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Abstract 

High yield is an important objective of cell factory. One or several genes cloned into the 

bacterial may make the synthetic pathway much more optimal, so can increase the yield. But the 

global benefit enzymes are rare, which can increase the yields of many chemical products for a cell 

factory such as E.coli. Two of these kinds of global benefit enzymes are the famous enzymes, 

D-fructose-6-phosphate D-erythrose-4-phosphate-lyase and D-Xylulose 5-phosphate 

D-glyceraldehyde-3-phosphate-lyase, of non-oxidative glycolysis (NOG) published in Nature, which 

can improve the utilization ratio of carbon. We expect to find other global benefit enzymes. We use 

an integrated model, which integrated in silico model of E.coli and KEGG. By computation, we 

analyze the effect of adding each reaction from KEGG on the theoretical yields of several products 

with E.coli and find about 80 enzymes that may be potentially global benefit enzymes. By 

comparison, we find many of the 80 enzymes are better in improving the theoretical yields than the 

two enzymes of NOG.  

In order to compare the global benefit enzymes with NOG, as an example, we select 

“Glycerol:NADP+ oxidoreductase” (GNO) which can increase the supply of NADPH in E.coli. But To 

increase the supply of reducing power, such as NADPH will probably increase the yield of chemicals 

in a cell factory. We use flux balance analysis method to testify our assumption. By comparing the 

maximum yields of 80 products produced by E.coli with respectively using GNO and NOG, we find 

GNO has better performance in the product production of E.coli. So GNO is a global benefit enzyme 

which can increase the yields of many chemical products in E.coli. 
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Introduction 

Synthetic biology has developed rapidly in recent years and the construction of cell factory is 

one of the main tasks of synthetic biology. For microorganisms to produce a variety of chemicals, 

cell factories have greatly improved industrial bio-economy. The construction of synthetic pathway 

is the key aspect for the development of cell factories. If a bacterial can’t produce a chemical 

natively, some genes should be cloned into the bacterial and make it can produce the chemical. 

High yield is an important objective of cell factories. Gene knockout and overexpression are two 
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ways to increase the yields of cell factories. Sometimes, we may clone one or several genes into the 

bacterial and this will make the synthetic pathway much more optimal, so can increase the yield as 

well. But the global benefit enzymes are rare, which can increase the yields of many chemical 

products for a cell factory such as E.coli. The famous global benefit enzyme is the non-oxidative 

glycolysis (termed NOG) that was found by James Liao group in the year 2013 and published in 

Nature [1], which can improve the utilization ratio of carbon. One enzyme name of NOG is 

D-fructose-6-phosphate D-erythrose-4-phosphate-lyase, its reaction formula is “D-Fructose 

6-phosphate + Orthophosphate <=> Acetyl phosphate + D-Erythrose 4-phosphate + H2O” and its 

KEGG id is R00761; another enzyme name of NOG is “D-Xylulose 5-phosphate 

D-glyceraldehyde-3-phosphate-lyase”, its reaction formula is ”D-Xylulose 5-phosphate + 

Orthophosphate <=> Acetyl phosphate + D-Glyceraldehyde 3-phosphate + H2O” and its KEGG id is 

R01621. KEGG (Kyoto Encyclopedia of Genes and Genomes) is a database resource for 

understanding high-level functions and utilities of the biological system [2]. NOG can increase the 

yields of many chemical products produced by E.coli.  

We expect to find other global benefit enzymes and we utilize the computational method. 

Computation biology has been used as testification method widely. We use an integrated model, 

which integrated in silico model of E.coli and KEGG [3]. By computation, we analyze the effect of 

adding each reaction from KEGG on the theoretical yields of several products and find about 80 

enzymes that are potentially global benefit enzymes. By comparison, we find many of the 80 

enzymes are better in improving the theoretical yields than NOG.  

As we know, to increase the supply of, such as NADPH, will probably increase the yields of 

chemicals. In order to compare the global benefit enzymes with NOG, as an example, we select the 

enzyme, “Glycerol:NADP+ oxidoreductase” (termed GNO) from the 80 enzymes, its KEGG id is 

R01041, its reaction formula is “Glycerol + NADP+ <=> D-Glyceraldehyde + NADPH + H+”, and we 

make our test in this study. We have compared the maximum yields of 80 products produced by 

E.coli respectively using GNO and NOG. 

 

Methods 

About 80 enzymes that are potentially global benefit enzymes 

    An integrated model [3] was used, which integrated in silico model of E.coli and KEGG. The 

reactions from KEGG that added to E.coli model were balance checked and reversibility checked. 

There were 4733 reactions that were added to the E.coli model. When we used one reaction from 

KEGG, the up/low flux bounds were not constrained, while the flux bounds of other reactions were 

set to zero. So it is equivalent to add one reaction to E.coli every time. 

E.coli can produce many chemicals, and here we did not calculate all the yields of them. We 

choose Acetate (Ace), L-Glutamate (Glu), L-Lysine (Lys), L-Threonine (Thr), Succinate (Suc), Formate 

(For) as the representatives. 

Firstly, we calculated the growth rate (Grw) and the theoretical yields of above 6 chemicals 

with wild-type E.coli. The following constraints were applied, when we did the calculation: glucose 

consumption rate was -10 mmol g-1(Dw)h-1; there was no constraint for oxygen consumption rate. 

The FBA (flux balance analysis) calculation was carried out by COBRA Toolbox [4] with a loopless 

function which eliminates all steady-state flux solutions that are incompatible with the loop-law [5]. 

The optimization solver is Gurobi. The growth rate and the theoretical yields were calculated by 
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setting the corresponding flux as objectives of FBA model. 

       Max 𝑣𝑗   (j respectively equals to the reaction number of Grw, Ace, Glu, Lys, Thr, Suc, For) 

S ∙ v = 0     (S is the stoichiometric matrix of 𝐸. 𝑐𝑜𝑙𝑖 model iOJ1366) 

          α𝑖 ≤ v𝑖 ≤ β𝑖    (α𝑖  and β𝑖  are the bounds of flux v𝑖 of i-th reaction) 

Secondly, we calculated the growth rate and the theoretical yields of above 6 chemicals with 

E.coli but added one reaction every time. That is to say, when we used one reaction from KEGG, the 

up/low flux bounds were not constrained, while the flux bounds of other reactions were set to zero. 

The computational condition was the same as above. 

       Max 𝑣′𝑗   (j respectively equals to the reaction number of Grw, Ace, Glu, Lys, Thr, Suc, For)  

S′ ∙ v′ = 0    (S′is the stoichiometric matrix of an integrated model of 𝐸. 𝑐𝑜𝑙𝑖 and KEGG) 

           α′𝑖 ≤ v′𝑖 ≤ β′𝑖    (α′𝑖  and β′𝑖  are the bounds of flux v′𝑖 of i-th reaction) 

                                  0 ≤ v′𝑘 ≤ 0       ( if 𝑘 ≥ 2584, and the k-th reaction is not the added reaction) 

The example of GNO (Glycerol:NADP+ oxidoreductase) 

   In order to compare the impact of GNO and NOG for the products of E.coli, we add both 

reactions to the model iAF_1260 of E.coli [6]. In iAF_1260, there are about 300 exchange reactions, 

we calculate the maximum yield of each product with FBA (flux balance analysis) method, which 

has been described in Ref [7]. Here we use the exchange reaction as the objective but not the 

biomass (growth). The following constraints were applied, when we do the calculation: glucose 

consumption rate is 10 mmol g-1(Dw)h-1; there is no constraint for oxygen consumption rate. The 

FBA calculation was carried out with COBRA Toolbox [4]. Many of the exchange reactions take no 

flux, while about 80 exchange reactions have fluxes, i.e. E.coli may produce about 80 products 

actually according to the model of iAF_1260.  

   We first add NOG (R00761) into the iAF_1260 model and calculate, one by one, the maximum 

yields of all the 80 products which E.coli may produce actually. Then, we add GNO into the 

iAF_1260 model and calculate the maximum yields of all the 80 products with the same method. 

We compare GNO and NOG, and hope to find out which will get a larger number with higher yields. 

We classify the result into three groups, i.e. “NOG is better” (product yields are higher when adding 

NOG), “GNO is better” (product yields are higher when adding GNO) and “No significant difference 

between NOG and GNO” (product yields are nearer when adding NOG or GNO).  

 

Results and Discussion 

About 80 enzymes that are potentially global benefit enzymes 

The growth rate and the theoretical yields of 6 chemicals, i.e. Acetate (Ace), L-Glutamate (Glu), 

L-Lysine (Lys), L-Threonine (Thr), Succinate (Suc), Formate (For), were obtained with wild-type E.coli 

and with E.coli but added one reaction every time (4733 cases in total). In order to find which 

reactions added would make the theoretical yields of 6 chemicals improved, if any one of the 6 

theoretical yields of E.coli (added one reaction every time) is larger than (1.01 times) the 

corresponding value of wild-type E.coli, we select out the enzyme (reaction), and we get 83 

enzymes (reactions) in total. We list them in Table 1 with descending order in Ace and Glu yield 

values. The whole names and equations of these reactions are illustrated in Supplementary Table 

S1. These 83 enzymes are enzymes that have potential ability to improve the theoretical yields of 

some chemical products in E.coli. 

Among these 83 enzymes, many can get Acetate yield to 3.0 (wild-type E.coli is 2.9), 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/362269doi: bioRxiv preprint 

https://doi.org/10.1101/362269


L-Glutamate yield to 1.33 (wild-type E.coli is 1.19), L-Lysine yield to 0.86 (wild-type E.coli is 0.78), 

L-Threonine yield to 1.5 (wild-type E.coli is 1.28), and Formate yield to 12 (wild-type E.coli is 10.3), 

but the yield of Succinate was not improved significantly. Many can improve the growth of the cell 

as well and the growth rate can get to 1.38, while the growth rate of wild-type E.coli is 0.98.  

Two reactions of NOG, R00761 and R01621, are on the list of Table 1. But they are not the best 

in improving the yields of products and they are just at the average level of improving the yields of 

L-Glutamate, L-Lysine, L-Threonine, and Formate. Among these about 80 enzymes, many have 

better performance in improving the product yields with E.coli than the two reactions of NOG.   

But the first two reactions, R07409 and R00790, have seemingly abnormal values in yields 

improved. We checked the reason and it may lie in the reversibility of the two reactions. We list all 

the fluxes through the added reactions when calculating the yields of the six chemicals, in 

Supplementary Table S2, following on the column of the yield of the corresponding chemicals. By 

comparing the direction of every added reaction, the flux through the reaction and the property of 

the reaction, we marked all the possible error of reversibility of added reactions in the column Rev 

with red color in Supplementary Table S2. The property of the reactions we mention here refer to 

CO2 and H2O as metabolites in the reactions, and it is not easy for CO2 and H2O to be decomposed 

in vivo. Although the reaction directions of these added reactions were checked in Ref [3], the 

reversibility quality of marked reaction may result in wrong calculations for improving yields. 

Global benefit enzymes which can increase the theoretical yields of many chemical products 

for cell factories are what we want. NOG is one of them. In this study, by computation method, we 

find many other global benefit enzymes, which can increase the theoretical yields of some chemical 

products in E.coli. Especially, some of these global benefit enzymes are better than NOG in many 

products from the comparison result above. For the number of these global benefit enzymes we 

find is large, it is not possible to give testification with experiments. Computation method has been 

used as testification method widely. We think these global benefit enzymes we find will be 

potentially effective. 

The example of GNO (Glycerol:NADP+ oxidoreductase) 

We add NOG (R00761) into the iAF_1260 model and calculate, one by one, the maximum 

yields of all the 80 products which E.coli may produce actually. Then we add GNO into the iAF_1260 

model and calculate the maximum yields of all the 80 products with the same method. The 

maximum yields of E.coli for wild-type were listed as a comparison. From the yields of 80 products, 

we find that all of them are higher than wild-type when adding with GNO, so GNO is also a global 

benefit enzyme. We classify the result into three groups, i.e. “NOG is better”, “GNO is better” and 

“No significant difference between NOG and GNO”. “NOG is better” of 30 products was shown in 

Table 2, “GNO is better” of 43 products was shown in Table 3, and “No significant difference 

between NOG and GNO” of 7 products was shown in Table 4. GNO gets 43 products better than 

NOG, while NOG gets 30 better than GNO, so GNO has better performance in the product 

production of E.coli. 

   Global benefit enzymes which can increase the theoretical yields of many chemical products for 

cell factories are our hope. NOG is one of them. In this study, we find another global benefit 

enzyme, GNO, which can increase the theoretical yields of 80 chemical products in E.coli. Especially, 

GNO is better than NOG in many products from the comparison result above. GNO is an enzyme 

related to NADPH production. NADPH is an important cofactor in the construction of cell factory. 

The cofactor optimization will increase the supply of reducing power, so increase the theoretical 
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yields. 
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Table 1. Reactions that have potential ability to improve the theoretical yields of some chemical products in E.coli.  

No. KEGG id Rev Growth Ace Glu Lys Thr Suc For 

 Wild_Type 0.982371813 29.09347 11.93731959 7.832592593 12.85294 17.09643 103.74 

1 R07409 rev 6.664134773 207.9191176 80.3323863 60.94181034 98.18402777 132.9534588 1000 

2 R00790 rev 6.677312281 195.8289141 76.02769607 56.43977435 93.8123188 118.033866 1000 

3 R00659 rev 1.384066012 29.99999999 13.33333334 8.571427526 14.99999817 17.1428571 119.9999853 

4 R00206 rev 1.384066012 30 13.33333333 8.571428572 14.99999999 17.14285714 120 

5 R02537 rev 1.384066012 29.99999999 13.33333333 8.571428572 14.99999996 17.14285714 120 

6 R01050 rev 1.384066012 30 13.33333333 8.571428568 14.99999999 17.14285714 120 

7 R00709 rev 1.384066012 29.99999999 13.33333333 8.571427526 14.99999999 17.14285714 119.9999997 

8 R00149 rev 1.384066012 29.99999993 13.33333333 8.571428571 14.99999817 17.14285714 119.9999938 

9 R00224 rev 1.384066012 29.99999634 13.33333333 8.571427526 14.99999817 17.1428571 120 

10 R08515 rev 1.384066012 29.99999999 13.33333333 8.571428573 14.99999998 17.14285714 120 

11 R01224 rev 1.384066012 29.99999993 13.33333333 8.571427526 15 17.14285714 119.9999999 

12 R00572 rev 1.384066012 29.99999993 13.33333333 8.571428568 15 17.14285714 120 

13 R03004 rev 1.38406594 29.99999999 13.33333333 8.571428568 14.99999996 17.14285714 120 

14 R02301 rev 1.384066012 29.99999993 13.33333333 8.571428551 14.99999997 17.14285506 119.9999854 

15 R02145 rev 1.384066012 29.99999993 13.33333333 8.571428568 14.99999998 17.14285714 120 

16 R07159 rev 1.384066012 30 13.3333333 8.571428558 14.99999817 17.1428571 119.9999938 

17 R01138 rev 1.384066012 29.99999999 13.3333333 8.571428572 15 17.14285506 120 

18 R00397 rev 1.384066012 29.99999999 13.3333333 8.571427525 14.99999996 17.14285714 120 

19 R07758 rev 1.384066012 29.99999844 13.33333264 8.571427526 14.99999922 17.14285714 120 

20 R00724 rev 1.384066012 29.99999634 13.33333264 8.571428572 14.99999999 17.14285506 119.999998 

21 R06846 rev 1.384066014 29.99999999 13.33333264 8.571427526 14.99999922 17.14285714 120 

22 R00430 rev 1.384066012 30 13.33333264 8.571428572 14.99999996 17.14285714 120 
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23 R00885 rev 1.384066012 29.99999999 13.33333264 8.571428569 14.99999996 17.14285714 120 

24 R00522 rev 1.384065939 29.99999866 13.33333171 8.571428558 15 17.14285714 120 

25 R01858 rev 1.384066012 29.99999993 13.33333171 8.571428572 15 17.1428571 120 

26 R00126 rev 1.384066012 29.99999999 13.33333171 8.571428127 14.99999996 17.14285714 119.9999938 

27 R00502 rev 1.384066012 30 13.33333171 8.571427526 14.99999998 17.14285714 119.9999854 

28 R01217 rev 1.384066012 29.99999993 13.33333171 8.571428551 14.99999999 17.14285714 119.9999938 

29 R01197 rev 0.990497673 29.99999999 13.18947364 7.832592566 12.89512102 17.1428571 104.7399999 

30 R00265 rev 0.982371813 30 13.07297072 7.832592429 12.855813 17.09642857 104.7399999 

31 R01621 irr 0.982371813 29.99999999 12.43333327 7.832592593 12.85294118 17.09642857 103.7399925 

32 R00761 irr 0.982371813 29.99999999 12.4333314 7.832592593 12.85294118 17.09642563 103.7399997 

33 R01817 rev 0.989631556 29.99999999 12.20776699 8.135087691 13.44057741 17.09642856 109.7999999 

34 R00834 rev 0.989631483 29.99999844 12.20776699 8.135086327 13.4405797 17.09642851 109.8 

35 R07164 rev 0.989631556 29.99999634 12.20776699 8.13508769 13.44057741 17.09642567 109.8 

36 R01063 rev 0.989631556 29.99999634 12.20776699 8.135086328 -7.48113E-10 17.09642567 109.7999999 

37 R09281 rev 0.989631557 29.99999993 12.20776699 8.135086328 13.4405797 17.09642857 109.8 

38 R01434 rev 0.989631556 29.99999844 12.20776699 8.135087715 13.44057966 17.09642857 109.7999997 

39 R07140 rev 0.989631557 29.99999634 12.20776699 8.135087719 13.44057971 17.09642732 109.7999999 

40 R01976 rev 0.989631556 29.99999999 12.20776699 8.135087719 13.4405797 17.09642851 109.7999997 

41 R00978 rev 0.989631556 30 12.20776699 8.135087719 13.44057966 17.09642856 109.8 

42 R01218 rev 0.989631556 29.99999634 12.20776699 8.135087719 13.44057971 17.09642567 109.8 

43 R00396 rev 0.989631556 29.99999999 12.20776699 8.135087118 13.44057971 17.09642856 109.8 

44 R00094 rev 0.989631556 30 12.20776698 8.135087719 13.44057966 17.09642857 109.7999997 

45 R00688 rev 0.989631556 29.99999993 12.20776698 8.135087691 13.44057952 17.09642567 109.7999831 

46 R01738 rev 0.989631556 29.99999999 12.20776698 8.135087691 13.44057971 17.09642567 109.7999997 

47 R00343 rev 0.989631556 29.99999999 12.20776698 8.135087719 13.44057741 17.09642567 106.2428406 
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48 R01747 rev 0.989631556 29.99999999 12.20776698 8.135087715 13.44057741 17.09642856 109.8 

49 R00746 rev 0.989631556 29.99999634 12.20776698 8.135087718 13.44057741 17.09642851 109.8 

50 R01773 rev 0.989631556 29.99999999 12.20776696 8.135087719 13.44057966 17.09642856 109.7999999 

51 R02196 rev 0.989631558 29.99999993 12.20776695 8.135086327 13.4405797 17.09642857 109.7999997 

52 R00936 rev 0.989631556 29.99999634 12.20776695 8.135087691 13.4405797 17.09642851 109.8 

53 R00243 rev 0.989631483 29.99999999 12.20776695 8.135086328 13.44057966 17.09642732 109.8 

54 R02259 rev 0.989631556 29.99999999 12.20776695 8.135087719 13.44057741 17.09642732 109.7999999 

55 R00842 rev 0.989631556 30 12.20776616 8.135087715 13.2254545 17.09642857 109.8 

56 R06847 rev 0.989631557 29.99999999 12.20776506 8.135087715 13.44057971 17.09642857 109.8 

57 R02577 rev 0.989631556 29.99999993 12.20776506 8.135087716 13.44057971 17.09642857 109.7999999 

58 R07759 rev 0.989631556 29.99999993 12.20776506 8.13508761 13.44057971 17.09642732 109.7999999 

59 R01041 rev 0.989631556 29.99999999 12.20776506 8.135087719 13.4405797 17.09642851 109.7999999 

60 R00848 rev 0.989631556 30 12.20776505 8.135087722 13.4405797 17.09642857 109.7999997 

61 R02165 rev 1.039574999 29.99999993 12.11777379 7.959509177 13.22742642 17.14285714 118.4249999 

62 R02965 rev 1.039574999 29.99999993 12.11777378 7.959509202 13.22742857 17.1428571 100.4357064 

63 R01058 rev 1.384066012 29.99999999 9.999999982 8.571428127 14.99999999 17.14285714 119.9999938 

64 R02639 rev 0.989631556 29.99999999 0 8.135087719 13.44057971 17.09642567 109.7999996 

65 R00726 rev 0.996797059 29.94347826 12.52181818 8.133846106 13.55641026 17.14285714 104.7399999 

66 R00346 rev 0.996797059 29.94347824 12.52181734 8.133844799 13.55641026 17.14285506 104.7399827 

67 R00431 rev 0.996796986 29.94347359 12.52181818 8.133846105 13.55641025 17.14285714 104.7399926 

68 R01967 rev 0.982371813 29.75294109 12.10151515 7.832591264 12.02916666 17.09642857 103.7399999 

69 R02089 rev 0.982371813 29.75294109 12.10151515 7.832592587 12.85294117 17.09642857 103.7399999 

70 R01010 rev 1.013832283 29.73749991 12.24705882 8.011023618 13.04358974 17.14285506 104.3090909 

71 R01059 rev 0.982371813 29.71363635 12.04864865 7.895 12.93783784 17.09642856 106.7399924 

72 R07417 rev 0.982371813 29.71363635 12.04864861 7.894999999 12.93783779 17.09642563 106.74 
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73 R00585 rev 0.982371814 29.4064516 12.01238937 7.832592593 12.85294117 17.09642856 103.7399999 

74 R00941 rev 0.982541207 29.39148471 11.99131944 7.832592588 12.85294117 17.09642857 103.7399999 

75 R00519 rev 0.982373062 29.27916667 11.97103918 7.832592021 12.85294118 17.09642857 117.6714286 

76 R01199 rev 0.985637935 29.2247403 11.96118143 7.83259127 12.85294117 17.09642856 114.3090909 

77 R00210 rev 0.982371813 29.13061223 11.94590164 7.832592565 12.85581395 17.09642856 113.7399997 

78 R09280 rev 0.987171241 29.09346732 11.93731952 7.832592588 12.86967742 17.09642731 105.7399996 

79 R00352 rev 1.001066004 29.0934628 12.3445629 7.832592588 12.89512195 17.14285506 107.945447 

80 R04198 rev 0.98274982 29.09346279 11.93731959 7.945453178 12.85294118 17.09642851 103.7399999 

81 R07613 rev 0.983506707 29.09346279 11.93731959 8.010606056 12.85294118 17.09642857 103.7399997 

82 R06975 rev 5.84298E-12 29.09346279 11.93731772 7.832592593 12.53076707 17.09642563 109.7399817 

83 R00859 rev 0.982624369 29.09346278 11.93731772 7.639250936 12.85294118 17.0964273 110.3812499 

 

*: All the rate unit is mmol g-1(Dw)h-1; glucose consumption rate is -10 mmol g-1(Dw)h-1; there is no constraint for oxygen consumption rate; 

*: Rev: Reversibility; Acetate(Ace), L-Glutamate(Glu), L-Lysine(Lys), L-Threonine(Thr), Succinate(Suc), Formate(For). 

*: Descending order in Ace and Glu values. 
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Table 2. NOG is better (30 products) 

Product_Reaction_ab Product_Reaction_Name Wild_Type NOG GNO 

EX_12ppd_R(e) R Propane 1 2 diol exchange 13.88545 14.53389 13.88545 

EX_4abut(e) 4 Aminobutanoate exchange 11.83424 12.2481 12.12196 

EX_ac(e) Acetate exchange 28.4675 30 30 

EX_acald(e) Acetaldehyde exchange 23.16 24 23.65569 

EX_ade(e) Adenine exchange 10.73562 11.01516 10.91 

EX_adn(e) Adenosine exchange 5.417281 5.53672 5.455 

EX_akg(e) 2 Oxoglutarate exchange 12.69491 12.88026 12.87958 

EX_cytd(e) Cytidine exchange 6.252926 6.374651 6.298924 

EX_dha(e) Dihydroxyacetone exchange 18.39308 18.78899 18.39308 

EX_enter(e) Enterochelin exchange 1.764448 1.803355 1.791633 

EX_etha(e) Ethanolamine exchange 13.95312 14.33479 14.09908 

EX_feenter(e) Fe enterobactin exchange 1.764448 1.803355 1.791633 

EX_for(e) Formate exchange 60.22207 83.60167 65.49739 

EX_fum(e) Fumarate exchange 18.00846 18.274 18.00846 

EX_g3pe(e) sn Glycero 3 phosphoethanolamine exchange 7.301553 7.474571 7.390645 

EX_g3pg(e) Glycerophosphoglycerol exchange 6.406267 6.623038 6.453803 

EX_glu_L(e) L Glutamate exchange 11.73479 12.17341 12.00427 

EX_glyc3p(e) Glycerol 3 phosphate exchange 11.41311 11.89136 11.4555 

EX_glyc(e) Glycerol exchange 15.31661 15.61851 15.53288 

EX_gua(e) Guanine exchange 11.14265 11.49934 11.1761 

EX_hxan(e) Hypoxanthine exchange 11.41311 11.75775 11.4555 

EX_indole(e) Indole exchange 5.496417 5.651753 5.51661 

EX_ins(e) Inosine exchange 5.617921 5.74967 5.622331 

EX_pyr(e) Pyruvate exchange 21.50355 22.04879 21.94208 

EX_succ(e) Succinate exchange 16.72214 17.13187 16.72214 

EX_trp_L(e) L Tryptophan exchange 4.521346 4.5685 4.536832 

EX_uri(e) Uridine exchange 6.650919 6.726626 6.704821 

EX_xan(e) Xanthine exchange 12.47268 12.76146 12.55397 

EX_xtsn(e) Xanthosine exchange 5.863092 5.979657 5.874615 

Ec_biomass_iAF1260

_core_59p81M 

E coli biomass objective function iAF1260   

core  with 5981 GAM estimate 
0.929292 0.949731 0.937114 

*: All the rate unit is mmol g-1(Dw)h-1.  

 

 

Table 3. GNO is better (43 products) 

Product_Reaction_ab Product_Reaction_Name Wild_Type NOG GNO 

EX_15dap(e) 1 5 Diaminopentane exchange 7.677333 7.694412 7.95122807 

EX_LalaDgluMdapDala(e) 
L alanine D glutamate meso 2 6 

diaminoheptanedioate D alanine exchange 
2.785664 2.790507 2.841504702 

EX_LalaDgluMdap(e) 
L alanine D glutamate meso 2 6 

diaminoheptanedioate exchange 
3.240662 3.259938 3.308175182 
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EX_acolipa(e) 
4 Amino 4 deoxy L arabinose modified core 

oligosaccharide lipid A exchange 
0.257744 0.257744 0.261548524 

EX_acser(e) O Acetyl L serine exchange 11.74243 12.03389 12.21978495 

EX_agm(e) Agmatine exchange 8.56562 8.577377 8.886666667 

EX_ala_D(e) D Alanine exchange 14.24909 14.43366 14.50304 

EX_alaala(e) D Alanyl D alanine exchange 7.124545 7.216828 7.25152 

EX_alltn(e) Allantoin exchange 12.33857 12.60771 12.72833333 

EX_arg_L(e) L Arginine exchange 8.49541 8.507642 8.80038835 

EX_asn_L(e) L Asparagine exchange 16.97545 17.13188 17.34148148 

EX_asp_L(e) L Aspartate exchange 16.97545 17.13188 17.34148148 

EX_cgly(e) Cys Gly exchange 6.746341 6.839477 6.995725191 

EX_colipa(e) core oligosaccharide lipid A exchange 0.264453 0.264453 0.268283346 

EX_cys_L(e) L Cysteine exchange 9.878571 10.06192 10.41409091 

EX_eca4colipa(e) 
 enterobacterial common antigen x4 core 

oligosaccharide lipid A exchange 
0.181196 0.181265 0.183655311 

EX_enlipa(e) 
phosphoethanolamine KDO 2 lipid A 

exchange 
0.379557 0.379557 0.389726675 

EX_glyald(e) D Glyceraldehyde exchange 17.274 17.40381 17.62384615 

EX_glyc_R(e)  R Glycerate exchange 15.34549 16.34705 16.48586667 

EX_glyclt(e) Glycolate exchange 28.4675 30 30 

EX_gthrd(e) Reduced glutathione exchange 4.391695 4.415359 4.545825243 

EX_h2s(e) Hydrogen sulfide exchange 19.9288 20.9288 21.58190476 

EX_his_L(e) L Histidine exchange 8.56562 8.720333 8.728 

EX_hom_L(e) L Homoserine exchange 12.91813 13.0805 13.52895522 

EX_hxa(e) Hexanoate n C60 exchange 4.486392 4.559651 4.566448363 

EX_ile_L(e) L Isoleucine exchange 7.298873 7.317762 7.617142857 

EX_kdo2lipid4(e) KDO 2 lipid IV A exchange 0.521135 0.521135 0.533618524 

EX_leu_L(e) L Leucine exchange 7.549392 7.68751 7.885228758 

EX_lipa_cold(e) cold adapted KDO 2 lipid A exchange 0.373595 0.373595 0.383524425 

EX_lipa(e) KDO 2 lipid A exchange 0.388145 0.388145 0.398340304 

EX_lys_L(e) L Lysine exchange 7.677333 7.694412 7.95122807 

EX_orn(e) Ornithine exchange 9.422182 9.427387 9.746666667 

EX_phe_L(e) L Phenylalanine exchange 5.392431 5.427921 5.455 

EX_pheme(e) Protoheme exchange 1.332481 1.35698 1.367743363 

EX_pro_L(e) L Proline exchange 9.965769 9.966095 10.30366667 

EX_ptrc(e) Putrescine exchange 9.508624 9.513091 9.852608696 

EX_ser_L(e) L Serine exchange 20.44794 20.74263 20.9644 

EX_thr_L(e) L Threonine exchange 12.57273 12.76146 13.13681159 

EX_thym(e) Thymine exchange 10.68495 11.13234 11.2597996 

EX_thymd(e) Thymidine exchange 5.342474 5.421969 5.470925024 

EX_tyr_L(e) L Tyrosine exchange 5.602378 5.622769 5.692173913 

EX_ura(e) Uracil exchange 16.97545 17.13187 17.34148148 

EX_urea(e) Urea exchange 30.35739 32.38566 32.53789474 

*: All the rate unit is mmol g-1(Dw)h-1. 
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Table 4. No significant difference between NOG and GNO (7 products) 

Product_Reaction_ab Product_Reaction_Name Wild_Type NOG GNO 

EX_5dglcn(e) 5 Dehydro D gluconate exchange 10 10 10 

EX_anhgm(e) 
N Acetyl D glucosamine anhydrous N 

Acetylmuramic acid exchange 
2.713329 2.727463 2.719406528 

EX_etoh(e) Ethanol exchange 20 20 20 

EX_glcn(e) D Gluconate exchange 10 10 10 

EX_idon_L(e) L Idonate exchange 10 10 10 

EX_lac_D(e) D lactate exchange 20 20 20 

EX_val_L(e) L Valine exchange 10 10 10 

*: All the rate unit is mmol g-1(Dw)h-1. 
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