. However, the North American sidewinder belongs to the evolutionary 58 lineage of pit-vipers, a lineage that evolved infra-red heat sensing pits. The pit-vipers provide 59 another example of a constraint breaking adaptation compared with Saharan horned vipers. The 60 61 heat-sensing pits enable the sidewinder to be active on dark nights with no ambient moonlight. The pits also enable safer, more precise strikes at warmer, more vulnerable locations in their 62 endothermic prey [21]. 63

64 We report here an intercontinental comparison for how two species of Mojave Desert rodents and two species of Negev Desert rodents respond to their evolutionarily and ecologically 65 familiar versus novel snakes. We ask three questions: (1) Do gerbils and heteromyids assess risk 66 from snakes in a similar manner? That is, do they make the same choices when facing snakes 67 with and without heat-sensing pits? (2) Do both sets of rodents assess risk from novel predators 68 69 as equal to that of evolutionarily familiar ones? (3) Does a prolonged (two-month) exposure to both snakes (in a larger and more realistic setting) diminish the perceived risk of predation from 70 71 horned vipers, compared with heat-sensing pit-vipers? If so, do both sets of rodents reach the 72 same conclusion, i.e. exhibit the same behavioral response?

73

74

METHODS

Study Species

We brought together one large and one small coexisting desert rodent from each continent, two common gerbils from the Negev Desert of Israel and a kangaroo rat and a pocket mouse from the deserts of the southwestern United States, to a common and controlled setting in the Negev Desert. The Negev Desert gerbils include the greater Egyptian gerbil [GP] (*Gerbillus*

Bleicher et al. Interviews | 5

79	pyramidum), 40 g, and Allenby's gerbil [GA] (Gerbillus andersoni allenbyi), 30 g [22]. The
80	North American Desert rodents include Merriam's kangaroo rat [DM] (Dipodomys merriami), 45
81	g [23], and the desert pocket mouse [CP] (Chaetodipus penicillatus), 22 g [24]. All are nocturnal
82	desert granivores commonly found on sandy substrates such as sand dunes. All four rodents have
83	adaptations to reduce the risk of predation, including saltatorial locomotion for enhanced escape
84	abilities and auditory adaptations to increase hearing acuity. These adaptations are especially
85	well developed in the kangaroo rats [4,25].
86	We brought wild-caught vipers, trapped at locations where they would come in contact
87	with wild populations of the above-mentioned rodents, to the same facility. We caught
88	sidewinder rattlesnakes (Crotalus cerastes), 35-60cm mean length, from the Mojave Desert [26]
89	and Saharan horned vipers (Cerastes cerastes), 30-60cm mean length, from the Negev Desert
90	[15]. Both snakes side-wind, borrow in the sand (usually under bushes) and feed on a variety of
91	rodents and lizards [14,15].
92	Animal collection was done respectively in the Mojave and Negev Deserts. The
93	heteromyids were predominantly trapped in the Parker Dunes area (N 34°9'7.969", W
94	114°7'34.245") and supplemented by individuals from the San Bernardino (AZ) area (N
95	31°23'22.082", W 109°11' 22.851"). The sidewinders were collected in the Avra Valley
96	alongside country roads (N 32°24'49.335", W 111°29'38.138"). The gerbils in Israel were
97	collected in the Mashabim Dunes (N 31°0'14.531", E 34°44'47.31") and the horned vipers on
98	the border between Israel and Egypt at Be'er Milka (N 30°57'4.609", E 34°23'10.821").
99	Experimental Design
100	We used an "interview" approach [27-29] to measure the response of each rodent species
101	to the risks posed by the two snake species. We measured the response prior to exposure of the

Bleicher et al. Interviews 6

rodents to the novel viper species and following a two-month exposure to both snake species in
an semi-natural arena (described in Bleicher 2014; Bleicher et al. 2016). We assessed the
response of each species to the vipers using a metric borrowed from foraging theory, the givingup density (GUD; Brown 1988). The GUD is the amount of food a forager leaves behind
untouched in a resource patch to measure foraging efficiencies and costs. Most relevant for our
purposes is that these costs include those arising from the perceived risk of predation. Hence the

108 forager will leave a lower GUD when it perceives lower risk [31].

The experiments were conducted in a light-controlled room at Ben Gurion University of 109 110 the Negev's Blaustein Institutes for Desert Research, at Midreshed Ben Gurion, Israel (N 30°51'17.401", E 34°47'6.637"). We erected a total of eight, 3-compartment (henceforth room) 111 behavioral-assay systems (henceforth system), which we call interview chambers (S1). We called 112 them interview chambers as they allow the researchers to question an individual animal and 113 allow the animal to rate how it perceives treatments in relation to each other. With repeated 114 115 measures it allows the researchers to obtain how each individual changed its perception of the controlled treatments, *i.e.* it's opinion, after a manipulation. 116

Each system consisted of a circular nest-box attached to three 80 x 40 x 40 cm testrooms. Each room was connected to the nest-box with a 30 cm PVC tube to allow rodents free movement between the nest-box to any room. Each room was large enough to contain a small cage and a 38 x 28 x 8 cm foraging tray (Sup. Appendix 1). Each foraging tray was set with 2 liters of sand and 1.5g of millet. For each system during a trial, the cage in one compartment contained a sidewinder rattlesnake, the cage in the second contained a horned viper, and the cage in the third was empty. In order to avoid the possibility of directional bias, we randomized the

Bleicher et al. Interviews | 7

positions of treatment-rooms (henceforth treatment) to different cardinal directions in eachsystem.

126 between dusk and dawn we conducted a maximum of five, 2-hour tests (henceforth 127 round), in which a single rodent was placed in the nest-box and was allowed to forage in the system. This allowed sufficient time for rodents to move among compartments and forage in 128 129 trays under the different treatments. Each rodent was run at random times each night to nullify the preferred activity periods of the rodents. The rodents weren't fed prior to the experiment 130 adding incentive to forage when in the chambers. Following the experiment, animals were 131 132 returned to their holding cages and fed 3 grams of millet and a mealworm (Tenebrio molitor) to offset stress related calorie loss. Following each test, each of the foraging travs was sieved and 133 the remaining millet removed and weighed to obtain the GUD. The systems were reset after each 134 rodent was tested with fresh millet and the next rodent introduced for the following round. 135

Each individual rodent was tested for two nights pre-exposure and an additional two nights post-136 137 exposure, with a night between runs to avoid possibly over-stressing the animals. The exposure periods are two-month experiments in which the rodents cohabitated in a semi natural arena 138 (aviary dimensions 17 x 34 m) with uncaged snakes of both species (3 of each species) allowing 139 them to learn the differences in behavior of the predators. In addition, by flying an owl in the 140 aviary on half the nights, we compared how the risk from snakes compares to the risk from owls 141 (cf. Bleicher 2014). Our aviary provides a system where the rodent enjoy ideal free distribution 142 through special gates within the arena, but predators are limited in movement by the same gates. 143 Using RFID tags implanted subcutaneously in the rodents, and loggers under food patches we 144 145 are certain the majority of rodents experienced encounters with both snake species. We pre-{post-} interviewed 51 {19} GAs, 29 {9} GPs, 36 {11} CPs, and 33 {10} DMs. Each surviving 146

Bleicher et al. Interviews | 8

147	individual was interviewed twice pre-exposure and twice post-exposure. All animals used were
148	male and of sexual reproductive age, to comply with importation regulations. The experiments
149	were run pre-exposure {post-exposure} on 3-26/5/2011 {3-9/8/2011}, 2-5/7/2012 {20-
150	22/9/2012}, 6-11/7/2012 {8-10/11/2012} and 27-29/5/2013 {30/7/2013-2/8/2013} for GA, CP,
151	DM and GP respectively.
152	Data Analyses
153	We used four different methods to determine how the rodents perceive risk posed by the
154	different snakes. First, we ran a Friedman's test of concordance, comparing the way in which
155	each rodent ranked the different snake species. The highest GUD received a rank of 1 and the
156	lowest a rank of 3. We repeated the analysis on data for each individual pre- [post-] exposure.
157	To specifically address the low variation in GUDs in the pocket mice, we assessed
158	activity patterns by running a log-linear tabulation analysis (multi way contingency table) on the
159	proportion of foraged to unforaged trays. For each small mammal we compared the proportion
160	of trays foraged based on snake treatment and experimental sequence (pre- and post- exposure)
161	Last, we averaged the GUD for each individual per snake treatment, resulting in one
162	value for at each test sequence. We then ran in Systat13© a series of generalized linear models
163	(GLM) using the mean GUD as the dependent variable. The first GLM used three independent
164	variables; rodent species, (snake) treatments, and sequence. In addition, all two and three-way
165	interactions between these variables were included. We did not use the full data set, but lowered
166	the "noise" in the data by using the mean values. This normalization means that each individual
167	provides two datapoints, one prior and one post exposure (too low for a meaningful comparison
168	on the individual level). To increase the explanatory power for each species, we ran a GLM for

Bleicher et al. Interviews | 9

169	each species individually as well. For the single species GLMs, we tested the independent
170	variables: snake treatment and sequence (and the two-way interaction). Post-hoc pairwise
171	comparisons were performed using Tukey's Honestly Significant Differences (THSD) tests for
172	variables that significantly affected variance. This analysis addresses a population-wise (or
173	species-wise in this case) comparison for the broader differences and not in-population variation.
174	We knowingly and purposefully removed individual ID for these reasons.
175	Last, we ran a random-forest Bayesian decision tree analysis in Statsoft Statistica [®] . This
176	analysis best described as a categorical principal component analysis describes the importance of
177	each variable, and category within each variable, in explaining the distribution of points of a
178	dependent variable. Here we tested how the rodent's GUD were distributed based on the species,
179	the snake-treatment and the sequence of the measurement.
180	RESULTS
180 181	RESULTS At first encounter, all the species ranked the snakes similarly (Friedman's test of
181	At first encounter, all the species ranked the snakes similarly (Friedman's test of
181 182	At first encounter, all the species ranked the snakes similarly (Friedman's test of concordance $X_f^2 = 6.5$, 2 df, p= 0.039, and $W = 0.813$), with lowest GUDs for the snakeless-
181 182 183	At first encounter, all the species ranked the snakes similarly (Friedman's test of concordance $X_f^2 = 6.5$, 2 df, p= 0.039, and $W = 0.813$), with lowest GUDs for the snakeless-control, higher GUDs for the evolutionarily novel snake, and still higher GUDs for the
181 182 183 184	At first encounter, all the species ranked the snakes similarly (Friedman's test of concordance $X_f^2 = 6.5$, 2 df, p= 0.039, and $W = 0.813$), with lowest GUDs for the snakeless-control, higher GUDs for the evolutionarily novel snake, and still higher GUDs for the evolutionarily familiar snake. All rodent species perceived both snakes as threats (p= 0.003,
181 182 183 184 185	At first encounter, all the species ranked the snakes similarly (Friedman's test of concordance $X_f^2 = 6.5$, 2 df, p= 0.039, and $W = 0.813$), with lowest GUDs for the snakeless-control, higher GUDs for the evolutionarily novel snake, and still higher GUDs for the evolutionarily familiar snake. All rodent species perceived both snakes as threats (p= 0.003, 0.012 for known and sidewinders and horned vipers compared to control; Fig 1).
181 182 183 184 185 186	At first encounter, all the species ranked the snakes similarly (Friedman's test of concordance $X_r^2 = 6.5$, 2 df, p= 0.039, and $W = 0.813$), with lowest GUDs for the snakeless-control, higher GUDs for the evolutionarily novel snake, and still higher GUDs for the evolutionarily familiar snake. All rodent species perceived both snakes as threats (p= 0.003, 0.012 for known and sidewinders and horned vipers compared to control; Fig 1). FIGURE 1
181 182 183 184 185 186 187	At first encounter, all the species ranked the snakes similarly (Friedman's test of concordance $X_f^2 = 6.5$, 2 df, p= 0.039, and $W = 0.813$), with lowest GUDs for the snakeless-control, higher GUDs for the evolutionarily novel snake, and still higher GUDs for the evolutionarily familiar snake. All rodent species perceived both snakes as threats (p= 0.003, 0.012 for known and sidewinders and horned vipers compared to control; Fig 1). FIGURE 1 Desert pocket mice showed increased GUDs in response to snake presence but did not

Bleicher et al. Interviews | 10

191	(S2). The non-significant difference between snakes in GP pre-exposure did not alter this
192	finding. Post-exposure, the rodents showed complete concordance according to snake species:
193	they all foraged least in the presence of the rattlesnake. ($X_f^2 = 6.5, 2 \text{ df}, p = 0.039$, and $W = 0.813$).
194	TABLE 1
195	Assessing the activity of each species of rodent, using proportion of patches of this
196	treatment in which foraging activity took place, similar patterns emerge. We found that the
197	species each exhibited different activity preferences (Table 1A). None of the rodents foraged a
198	greater proportion of trays before the snake exposure than after. However, for all four rodents the
199	exposure changed the willingness to forage in difference snake treatments (Tables 1 B-E). Pre-
200	exposure, three species were active in more compartments with the novel snake than with the
201	evolutionarily familiar one (Fig 2 A). Contrarily, GP investigated more compartments with the
202	familiar snakes than novel snakes, and DM foraged in more compartments with novel snakes
203	than in snake-less compartments. Post-exposure, all rodents foraged most in the snake-free-
204	control over the snake treatments (Fig 2 B). Three of the four species foraged least in the
205	compartment with sidewinder rattlesnakes. The GAs, foraged in more horned viper treatments
206	than near sidewinders. GA's activity pattern did not vary between pre- and post-exposure
207	interviews.
208	FIGURE 2

209 TABLE 2

The GLM combining all four species showed that each species foraged differently in the interview chambers (Table 2). The heteromyids foraged less than the gerbils. The pocket mice (CP), and kangaroo rats (DM) foraged to a mean GUDs (±SE) of 1.34±0.019g and 1.32±0.019g,

Bleicher et al. Interviews | 11

213	respectively. Allenby's gerbils (GA) and the Egyptian gerbils (GP) foraged to mean GUD of
214	1.24±0.02g and 1.29±0.027g, respectively. In response to the snake treatments, the rodents
215	overall foraged least in the presence of the rattlesnake, and most in the control treatment (Fig 3,
216	Sup. Appendix 2). Post-hoc pairwise comparison (THSD) found a significant difference
217	between, the control and horned viper (p=0.009), the control and sidewinder (p<0.001), and
218	control and between the horned viper and sidewinder (p=0.006). After two months of exposure,
219	all four species exhibited a similar trend of decreased foraging in the presence of the sidewinder
220	rattlesnake (Fig 3) as shown in each of the single species models (Table 2).
221	FIGURE 3
222	The random forest analysis resulted in a model with mid-range risk-estimates (±SE) of
223	0.09±0.02 and 0.11±0.03 for the training and model respectively. The model confirmed strong
224	species and snake treatment effects (importance of 0.993 and 1.0 out of 1.0 respectively) and
225	suggested lower importance of 0.326 for the sequence. These values explain the rate of decisions
226	each variable affected. This analysis unexpectedly separated GA from the other species at the
227	first split (Fig 4; Supplement 3). The higher a split (further left) the stronger greater the accuracy
228	of that split, thus more credible. For the GAs the difference between the control and snakes was
229	critical, and the model suggests that the novel pit viper was assessed as slightly riskier post
230	exposure. The GUDs reflect the change in perception with means of 1.27±0.06 g and 1.29±0.06
231	g pre- and post- exposure respectively.
232	FIGURE 4

The difference in variance between the GUDs in the control for all three other species (CP, DM & GP) was too small for the model to predict divergence between them. However, in

Bleicher et al. Interviews | 12

235	the response to the snakes a clear divergence between CP and the larger rodents was found. The
236	Pocket mice initially foraged less near the novel snake, but post exposure avoided both snakes
237	equally. The model does not predict change in the larger rodents assessment of risk from the
238	snakes after exposure, but clumps these points together to set aside the sidewinder as greater risk
239	for both. The mean GUD for both species combined in the presence of the horned vipers was
240	1.3±0.05g. The difference between the response to each snake type was larger in the kangaroo
241	rats (DM), with a GUD of 1.45±0.03g in the presence of the sidewinders, than in the gerbils
242	(GP), with respective GUDs of 1.34±0.08 g.
243	DISCUSSION
244	All rodents began by assessing the snake with which they share evolutionary history as an
245	equal or greater threat to the novel snake. However after two months of interacting with uncaged
246	sidewinders and horned vipers, all four rodents ranked the heat-sensing sidewinder as the greater
247	threat. We chose to structure this discussion according to three major comparisons: two
248	intracontinental comparisons (within families) and one intercontinental comparison between the
249	gerbils and heteromyids.
250	Heteromyids
251	Pocket mice and kangaroo rats provide examples of opposite strategies in managing risk
252	from snakes (as shown here), and other predators such as owls [28,32]. Why the stark difference?
253	We do not believe it has to do solely with size, but in variation in anti-predator adaptations. The
254	first reason behind this speculation is a number of studies investigating microhabitat selection in
255	the kangaroo rats and pocket mice of different species [33-35]. In those studies, the kangaroo
256	rats would use both bush and open microhabitat whilst pocket mice were particular to the bush.
257	The interpretation these studies gave are based in both locomotion and signaling resulting from

Bleicher et al. Interviews | 13

the kangaroo rats' bipedal agility. On the opposite side the evolutionary strength of the pocket 258 mice is attributed to torpor which they apply to minimize risk and survive harsh weather events. 259 In addition, the kangaroo rats are able to ward off snakes using warning signals, foot drumming 260 and kicking sand in the face of their predators [25,36]. In facing a striking snake, they are 261 capable of hopping backwards [37-39] and to heights exceeding 2 m [40]. In contrast, the pocket 262 263 mice remain bush-bound, and avoid predators by climbing into dense vegetation and are presumed to apply a torpor mechanism to reduce dependency on the foraging when risk levels 264 are too high [33,35]. 265

266 In the interview chambers, differences among the species were well represented. The pocket mice avoided risk where possible, leaving high GUDs near snakes, affected by the 70-267 80% of rooms unforaged. The avoidance of the snakes was strongly offset by significantly lower 268 GUD and high activity in the snake-free control rooms. Meanwhile, the kangaroo rats exhibited 269 an inquisitive nature seen by the high proportion of foraged rooms. The genus *Dipodomvs* 270 (kangaroo rats) has morphological adaptation that allow them to both located predators and avoid 271 their attack. Inflated auditory bullae allow the kangaroo rats to hear predators, such as owls, 272 approaching from a large distance [34,41,42]. The kangaroo rat's powerful hind-legs allow them 273 274 to hop out of harm's way to heights above one meter and are able to change the direction of movement using tail flicks while in the air [37]. Thanks to their morphological adaptations, 275 276 kangaroo rats are able of greater risk-taking than the pocket mice [43]. This risk-taking behavior, 277 verging on being dare-devils, is best exhibited by the increased resource use and patch activity in the treatment with the novel snake (greater than the control). These strong differences in anti-278 predator adaptations, both behavioral and physical, are likely the evolutionary mechanism that 279 allows for these species to coexist in the great basin deserts. 280

Bleicher et al. Interviews | 14

281

302

Gerbils

282	The competition between GA and GP is a major model system for the study of the roles of
283	competition, predation risk and parasitism in community structure. It the behavioral differences
284	between these gerbils that allow them to coexist. They differ in habitat preference [44-46], in the
285	time of night they are active [47,48], in the way they respond to different types of predators
286	(snakes, owls) [49-52] and in the way they respond to inter- and intra-specific competition [53-
287	55]. Surprisingly, despite those well documented behavioral differences, we found the species
288	responded to the snakes in remarkably similar patterns.
289	Why did we find such similar patterns? The most likely explanation is that our systems
290	were devoid of environmental heterogeneity. During the exposure period, we found species-
291	specific-spatially explicit-responses to the distribution of risk posed by each snake and in
292	combination with barn owls [28,30,32,56]. However, in the enclosed systems, where individual
293	gerbils forage without competition, the response of both species to the risk of predations is
294	similar.
295	This experiment revealed that the gerbils were attentive to the type of predation-risk
296	present and their response to that risk is relatively plastic. Pre-exposure, both gerbils recognized
297	the novel sidewinder, as a risk (higher GUDs than the control) but not as great a risk as the
298	known horned viper. The change in perceived risk towards the novel sidewinder suggests the
299	gerbils gained information about the new predator. Post-exposure, the mean GUDs being similar
300	for both snake species, suggests the gerbils were able to learn, in the minimum, that these new
301	predators are snakes. Despite both having some changes in their response the GAs exhibit a

303 species that is known for balancing the risk from predators with stronger competitors, *a.k.a* a

stronger tendency to adapt to the novel risk (based on the random-forest), not surprising for a

Bleicher et al. Interviews | 15

crumb picking foraging strategy. The GA's are known to assess GP (and *Gerbillus gerbillus*)
activity and shift their foraging patterns to exploit patches more thoroughly when these dominant
species are around [47,48].

307 Another possible explanation is delayed response to stimulus. In neurological studies delayed response to a novel threat is commonly studied in contexts of neophobia and clasical 308 309 conditioning. In these types of studies lab mice, rats and rabbits are taught to recognize a novel object, sound, or image as a predation-cue [57,58]. Intrinsically, most rodents fear novel objects, 310 311 but do not innately respond to them to the extent of the danger that they "actually" pose. In many 312 cases, they remain naive to the proper response to these novel threats [59,60]. Despite being naïve to the dangers of the sidewinder rattlesnake at the start of the experiments, both gerbils 313 quickly learned to respond to the snakes and both rank them as a risk. In out measurements in the 314 aviary they both ranked snakes as a lower risk than (lower GUDs) than owls [28,30,32]. The 315 316 results of the comparison between the gerbils highlight the importance of competition to species that have less spatial segregation than the North American heteromyids [44,47]. 317

318

Intercontinental Wide Consequences

During the pre-exposure interviews all rodents feared their evolutionarily familiar snake 319 equally or more than the novel one. In particular, gerbils showed higher GUDs in response to 320 greater Saharan horned vipers, and the heteromyids showed higher GUDs in response to the 321 sidewinder rattlesnake. This coincides with the snake species that each species evolved with. 322 However, this may also reflect the predator to which each of the rodents has individually been 323 exposed to previously since all animals in these experiments were wild-caught. Overall, the 324 325 gerbelline species were willing to take more risk investigating the predators, while the heteromyids preferred to avoid both species. This reluctance to take risk in the heteromyids, 326

Bleicher et al. Interviews | 16

327	suggests an overall greater "respect" to risk posed by snakes, possibly due to their evolution
328	alongside snakes that have heat-sensing capabilities [32].

All four rodents, showed an ability to varying extent, to differentiate between the snake species and to categorize the heat-sensing sidewinder as a greater threat post-exposure. This could be attributed to two explanations. First, the rodents may have learned to identify the musk produced by each species, as kangaroo rats are known to do [36]. Second, given the dark conditions, aimed to highlight the difference between the snakes, the rodents may have been responding most strongly to the sidewinders as they were more active in their cages.

The fur-lined cheek pouches, hypothesized to give the heteromyids an advantage in maximizing harvest, under similar risk conditions, did not appear to function in such a manner in the presence of the snakes [32]. The greater sensitivity of heteromyids to the interaction with the snakes meant that despite having the ability to forage quickly in the presence of the predators, the heteromyids simply avoided these patches resulting in higher giving up densities than their gerbilline counterparts.

Perhaps the most interesting aspect of this comparison was the broader examination of 341 the convergence of the two deserts' rodent and predator communities. Despite the physical and 342 dietary similarities, we found a large number of key differences in the way our four species 343 strategized in response to snake predators. Our experiment shows a tendency of North American 344 345 species to focus on predation risk while the gerbil responses to the caged snakes were more 346 plastic, likely suggesting other elements come to play in addition to snakes in that system. Why 347 are the heteromyids more sensitive to the risk posed by snakes? The only likely explanation is 348 the one that made us choose these systems for comparison, *i.e.* the evolution along-side predators with a lethal weapon-the heat sensing pits. While sidewinders were the clear choice in terms of 349

Bleicher et al. Interviews | 17

physical convergence with the horned vipers, they are only one of 13 species of rattlesnakes that call the Great Basin deserts home, and all possess the infra-red sensory ability [61]. In comparison, there are only five vipers in the Negev and the Sahara, and they all are blind on moonless nights [62]. The high diversity of lethal predators in North America suggests the pressure to manage the risk from snakes has been a lot more important in the evolution of heteromyids. From that importance stems their sensitivity and acuity to the presence and activity patterns of the snakes they encounter.

To conclude we can recapitulate the answers we found to each of our study questions. (1) Middle Eastern gerbils responded less to predation risk posed by snakes than their North American convergent counterparts, kangaroo rats and pocket mice. (2) At first encounter, both kangaroo rats and gerbils recognized the novel snake as a lesser (or equal) risk to that of their familiar snakes. Pocket mice avoided both snakes equally. (3) Post-exposure, gerbils and pocket mice assessed both snake species as similarly dangerous. However, kangaroo rats rank the novel, horned viper as a lesser threat than the known heat-sensing sidewinder.

364

ACKNOWLEDGMENTS

We would like to acknowledge the US-Israel Binational Science Foundation (BSF) for funding this project (BSF-2008163). The permits for this project were obtained from Ben Gurion University of the Negev Ethics in Animal Research Committee (Permit IL-73-11-2009). The permits for animal shipping, handling and experimentation were obtained from the Israel Nature and National Parks Authority (INPA) (permits 2011/38131 and 2012/12524). We would also like to acknowledge the assistance in obtaining the research populations, field work and training of A. Bouskila, P. C. Rosen, D. Burns, J. R. St. Juliana, C. Downs, E. Kiekebusch, S. Summerfield

and I. Hoffmann. We thank. C. Hammond for the illustrations. This is publication number XXX

373 of the Mitrani Department for Desert Ecology.

374		LITERATURE CITED
375 376	1.	Chew RM, Eastlake Chew A. Energy Relationships of the Mammals of a Desert Shrub (<i>Larrea tridentata</i>) Community. Ecol Monogr. 1970;40: 1–21.
377 378	2.	Rosenzweig ML, Winakur J. Population ecology of desert rodent communities : habitats and environmental complexity. Ecology. 1969;50: 558–572.
379 380	3.	Brown JH, Kelt DA, Fox BJ, The S, Naturalist A, December N. Assembly Rules and Competition in Desert Rodents. Am Nat. 2002;160: 815–818.
381 382	4.	Kotler BP. Risk of predation and the structure of desert rodent communities. Ecology. 1984;65: 689–701.
383 384	5.	Brown JS. Desert rodent community structure: A test of four mechanisms of coexistance. Ecol Monogr. 1989;59: 1–20.
385 386 387	6.	Meserve PL, Dickman CR, Kelt D a. Small mammal community structure and dynamics in aridlands: overall patterns and contrasts with Southern Hemispheric systems. J Mammal. 2011;92: 1155–1157. doi:10.1644/11-MAMM-S-186.1
388 389	7.	Mares MA. Desert Rodents, Seed Consumption, and Convergence. Bioscience. 1993;43: 372–379. doi:10.2307/1312045
390 391 392	8.	Houseman GR, Mittelbach GG, Reynolds HL, Gross L. Perturbations Alter Community Convergence , Divergence , and Formation of Multiple Community States. Ecology. 2008;89: 2172–2180.

393	9.	Trontelj P, Blejec A, Fiser C. Ecomorphological convergence of cave communities.
394		Evolution (N Y). 2012;66: 3852–3865. doi:10.1111/j.
395	10.	Wassenaar TD, van Aarde RJ, Pimm SL, Ferreira SM. Community Convergence in
396		Disturbed Subtropical Dune Forests. Ecology. 2005;86: 655-666.
397	11.	Davidson DW, Inouye RS, Brown JH. Granivory in a desert ecosystem: experimental
398		evidence for indirect facilitation of ants by rodents. Ecology. 1982;65: 1780-1786.
399	12.	Brown JH, Munger JC. Experimental manipulation of a desert rodent community : food
400		addition and species removal. Ecology. 1985;66: 1545-1563.
401	13.	Brown JS, Kotler BP, Mitchell WA. Foraging theory, patch use, and the structure of a
402		Negev granivore community. Ecology. 1994;75: 2286–2300.
403	14.	Ori C. Crotalus cerastes. In: Animal Diversity Web [Internet]. 2000. Available:
404		http://animaldiversity.ummz.umich.edu/accounts/Crotalus_cerastes/
405	15.	Anderson I. Cerastes cerastes. In: Animal Diversity Web. [Internet]. 2011. Available:
406		http://animaldiversity.ummz.umich.edu/accounts/Cerastes_cerastes/
407	16.	Brown JS, Kotler BP, Valone TJ. Foraging under Predation: a Comparison of Energetic
408		and Predation Costs in Rodent Communities of the Negev and Sonoran Deserts. Aust J
409		Zool. 1994;42: 435–448.
410	17.	Kotler BP, Brown JS. Environmental heterogeneity and the coexistance fo desert rodents.
411		Annu Rev Ecol Evol Syst. 1988;19: 281–307.
412	18.	Rosenzweig ML, McCord RD. Incumbent replacement: evidence for long-term
413		evolutionary progress. Paleobiology. 1991;17: 202-213.

414	19.	Vincent TL, Brown JS. Evolutionary game theory, natural selection, and Darwinian
415		dynamics. Cambridge, UK: Cambridge University Press; 2005.
416	20.	Wüster W, Peppin L, Pook CE, Walker DE. A nesting of vipers: Phylogeny and historical
417		biogeography of the Viperidae (Squamata: Serpentes). Mol Phylogenet Evol. Elsevier
418		Inc.; 2008;49: 445–59. doi:10.1016/j.ympev.2008.08.019
419	21.	Pappas TC, Motamedi M, Christensen BN. Unique temperature-activated neurons from pit
420		viper thermosensors. Am J Physiol Cell Physiol. 2004;287: C1219-28.
421		doi:10.1152/ajpcell.00040.2004
422	22.	Goodfriend W, Ward D, Subach A. Standard operative temperatures of two desert rodents,
423		Gerbillus allenbyi and Gerbillus pyramidum: The effects of morphology, microhabitat and
424		environmental factors. J Therm Biol. 1991;16: 157-166. doi:10.1016/0306-
425		4565(91)90038-4
426	23.	Lancaster E. Dipodomys merriami. In: Animal Diversity Web [Internet]. 2000. Available:
427		http://animaldiversity.ummz.umich.edu/accounts/Dipodomys_merriami/
428	24.	Chebes L. Cheatodipus penicillatus. In: Animal Diversity Web [Internet]. 2002 [cited 1
429		Jan 2017]. Available: http://animaldiversity.org/accounts/Chaetodipus_penicillatus/
430	25.	Randall J. Species-specific footdrumming in kangaroo rats: Dipodomys ingens, D. deserti,
431		D. spectabilis. Anim Behav. 1997;54: 1167-75. Available:
432		http://www.ncbi.nlm.nih.gov/pubmed/9398370
433	26.	Webber MM, Jezkova T, Rodríguez-Robles JA. Feeding Ecology of Sidewinder
434		Rattlesnakes, Crotalus cerastes (Viperidae). Herpetologica. 2016;72: Herpetologica-D-15-
435		00031. doi:10.1655/Herpetologica-D-15-00031

Bleicher et al. Interviews | 21

436	27.	Bleicher SS. Heat and Humidity Alter Predation Cues in Gerbillus andersoni allebyi. MS
437		Thesis. Ben Gurion University of the Negev. Ben Gurion University of the Negev. 2012.
438	28.	Bleicher SS. Divergent behaviour amid convergent evolution: common garden
439		experiments with desert rodents and vipers. Ph.D. Disertation, University of Illinois.
440		University of Illinois at Chicago. 2014.
441	29.	Bleicher SS, Dickman CR. Bust economics: foragers choose high quality habitats in lean
442		times. PeerJ. 2016;1: 1-15. doi:10.7717/peerj.1609
443	30.	Bleicher SS, Brown JS, Embar K, Kotler BP. Novel predator recognition by Allenby's
444		gerbil (Gerbillus andersoni allenbyi): do gerbils learn to respond to a snake that can "see"
445		in the dark? Isr J Ecol Evol. 2016;62: 178–185. doi:10.1080/15659801.2016.1176614
446	31.	Brown JS. Patch use as an indicator of habitat preference, predation risk, and competition.
447		Behav Ecol Sociobiol. 1988;22: 37-47. doi:10.1007/BF00395696
448	32.	Kotler BP, Brown JS, Bleicher SS, Embar K. Intercontinental-wide consequences of
449		compromise-breaking adaptations: the case of desert rodents. Isr J Ecol Evol. 2016;62:
450		186–195.
451	33.	Thompson SD. Microhabitat Utilization and Foraging Behavior of Bipedal and
452		Quadrupedal Hetermoyid Rodents. Ecology. 1982;63: 1303-1312.
453	34.	Kotler BP, Brown JS, Smith RJ, Wirtz WOI. The effects of morphology and body size on
454		rates of owl predation on desert rodents. Oikos. 1988;53: 145-152.
455	35.	Lemen CA, Rosenzweig ML. Microhabitat Selection in Two Species of Heteromyid
456		Rodents. Oecologia. 1978;33: 127-135.

457	36.	Bouskila A. Interactions between predation risk and competition : a field study of
458		kangaroo rats and snakes. Ecology. 1995;76: 165-178.
459	37.	Bartholomew GA, Caswell HHJ. Locomotion in Kangaroo Rats and Its Adaptive
460		Significance. J Mamm Evol. 1951;32: 155–169.
461	38.	Randall JA, Stevens CM. Footdrumming and Other Anti-Predator Responses in the
462		Bannertail Kangaroo Rat (Dipodomys spectabilis). Behav Ecol Sociobiol. 1987;20: 187-
463		194.
464	39.	Clark RW, Dorr SW, Whitford MD, Freymiller GA, Hein SR. Comparison of antisnake
465		displays in the sympatric desert rodents Xerospermophilus tereticaudus (round-tailed
466		ground squirrels) and <i>Dipodomys deserti</i> (desert kangaroo rats). J Mammal. 2016;97: 1-9.
467		doi:10.1093/jmammal/gyw137
468	40.	Merlin P. Heteromyidae: Kangaroo Rats & Pocket Mice. In: Arizona-Sonora Desert
469		Museum [Internet]. 2014 [cited 6 Jan 2017]. Available:
470		https://www.desertmuseum.org/books/nhsd_heteromyidae.php
471	41.	Webster DB, Webster M. The specialized auditory system of kangaroo rats. Contrib Sens
472		Physiol. 1984;8: 161–196.
473	42.	Longland WS, Price M V. Direct observations of owls and heteromyid rodents : Can
474		predation risk explain microhabitat use? Ecology. 1991;72: 2261–2273.
475	43.	Rosenzweig ML. Habitat selection experiments with a pair of coexisting Heteromyid
476		rodent species. Ecology. 1973;54: 111-117.
477	44.	Kotler BP, Brown JS, Oldfield A, Thorson J, Cohen D. Foraging substrate and escape

Bleicher et al. Interviews | 23

478		substrate: patch use by three species of gerbils. Ecology. 2001;82: 1781–1790.
479		doi:10.1890/0012-9658(2001)082[1781:FSAESP]2.0.CO;2
480	45.	Abramsky Z, Rosenzweig ML, Pinshow B. The shape of a gerbil iosocline measured using
481		principles of optimal habitat selection. Ecology. 1991;72: 329-340.
482	46.	Kotler BP, Brown JS, Mitchell WA. Environmental factors affecting patch use in two
483		species of gerbelline rodents. J Mammal. 1993;74: 614-620. doi:10.2307/1382281
484	47.	Kotler BP, Brown JS, Subach A. temporal foragers : of optimal coexistence of species
485		mechanisms of sand dune gerbils by two species partitioning. Oikos. 1993; 548-556.
486	48.	Kotler BP, Brown JS, Dall SRX, Gresser S, Ganey D, Bouskila A. Foraging games
487		between gerbils and their predators : temporal dynamics of resource depletion and
488		apprehension in gerbils. Evol Ecol Res. 2002;4: 495–518.
489	49.	Embar K, Kotler BP, Mukherjee S. Risk management in optimal foragers: the effect of
490		sightlines and predator type on patch use, time allocation, and vigilance in gerbils. Oikos.
491		2011;120: 1657–1666. doi:10.1111/j.1600-0706.2011.19278.x
492	50.	Abramsky Z, Strauss E, Subach A, Riechman A, Kotler BP. The effect of barn owls (Tyto
493		alba) on the activity and microhabitat selection of Gerbillus allenbyi and G. pyramidum.
494		Oecologia. 1996;105: 313-319. doi:10.1007/BF00328733
495	51.	Kotler BP, Brown JS, Slotow RH, Goodfriend WL, Strauss M. The influence of snakes on
496		the foraging behavior of gerbils. Oikos. 1993;67: 309-316.
497	52.	Kotler BP, Blaustein L, Dednam H. The specter of predation: the effects of vipers on the

foraging behavior of two Gerbilline rodents. Isr J Zool. 1993;39: 11–21.

Bleicher et al. Interviews | 24

doi:10.1080/00212210.1993.10688690

- 53. Berger-Tal O, Embar K, Kotler BP, Saltz D. Everybody loses : intraspecific competition
 induces tragedy of the commons in Allenby 's gerbils. Ecology. 2015;96: 54–61.
- 502 54. Ovadia O, Abramsky Z, Kotler BP, Pinshow B. Inter-specific competitors reduce inter-
- 503 gender competition in Negev Desert gerbils. Oecologia. 2005;142: 480–8.
- 504 doi:10.1007/s00442-004-1726-9
- 505 55. Abramsky Z, Rosenzweig ML, Subach A. The cost of interspecific competition in two
 506 gerbil species. J Anim Ecol. 2001;70: 561–567.
- 507 56. Embar K, Raveh A, Hoffmann I, Kotler BP. Predator facilitation or interference: a game
- of vipers and owls. Oecologia. 2014;174: 1301–9. doi:10.1007/s00442-013-2760-2
- 509 57. Bevins RA, Besheer J, Palmatier MI, Jensen HC, Pickett KS, Eurek S. Novel-object place
- 510 conditioning: Behavioral and dopaminergic processes in expression of novelty reward.
- 511 Behav Brain Res. 2002;129: 41–50. doi:10.1016/S0166-4328(01)00326-6
- 512 58. Weiss C, Disterhoft JF. Eyeblink conditioning and novel object recognition in the rabbit:
- 513 Behavioral paradigms for assaying psychiatric diseases. Front Psychiatry. 2015;6: 1–9.
- 514 doi:10.3389/fpsyt.2015.00142
- 515 59. Carthey AJR, Banks PB. Naïveté in novel ecological interactions: lessons from theory and
 516 experimental evidence. Biol Rev Camb Philos Soc. 2014;89: 932–49.
- 517 doi:10.1111/brv.12087
- 518 60. Banks PB, Dickman CR. Alien predation and the effects on multiple levels of prey naivite.
 519 Trends Ecol Evol. 2007;22: 229–230. doi:10.1016/j.tree.2007.02.003

520	61.	Fowlie JA. The snakes of Arizona, their derivation, distribution, description, and habits; a
521		study in evolutionary herpetozoogeographic phylogenetic ecology. Fallbrook, CA: Azul
522		Quinta Press; 1965.
523	62.	Joger U. The venomous snakes of the Near and Middle East. Wiesbaden: L. Reichert;

524 1984.

525

527 **Table 1.** Log-Linear Analyses for all species combined (A) and each species separately (B-E)

Var 1	Var 2	G2	Df	Р
Table 1A Log-Line	ear Analysis Combin	ing All Small Mam	mals	
Species		9.46	3	0.024
Snake Treatment		40.28	2	< 0.001
Snake Treatment	Species	80.76	17	< 0.001
Species	(Snake Treatment)	32.48	9	0.002
Table 1B. Log-Lin	ear Analysis for Poc	ket Mice (<i>C. penicill</i>	latus)	
Snake Treatment		31.4	2	< 0.001
Sequence		0.02	1	0.888
Snake Treatment	(Sequence)	33.22	4	< 0.001
Table 1B. Log-Lin	ear Analysis for Kar	igaroo Rats (<i>D. mer</i>	riami)	
Snake Treatment		16.58	2	0.003
Sequence		0.02	1	0.99
Snake Treatment	(Sequence)	19.72	4	0.001
Table 1C. Log-Lin	ear Analysis for Alle	enby's Gerbils (G.a.	allenbyi)	
Snake Treatment		18	2	0.001
Sequence		0	1	1
Snake Treatment	(Sequence)	18.9	4	0.001
Table 1D. Log-Lin	ear Analysis for Gre	ater Egyptian Gerb	ils (G. pyramidum)	
Snake Treatment		5.34	2	0.07
Sequence		0.02	1	0.99
Snake Treatment	(Sequence)	11.6	4	0.021

528 Variables: Species (GA, GP, CP, DM), Snake Treatment (Horned-Viper, Sidewinder, Control), Sequence

529 (Pre-, Post-Exposure)

530

Bleicher et al. Interviews | 27

- 532 Table 2. ANOVA Tables for General Linear Models for all species combined (A) and each species
- 533 separately (B-E)

Var.1	Var.2 Va	ar.3	Type III SS	df	Mean Squares	F- Ratio	p- Value		
Table 2A. ANOVA Table for all four species N=582, Multiple R ² =0.346									
Species			0.591	3	0.197	2.741	0.043		
Sequence			0.007	1	0.007	0.091	0.762		
Snake Treatment			1.967	2	0.984	13.691	< 0.001		
Species	* Sequence		0.165	3	0.055	0.766	0.513		
Snake Treatment	* Sequence		0.793	2	0.397	5.52	0.004		
Species	*Snake Treatment		0.973	6	0.162	2.256	0.037		
Snake Treatment	* Sequence *Sp	ecies	0.305	6	0.051	0.708	0.643		
Error			40.093	558	0.072				
Table 2B. ANOVA table for Desert Pocket Mouse (C. penicillatus) N=141, Multiple R ² =0.324							24		
Sequence			0.001	1	0.001	0.03	0.863		
Snake Treatment			0.584	2	0.292	6.16	0.003		
Snake Treatment	* Sequence		0.026	2	0.013	0.272	0.762		
Error	•		6.404	135	0.047				
Table 2C. ANOV	A table for Allenby's gerbil (C	G. ande	rsoni all	enbyi) N	=210, Multi	ple R ² =.2	225		
Sequence			0.018	1	0.018	0.164	0.686		
Snake Treatment			0.719	2	0.359	3.276	0.04		
Snake Treatment	* Sequence		0.242	2	0.121	1.102	0.334		
Error	1		22.383	204	0.11				
Table 2D. ANOVA	A table for Greater Egyptian	Gerbil	(G. pyra	amidum)	N=104, Mu	ltiple R ²	=.460		
Sequence			0.008	1	0.008	0.146	0.703		
Snake Treatment			0.79	2	0.395	6.926	0.002		
Snake Treatment	* Sequence		0.695	2	0.347	6.091	0.003		
Error	1		5.476	96	0.057				
Table 2E. ANOVA	A table for Merriam's Kangar	roo Rat	t (D mer	riami) N	=129, Multi	ple R ² =.4	106		
Sequence			0.138	1	0.138	2.912	0.09		
Snake Treatment			0.891	2	0.446	9.4	< 0.001		
Snake Treatment	* Sequence		0.162	2	0.081	1.709	0.185		
Error	1		5.83	123	0.047				

534 Variables: Species (GA, GP, CP, DM), Snake Treatment (Horned-Viper, Sidewinder, Control), Sequence

535 (Pre-, Post-Exposure)

Bleicher et al. Interviews | 28

537

Figure Legends

Fig 1. Giving-up densities (GUDs) ±SE combined for all four rodent species pre- and postexposure.

Fig 2. Cumulative proportion (active/total per treatment) of active foraging trays pre- (A) and
post-exposure (B). "N" represents the novel snake treatment for each species. Black, gray and
white bars represent sidewinder rattlesnakes, Saharan horned vipers and snake-less treatments

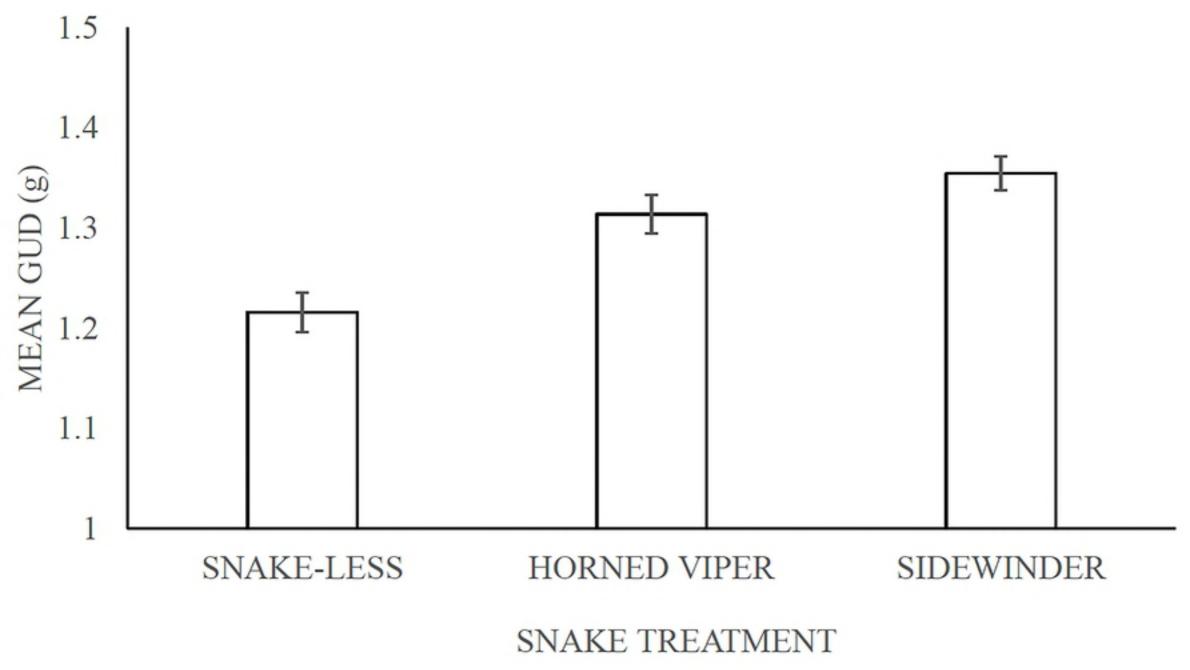
543 respectively.

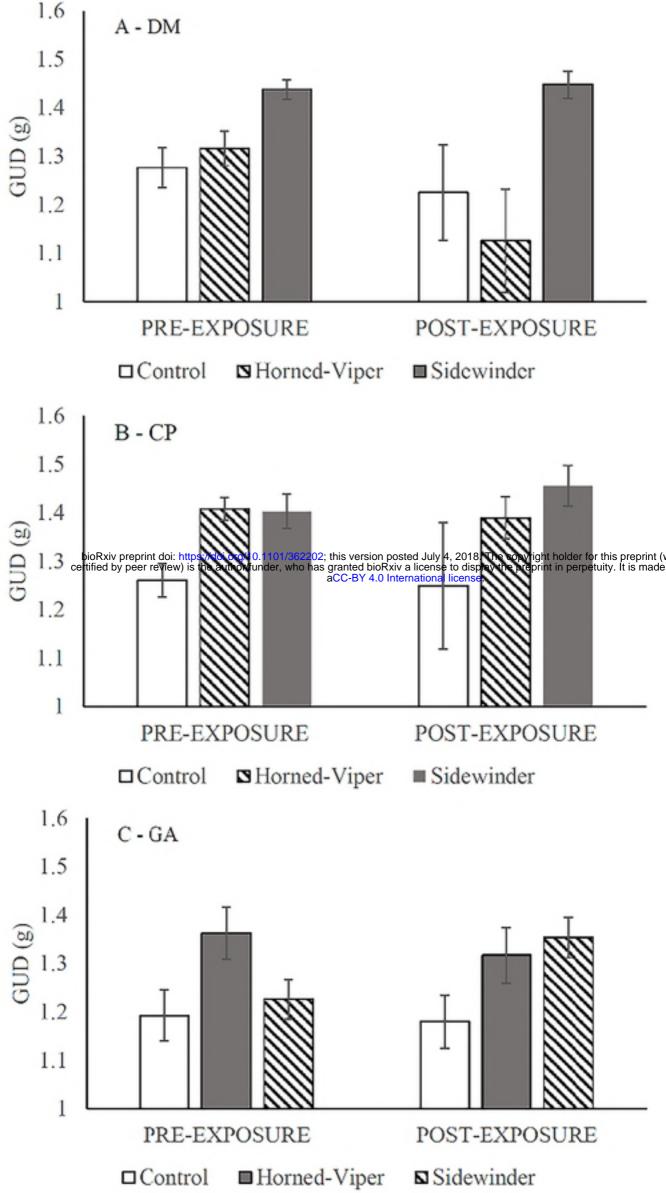
544 Fig 3. Perception of risk of familiar and novel snakes, in pre- and post-exposure interviews, as

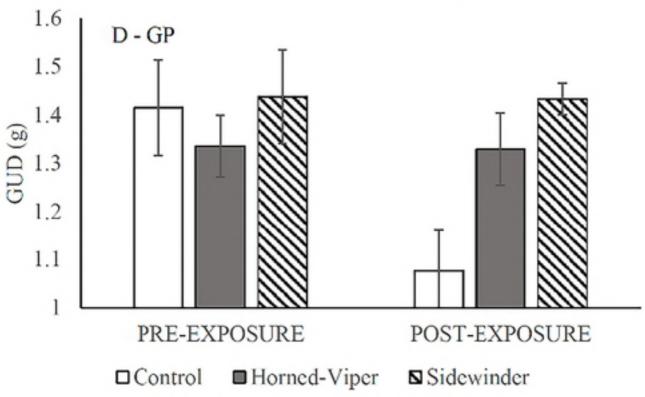
reflected by giving-up densities (GUDs) ±SE. Each frame subfigure depicts the response of one

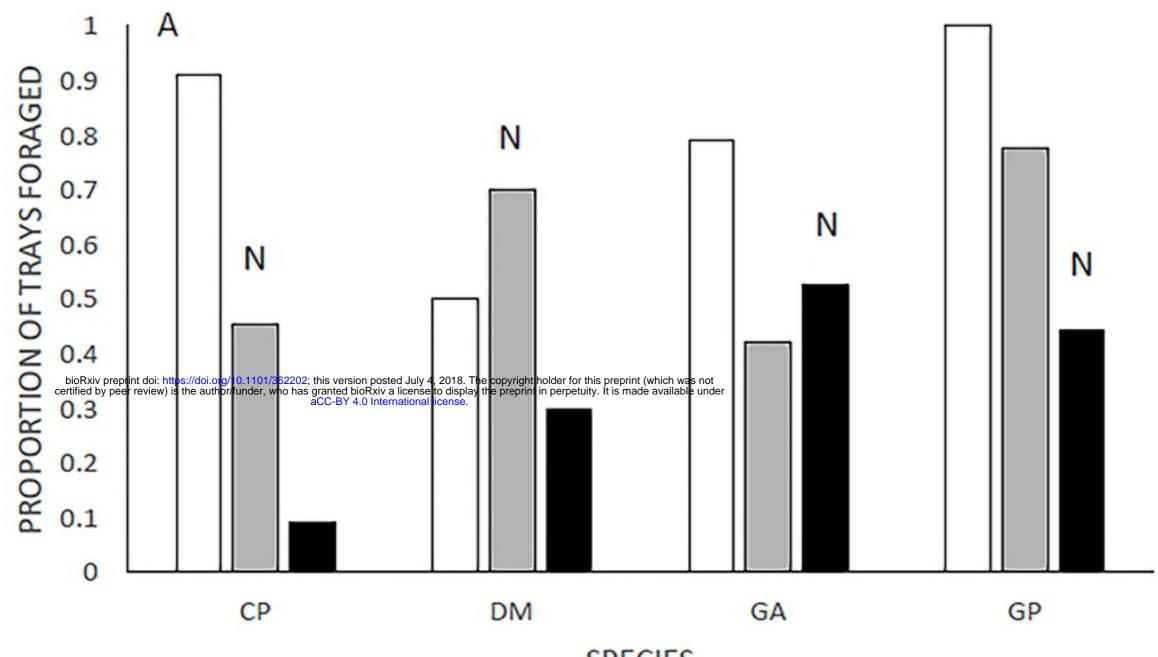
546 species: (A) DM, (B) CP, (C) GA and (D) GP. The rodents were exposed to Saharan horned

547 vipers from the Negev and sidewinder rattlesnakes from the Mojave. In each frame the diagonal


548 striped bar reflects the snake that is evolutionarily novel, the gray bar is the known snake and the


549 white bar is the snake-less control.


550 Fig 4. Random-Forest Decision-Tree with GUD as the dependent variable and species, snake-


treatment and sequence as the independent variables. The figure is read from left to right with

greater value to the initial nodes (left) than to final nodes marked with a bold outline.

