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Abstract

Assessments of the mouse visual system based on spatial frequency analysis imply that its visual capacity
is low, with few neurons responding to spatial frequencies greater than 0.5 cycles/deg. However, visually-
mediated behaviors, such as prey capture, suggest that the mouse visual system is more precise. We introduce
a new stimulus class—visual flow patterns—that is more like what the mouse would encounter in the natural
world than are sine-wave gratings but is more tractable for analysis than are natural images. We used
128-site silicon microelectrodes to measure the simultaneous responses of single neurons in the primary
visual cortex (V1) of alert mice. While holding temporal-frequency content fixed, we explored a class of
drifting patterns of black or white dots that have energy only at higher spatial frequencies. These flow stimuli
evoke strong visually-mediated responses well beyond those predicted by spatial frequency analysis. Flow
responses predominate in higher spatial-frequency ranges (0.15–1.6 cycles/degree); many are orientation- or
direction-selective; and flow responses of many neurons depend strongly on sign of contrast. Many cells
exhibit distributed responses across our stimulus ensemble. Together, these results challenge conventional
linear approaches to visual processing and extend the mouse’s visual capacity to behaviorally-relevant ranges.

Significance Statement The visual system of
the mouse is now widely studied as a model for
development and disease in humans. Studies of its
primary visual cortex (V1) using conventional grat-
ing stimuli to construct linear-nonlinear receptive
fields suggest that the mouse must have very poor
vision. Using novel stimuli resembling the flow
of images across the retina as the mouse moves
through the grass, we find that most V1 neurons
respond reliably to very much finer details of the
visual scene than previously believed. Our findings
suggest that the conventional notion of a unique
receptive field does not capture the operation of
the neural network in mouse V1.

Introduction

The mouse has become a major model for study-
ing vision because of the genetic, imaging, and
molecular tools available [1]. Studies have re-

vealed relationships between macroscopic states of
the brain and activity in visual cortex (running vs.
stationary [2, 3], pupil size and activity [4, 5], and
∗L.D. and M.H. contributed equally to this work.
†Contact e-mail: stryker@phy.ucsf.edu.

visual interest (e.g., [5–7]). However, a basic conun-
drum has arisen: behaviorally, mice are capable of
sharp, visually-mediated behaviors [8–10], such as
accurate prey capture [11], but when assessed using
standard assays, such as spatial frequency gratings
(Fig. 1), the mouse appears to have very poor vision.
Although orientation-selectivity has been found [12],
receptive fields are large (typically ∼25 degrees2)
when estimated by spike triggered averaging, and
spatial frequency tuning is concentrated below 0.08
cycles/degree (cpd). While this motivates the use
of gratings at 0.04 cpd in experiments, it raises the
question: How does the visual system perform so
exquisitely in natural tasks?

We show here that ecologically-relevant stimuli can
exercise mouse visual cortex in novel and manifold
ways. While plaids [13, 14] and random-dot kine-
matograms [15, 16] are a step beyond gratings, the
leap to natural images (e.g., [17]) is more common
(e.g., [18, 19]). However, natural images are difficult
to obtain [20], difficult to control parametrically, and
difficult to analyze beyond second-order [21].

For a mouse running through a field, the visual pro-
jection is like a ‘waterfall’ flowing past, with oriented
segments moving into and out of occlusion relation-
ships (Fig. 1A) [22]. This visual metaphor motivates
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our stimuli. We approximate such patterns with a
class of visual flows comprised of dots, so they are
more natural than drifting gratings but can be para-
metrically controlled in their orientation (content and
angle), spatial frequency, and direction of motion. We
call them flows because, intuitively, they consist of a
field of particles (either dots or dotted line-segments)
dropped into a ‘flowing river’. More formally, each
dot is displaced along a vector field in space and
time and follows a dynamical system [23]. When
the orientation structure is removed, the flows reduce
to random-dot kinematograms; when the temporal
structure is removed, the flows reduce to static Glass
patterns [24]. Thus they are rich in geometry and,
for humans, the perception of such flows differs from
strictly aligned patterns [25]. Parametric variations
in orientation, direction, etc., define an ensemble of
stimuli.

We here explore activity in mouse V1 in response to
the flow ensemble. In many cases flow stimuli elicit
more vigorous responses than drifting gratings, par-
ticularly at high spatial frequencies 3–5 octaves above
0.04 cpd. Some V1 neurons are classical, resembling
feature detectors, while others exhibit a mixed selec-
tivity rarely reported in early visual cortex. The rich
ensemble of selectivities in V1 may equip the mouse
to behave in the natural world.

Results

Analysis of stimulus selectivity in V1

Cells in V1 have diverse preferred stimuli. We de-
veloped an ensemble of stimuli including drifting grat-
ings, single dot flows (random dot kinematograms),
and oriented flows where each element consists of 3
or 4 dots (see Methods). The stimuli were either posi-
tive contrast (bright dots) or negative contrast (dark
dots). Activity is plotted as an array of peristimulus
time histograms (PSTHs) and tuning curves for each
unit, to facilitate a quick assessment of the different
“dimensions” to a cell’s response. Experiments were
conducted in two cohorts, the first with stimuli at 0.04,
0.15, and 0.24 cpd, and the second with stimuli at 0.04,
0.7, 1.0, 1.25, and 1.6 cpd.

We begin with example cells from the cohort 1.
The first one (Fig. 2A) has the response profile one
would expect for a simple cell in V1. It responds al-
most exclusively to low-frequency gratings; the PSTHs
for high-frequency gratings and for flows (both one
dot and three-dot elements) remain virtually at base-
line. Its spike triggered average depicts a classical
receptive field, consistent with the frequency response,
and it is well tuned for orientation. But such cells
were relatively rare in our experiments (discussed
below). Another example (Fig. 2B) exhibits a weak
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Figure 1: Introducing flow stimuli. A, Ecological motivation for
using flow stimuli: modifying an image of a grassy patch to pro-
gressively emphasize higher contrasts converges to a binary pattern
of random, oriented line segments. B, We abstract this to flow fields
consisting of dotted segments of different lengths, emphasizing two
geometries (oriented [3 or 4 aligned dots] or non-oriented [single
dots]), two contrast polarities (positive or negative), and various
sizes. C, Flows are inconsistent with classical filtering views of V1.
A Gabor receptive field at 0.04 cpd superimposed onto the 3-dot
flow whose energy peaks at 0.24 cpd (top right example in B), for
comparison. D, The 1-D discrete Fourier transforms (single-sided)
of the flows utilized in our experiments (peaks at 0.15, 0.24, 0.7, 1.0,
1.25, and 1.6 cpd) have power well beyond 0.04 cpd (dashed curve),
which is the spatial frequency previously reported as optimal for
cells in mouse V1 (cf. inset, from [12]). To compare stimuli, each
spectrum is normalized by the power at the peak frequency.

response to gratings and a stronger response to flows.
The STA, which would predict a strong response to
low-frequency gratings, completely fails to predict
this response profile. Finally, many cells are multi-
dimensional (Fig. 2C): they respond well to several
stimuli from the ensemble, including gratings and
flows at multiple spatial frequencies. Note the di-
versity in the temporal response profile: a periodic
(often interpreted as linear) response to gratings at
low spatial frequency; a sustained (interpreted as non-
linear) response to gratings at higher frequencies; and
a transient burst of activity to positive, oriented flows.
It would be inappropriate to label this cell a classi-
cal feature detector. The STA again does not predict
the response profile, and the PSTHs reveal different
tuning widths, different first-spike latencies, as well
as linear vs. non-linear and transient vs. sustained
responses.
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Figure 2: Variety of responses in V1. A–C, Tuning curves and PSTHs of three example cells in response to drifting gratings and flows
at 0.04, 0.15, and 0.24 cpd in 8 equally-spaced directions of motion. Time axis in histograms encompasses an entire period of stimulus
presentation (1.5 s). Insets in STAs show, at the same scale, stimuli that produced the most significant reponses. A, Cell responding to
low-frequency gratings only. Bin size 34 ms. B, Cell responding preferably to single-dot flows with negative contrast. Bin size 83 ms. C,
Cell responding strongly to both oriented (3 dots), positive flows and gratings (at both high and low spatial frequencies). Bin size 46
ms. D, Distribution of optimal spatial frequency in terms of proportion of cells significantly responding to at least one of the stimuli.
In the group of experiments using the first set of stimuli (left panel, 0.04–0.24 cpd, n = 357 cells, 3 animals), the majority of cells fired
more strongly for stimuli at 0.15 cpd, followed closely by 0.04 cpd. For the second set of stimuli (right panel, 0.04–1.6 cpd, n = 256 cells,
3 animals) there was an overwhelming preference for 0.04 cpd, although more than half the cells had optimal spatial frequency in the
range 0.7–1.6 cpd. E, Distribution of preferred stimulus among all cells. When low-frequency gratings (0.04 cpd) are included among
the stimuli (left panel), the majority of cells respond equally well to both classes (“Multi”, 45%), followed by only flows (28%) and only
gratings (26%); 29% of the cells were not significantly responsive (“N.S.”) to any of the stimuli displayed (n = 1026 cells; 10 experiments, 6
animals). When we do not include low-frequency gratings, thereby limiting the comparison to flows and gratings with similar spatial
frequencies only, there is a significant preference for flows only (50%), and for both (43%), over gratings only (7%). Comparison of the left
and right panels reveals that approximately 20% of cells preferred low-frequency gratings. When we recompute stimulus preference
considering only stimuli with comparable spatial frequencies, most cells that preferred low-frequency gratings now either prefer none of
the high-frequency stimuli, or significantly prefer flows over high-frequency gratings, given that the fraction that prefers both remains
essentially constant in the two scenarios. Error bars represent s.e.m. F, Distribution of preferred stimulus among well-tuned cells (i.e.,
those with OSI > 0.5 or DSI > 0.5). Left: 52% (gratings), 32% (flows); 16% (multiple); right: 23% (gratings), 57% (flows), 20% (multiple); n =
295 cells (left), 241 cells (right); 8 experiments, 4 animals. Here, notice that most of the cells responding to orientation and/or direction
will fire more strongly to low-frequency gratings; the right panel reveals, however, that the fraction of cells well-tuned to flows is just
as large. And, similarly to E, many of the well-tuned cells preferring 0.04 cpd gratings prefer flows to gratings of comparable spatial
frequency. Error bars represent s.e.m.
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Figure 3: Cells remain highly selective at higher spatial frequencies. A, Example of cell exhibiting a stronger response to oriented, negative
flows at 0.7 and 1.0 cpd when compared to gratings at various spatial frequencies. Bin size 47 ms. B, Overall proportion of well-tuned
cells among cells significantly responsive to each spatial frequency (Mann-Whitney test, p < 0.05), irrespective of stimulus class. Sample
sizes: 0.04 cpd (n = 508), 10 experiments, 6 animals; 0.15 cpd (n = 385), 0.24 cpd (n = 365): 5 experiments, 3 animals; 0.7 cpd (n = 214), 1.0
cpd (n = 214), 1.25 cpd (n = 186), 1.6 cpd (n = 173): 5 experiments, 3 animals.

Responses to optimal flows span a wide range of
spatial frequencies. To quantify this diversity at the
population level, we relaxed the notion of a unique
preferred stimulus for a cell to allow for multiple possi-
ble preferences, according to the following definitions.
While this leads to a crude classification of cell types,
we stress that it is merely a set of labels for discussion;
the underlying complexity remains in the PSTHs.

An individual stimulus is significant for a particular
cell if the average firing rate for that stimulus is signif-
icantly higher than that for its preceding interstimulus
interval (Mann-Whitney test). A cell prefers a stimulus
class (e.g., flows or gratings) if at least one variation
of that class (spatial frequency, geometry, or contrast
polarity) is significant and has average peak firing rate
significantly higher than the peak firing rates of all
significant variations of the other class (Kruskal-Wallis
rank-sum test, Conover-Iman post-hoc, Bonferroni cor-
rection, p < 0.05). When there is no preferred stimulus
class but there are significant stimuli in both classes,
we classify the cell as multi-class, or multicomplex.
Thus the preferred stimulus class, or type of a cell, is
one of gratings, flows, both, non-selective. By this
classification, the cell in Fig. 2A would be classified
as a grating cell; Fig. 2B would be a flow cell; and
Fig. 2C would be a multi or both cell.

Once each cell’s type, or preferred stimulus class,
has been determined, its preferred spatial frequency can
be defined as the one with highest average firing rate
among all significant variations of the preferred class
(or classes, when cells are labeled multi).

We plot the proportion of preferred types at each
preferred frequency in Fig. 2D; the two separate plots
denote units from experimental cohort 1 (0.04–0.24
cpd, n = 357 cells, 3 animals) and cohort 2 (0.04–1.6
cpd, n = 256 cells, 3 animals), respectively. Note the

predominance of gratings among cells at the lowest
frequency, replicating Fig. 1D, and the predominance
of flow and both types at the higher frequencies.

We now examine the distribution of preferred types
in two different ways, either including or not including
the responses to low-frequency gratings. This is neces-
sary, since the performance measure is a simple spike
statistic that is easily dominated by the gratings. First,
when low-frequency gratings are included among the
stimuli, by the above definitions 45% of the cells re-
spond equally well; i.e. are in the both type; 28% are
flow cells; 26% prefer gratings; and 29% of the cells
were not significantly responsive to any of the stimuli
displayed (see Fig. 2E, blue). When low-frequency
gratings are not included, so that the comparison is
among flows and gratings at the same spatial frequen-
cies, responses favoring flow (50%) and both (43%)
predominate over those to gratings (7%) (see Fig. 2E,
red). The difference between these two plots comes
from a more detailed analysis: the cells responding
strongly to 0.04 cpd can be divided into roughly two
subgroups: one that has no significant response other
than to low-frequency gratings and another that also
responds well to flows (or, in fewer cases, to both flows
and high-frequency gratings). These plots include all
cells. A similar distinction obtains when only cells
well-tuned to orientation (OSI > 0.5) or direction (DSI
> 0.5) are considered (Fig. 2F).

In summary of these first data, among cells with
significant preference for flows or both flows and grat-
ings, responses were distributed across all spatial fre-
quencies explored. For “classical” cells (those that sig-
nificantly preferred gratings to flows) there is a clear
preference for 0.04 cpd with a distribution in accor-
dance with [12] (see Fig. 1D). Curiously, some cells that
are well tuned to low-frequency gratings are also well
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tuned to flows with higher spatial frequency, albeit
usually with lower firing rates. Nevertheless, many of
these cells have higher firing rates for flows compared
to gratings of similar spatial frequency, showing that
there is some aspect of the flow stimulus that strongly
excites these cells despite the fact that the flow ele-
ments would excite the filter predicted by these cells’
STAs. Supplemental Materials show plots of responses
to the entire stimulus ensemble for these and other
cells.

Cells remain well-tuned at high spatial frequencies.
Since higher firing rates do not necessarily imply high
orientation- or direction-selectivity, and since a cell
might retain its selectivity at several spatial frequen-
cies (SFs), we investigated the fraction of well-tuned
cells (OSI > 0.5 or DSI > 0.5) across spatial frequen-
cies regardless of preferred stimulus (Fig. 3B). This
is an estimate of the probability of a cell significantly
responsive to a certain SF being well-tuned.

There are many cells well-tuned to direction and/or
orientation at all SFs. Cells with high orientation
selectivity tend to prefer stimuli in the 0.04–0.24 cpd
range. The direction-selective cells seem to be more
uniformly distributed across SFs, with a preference
for intermediate SFs (0.15-0.24 cpd).

Higher stimulus selectivity in superficial and deep
layers. To further characterize how each cell’s re-
sponse profile is distributed across stimulus variations,
we extend the concept of selectivity indices such as
OSI and DSI (e.g., [12]) to compare pairs of stimulus
classes. A stimulus selectivity index (SSI) is thus de-
fined for a pair of classes (e.g., flows vs. gratings, or
1-dot flows vs. 3-dot flows) as (Rmax − Rmin)/(Rmax),
where Rmax (Rmin) is the average peak firing rate (FR)
of the stimulus with higher (lower) FR in the pair. Es-
sentially, it measures the difference in FR between two
stimuli, relative to the one with highest FR. E.g., an SSI
of 0.2 means the FR for the least preferred stimulus is
20% lower than that for the preferred one. When com-
paring stimulus classes for which there are possibly
several stimulus variations in each class, we take the
variation that elicited the highest response in each one.
Note that the SSI for a cell population assesses how
well those cells’ responses can be used to differentiate
between two stimuli, regardless of which one is the
preferred one. This makes it possible to ascribe types
to layers.

Cells responsive to flows and to high-frequency grat-
ings were found in all cortical layers. Cells in layer 2/3
had significantly higher values of SSI than all other lay-
ers for differentiating flows from gratings (p < 10-3, p
= 10-6, and p = 10-4 for layers 4, 5, and 6, respectively),
while cells in layer 5 had significantly lower SSI than
layers 2/3 (p < 10-4) and 6 (p < 0.05) when differenti-

Figure 4: Cells in different layers have distinct selectivity toward
different stimulus classes, as measured by a stimulus selectivity
index (SSI), which indicates the relative preference for either of
two stimulus classes, in terms of firing rate. E.g., an SSI of 0.41 in
layer 2/3 for gratings vs. flows means that cells in that layer have
an average 41% difference in FR between their peak responses to
flows and to gratings (regardless of which one is higher). Cells in
layer 2/3 had significantly higher SSI than all other layers when it
came to differentiating between flows and gratings (*, p < 10-3, p =
10-6, and p = 10-4 for layers 4, 5, and 6, respectively). On the other
hand, cells in layer 5 had significantly lower SSI than layers 2/3
(**, p < 10-4) and 6 (p < 0.05) when differentiating between flows
with opposite contrast polarities, and lower than layer 2/3 (***, p
< 0.005) when differentiating between oriented and non-oriented
flows (Fig. 4). Error bars represent s.e.m.

ating between flows with opposite contrast polarities,
and lower than layer 2/3 (p < 0.005) when differenti-
ating oriented from non-oriented flows (Fig. 4). The
same trends were found when only broad-spiking cells
(putative excitatory, see [12]) were considered. Thus,
speculatively, cells in the superficial layers could have
higher selectivity, while cells in layer 5 were more in-
variant to geometry, length, and contrast. This may be
related to [12], in which it was reported that layer 5
cells were significantly less linear than cells in other
layers.

Preference between different variations of flow
stimuli goes beyond differences in spatial fre-
quency. Among cells that responded significantly
to flows, we also compared the average proportion
of cells that significantly preferred oriented (3 dots)
vs. non-oriented flow patterns (single dots) (Fig. 5A).
Analysis of the entire population across different ex-
periments does not reveal any particular preference,
with the vast majority responding to both geometries.
However, if analysis is restricted to those cells well-
tuned to direction and/or orientation, the preference
for a specific flow geometry—be it oriented or non-
oriented—increases markedly. In particular, there is
an overall preference for the oriented patterns.

Fig. 5B shows that only a minority of the cells re-
sponding to flows prefer negative contrast (15%, on
average). The vast majority prefer either positive con-
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Figure 5: Preference over flow stimuli variations. Percentages refer
to the population of cells that had significant response to at least
one flow variation. All cells: n = 667, 10 experients, 6 animals; well-
tuned cells: n = 187, 8 experiments, 4 animals (applies to panels A
and B). Error bars represent s.e.m. (*, p < 0.001). A, Flow geometry
preference. Among all cells responding significantly to flows, most
showed no significant prefernce for either type. Among well-tuned
cells, there is a significant preference for oriented flows over non-
oriented flows. B, Flow contrast polarity preference. Among all cells
significantly responding to flows, positive polarity was preferred.
The population of well-tuned cells showed no overall preference for
contrast polarity.

trast or respond significantly to both contrast polari-
ties. This difference in preference disappears among
cells that are well-tuned to direction and/or orienta-
tion.

Discussion

Receptive fields redux?

Cells are routinely classified as “simple” if they ex-
hibit a linear response to moving bars or gratings [26]
and as “complex” if the response is non-linear (over
phase). However, these are operational definitions
and depend on the stimuli. Arguments against such
classical receptive field concepts are developing [27],
and our results contribute to this. Unlike the classical,
optimal feature viewpoint, selectivity does not appear
to be one-dimensional; cells can respond linearly to
one part of the stimulus ensemble while being non-
linear to others. In particular, we found many cells
that exhibit a ‘linear’ response to low-frequency grat-
ings while also responding vigorously at high spatial
frequencies to some type of flow.

The fact that linear methods (e.g., [28]) cannot ex-
plain such complex and varied responses to an ensem-
ble of stimuli has several implications. First, it brings
some of the feature variability seen in higher visual
areas (e.g., [29, 30] and references therein) down to V1.
Second, since the receptive field is often taken as the
signature of functionality, attempts to relate function
to structure based on it (e.g., [31]) may attribute to
‘noise’ in connectivity genuine features important for
neural responses. It follows, furthermore, that stimu-

lus ensembles richer than low-frequency gratings are
required to properly assess visual system function.
Finally, it suggests that network computations, not
individual features, should be the focus [32].

Flow responses suggest network computa-
tions

At a small scale, responses to high-frequency flow
stimuli (i.e., within a receptive field) are reminiscent of
the sub-zones observed in the fly [33] and primate [34],
each of which can be direction- or orientation-selective.
And, as in the fly [35], many cells with a preference
for flow stimuli are also contrast selective. At a large
scale, our stimuli were displayed wide-field, so extra-
classical effects may also be playing a role. While
investigations of such contextual interactions in the
mouse are just beginning, stimuli have been restricted
to gratings [36] and bars [37], and only suppressive
effects have been observed [38]. By contrast, in the
primate the situation is much richer [39–41], and the
arrangements of dots and bars in these studies are rem-
iniscent of our flow stimuli. Despite the fact that the
mouse lacks orientation columns [42], flow responses
are remarkably consistent among the different species.
Flow stimuli are also informative about the geometry
of surrounding objects [43], though how these geo-
metric, network computations are realized remains an
open question.

Materials and Methods

Animal procedures Experiments were performed on
adult C57/BL6 mice (age 2–6 months) of either sex.
The animals were maintained in the animal facility at
the University of California–San Francisco and used
in accordance with protocols approved by the Univer-
sity of California–San Francisco Institutional Animal
Care and Use Committee. Preparation, extracellular
recording, and single neuron analysis were generally
performed as in [44]. See Supplementary Information
for additional material and methods.

Design of flow stimuli The flow stimuli consist of
local flow elements that move according to an un-
derlying displacement field. The displacement field
is defined as a vector in R2 (i.e., a magnitude and
a direction) at each screen position. Each flow ele-
ment consists of a linear arrangement of n adjacent
dots, with n = 1 corresponding to a random-dot kine-
matogram, and n = 2, 3, 4 corresponding to oriented
elements (cf. Fig. 1B). The stimulus density defines an
integer screen lattice. Each flow element is dropped
onto this lattice, and then its position is perturbed by
a normally-distributed random variable. This destroys
the impression of a perfectly regular grid of elements.
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The displacement field is built on top of this, and
is organized around a screen partition consisting of
a grid of rectangular or hexagonal tiles, with a single
displacement vector within each tile. The tiles provide
controllable flexibility in the motion. A planar trans-
lation results from choosing all displacement vectors
the same. To avoid the impression of such simple
translations, each displacement vector is ‘jittered’ by
sampling from a normal distribution, so that there
is now both position jitter and motion jitter. More
generally, one can develop more complex motions, ei-
ther in geometry or in time, by varying the size of the
tiles (discreteness) and by varying the displacement
directions. For the experiments reported in this paper,
a common mean and variance for all vectors in the
field was used (see SI Methods for specific parameter
values).

The movement of each flow element is made even
more “lifelike” by controlling its acceleration with a
steering force computed as the difference between the
element’s desired and current directions of motion.
This behavior is based on the boids from [45] and on
the steering behavior described in [46]. Using this, the
desired direction can be a function of both the under-
lying flow field the proximity between elements; this
guarantees that elements do not overlap one other, cre-
ating different geometries, densities, or sizes. The final
force applied to each element is the resultant between
the steering force and a repulsion force exerted by
every other element within an allowed distance [47].
The advantage of this approach is that the flow el-
ements can make successive changes in direction as
they drift through the flow field by following a smooth
and continuous trajectory, without abrupt changes in
direction or occlusion. They also wrap around the
screen boundaries to preserve a constant number of
patterns being shown at all times.

It remains to control the overall luminance and its
changes, both for different stages in the trial and for
the local dots. For some experiments, the screen lumi-
nance during the interstimulus period was set equal
to the global average luminance of the stimulus used
in the upcoming trial. This controls for responses that
could be caused by the global change in the screen
luminance only, and not by the actual moving stimuli.
However, for this strategy there will still be a change
in the luminance of the background when the trial
starts. To control for this, i.e., for possible responses
due to changes in background luminance, we also ran
experiments with a constant gray background both
during the flow trials and the interstimuli intervals.
For dot-luminance effects, the diameter of each dot
in a multi-dotted flow element was chosen such that
the total area occupied by the element was the same
as that of the single-dotted version of the stimulus
with same spatial frequency. In any case, repeated

experiments showed that there was little (if any) effect
of these different luminance change variations.
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