	1
1	The impacts of landscape composition, marginality, and climatic stability on the
2	patterns of endemism of Cerrado woody plants
3	
4	Running title: Endemism and climate of the Cerrado
5	
6	João de Deus Vidal Júnior ¹ , Anete Pereira de Souza ^{*1,2} & Ingrid Koch ²
7	
8	¹ Center of Molecular Biology and Genetic Engineering (CBMEG), Universidade Estadual de
9	Campinas (UNICAMP), Campinas, Brazil
10	² Plant Biology Department, Biology Institute, Universidade Estadual de Campinas
11	(UNICAMP), Campinas, Brazil
12	*Email: jd.vidal27@gmail.com
13	
14	Corresponding author:
15	Anete Pereira de Souza,
16	Plant Biology Department, Biology Institute, UNICAMP, 13083-862, Campinas, SP, Brazil
17	Telephone number: +55 19-3521-1132 31 Fax number: +55 19-3521-1089
18	E-mail: anete@unicamp.br
19 20	Acknowledgements:
21	This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
22	(CAPES) in the form of a scholarship to J.D. Vidal. This research was also supported by
23	CAPES - Computational Biology Program.
24	We would like to thank professors Fábio Pinheiro and Paulo De Marco Júnior for reading and
25	suggesting important improvements to the manuscript.
26	

2

27 **Conflict of interest**:

28 The authors have no conflicts of interest to declare.

29

30 Author contributions:

- 31 JDV designed the study, performed the analysis, and wrote the manuscript; APS and IK
- 32 assisted with the discussion of results and wrote the manuscript.

33

34 Biosketch

- 35 João de Deus Vidal Jr. is a postdoctoral researcher in the Laboratory of Genetics and
- 36 Molecular Analysis at Universidade Estadual de Campinas. He is interested in spatial patterns
- 37 of diversity of Neotropical plants, with a special focus on the role of past climatic changes in

38 the generation of modern patterns of diversity, at both community and population levels.

- 39 Ingrid Koch is a professor at the Institute of Plant Biology of Universidade Estadual de
- 40 Campinas. She is interested in the systematics, evolution and species distribution of plants
- 41 from Neotropical environments. Anete Pereira de Souza is a professor at the Institute of Plant

42 Biology of Universidade Estadual de Campinas. She is interested in the population genetics

43 and molecular evolution of plants, with an emphasis on bioinformatics and genome evolution.

45 ABSTRACT

46	Aim: Many theories were proposed to explain the outstanding endemism of plants in the
47	Cerrado. Among the diversification mechanics suggested, the most widely discussed are the
48	plateau/valley, stable/unstable, and core/peripheral hypotheses. The first argues that plateaus
49	harbor more ancient lineages than valleys and should therefore present higher levels of
50	endemism. The second theory suggests that climate stability in certain regions promoted
51	more suitable environments for the maintenance of paleoendemic species. The last scenario
52	attributes the distribution of endemism in the Cerrado to gradients of optimal conditions
53	available to locally adapted species, predicting higher endemism levels in core regions of the
54	domain than in marginal areas. We compared the endemism patterns of Cerrado flora with
55	the predictions of each theory to discuss their role in the distribution of endemism nuclei
56	across the domain.
57	Location: Brazil.
58	Time period: Quaternary.
58 59	Time period: Quaternary. Major taxa studied: Angiosperms.
59	Major taxa studied: Angiosperms.
59 60	Major taxa studied: Angiosperms.Methods: We generated an endemism map using records of 174 woody plant species,
59 60 61	Major taxa studied: Angiosperms.Methods: We generated an endemism map using records of 174 woody plant species, comprising most vegetation types of the Cerrado domain. We applied spatial analysis and
59 60 61 62	 Major taxa studied: Angiosperms. Methods: We generated an endemism map using records of 174 woody plant species, comprising most vegetation types of the Cerrado domain. We applied spatial analysis and distribution models to summarize the importance of each predictor of endemism.
 59 60 61 62 63 	 Major taxa studied: Angiosperms. Methods: We generated an endemism map using records of 174 woody plant species, comprising most vegetation types of the Cerrado domain. We applied spatial analysis and distribution models to summarize the importance of each predictor of endemism. Results: We found correlations among endemism, elevation, and marginality, supporting the
 59 60 61 62 63 64 	 Major taxa studied: Angiosperms. Methods: We generated an endemism map using records of 174 woody plant species, comprising most vegetation types of the Cerrado domain. We applied spatial analysis and distribution models to summarize the importance of each predictor of endemism. Results: We found correlations among endemism, elevation, and marginality, supporting the plateau/valley and core/peripheral hypotheses. Although plateaus are more stable climatic
 59 60 61 62 63 64 65 	 Major taxa studied: Angiosperms. Methods: We generated an endemism map using records of 174 woody plant species, comprising most vegetation types of the Cerrado domain. We applied spatial analysis and distribution models to summarize the importance of each predictor of endemism. Results: We found correlations among endemism, elevation, and marginality, supporting the plateau/valley and core/peripheral hypotheses. Although plateaus are more stable climatic environments, their elevation and centrality, not their climatic stability, predict higher
 59 60 61 62 63 64 65 66 	 Major taxa studied: Angiosperms. Methods: We generated an endemism map using records of 174 woody plant species, comprising most vegetation types of the Cerrado domain. We applied spatial analysis and distribution models to summarize the importance of each predictor of endemism. Results: We found correlations among endemism, elevation, and marginality, supporting the plateau/valley and core/peripheral hypotheses. Although plateaus are more stable climatic environments, their elevation and centrality, not their climatic stability, predict higher endemism. Our vegetation models using simulated datasets supported the expansion of

- 70 Main conclusions: We identified regions of higher plant endemism within the Cerrado
- 71 domain and verified elevation and centrality as stronger predictive factors of this endemism
- 72 compared with climatic stability. Our results also indicate that different vegetation types
- 73 within valleys presented different responses to the Quaternary climate.
- 74
- 75 Keywords: Biogeography, Community ecology, Species distribution modeling, Last Glacial
- 76 Maximum, Savanna, SDTF

78 ABSTRACT

79	Aim: Many theories were proposed to explain the outstanding endemism of plants in the
80	Cerrado. Among the diversification mechanics suggested, the most widely discussed are the
81	plateau/valley, stable/unstable, and core/peripheral hypotheses. The first argues that plateaus
82	harbor more ancient lineages than valleys and should therefore present higher levels of
83	endemism. The second theory suggests that climate stability in certain regions promoted
84	more suitable environments for the maintenance of paleoendemic species. The last scenario
85	attributes the distribution of endemism in the Cerrado to gradients of optimal conditions
86	available to locally adapted species, predicting higher endemism levels in core regions of the
87	domain than in marginal areas. We compared the endemism patterns of Cerrado flora with
88	the predictions of each theory to discuss their role in the distribution of endemism nuclei
89	across the domain.
90	Location: Brazil.
91	Time period: Quaternary.
91 92	Time period: Quaternary. Major taxa studied: Angiosperms.
92	Major taxa studied: Angiosperms.
92 93	Major taxa studied: Angiosperms.Methods: We generated an endemism map using records of 174 woody plant species,
92 93 94	Major taxa studied: Angiosperms.Methods: We generated an endemism map using records of 174 woody plant species, comprising most vegetation types of the Cerrado domain. We applied spatial analysis and
92 93 94 95	Major taxa studied: Angiosperms. Methods: We generated an endemism map using records of 174 woody plant species, comprising most vegetation types of the Cerrado domain. We applied spatial analysis and distribution models to summarize the importance of each predictor of endemism.
92 93 94 95 96	 Major taxa studied: Angiosperms. Methods: We generated an endemism map using records of 174 woody plant species, comprising most vegetation types of the Cerrado domain. We applied spatial analysis and distribution models to summarize the importance of each predictor of endemism. Results: We found correlations among endemism, elevation, and marginality, supporting the
92 93 94 95 96 97	 Major taxa studied: Angiosperms. Methods: We generated an endemism map using records of 174 woody plant species, comprising most vegetation types of the Cerrado domain. We applied spatial analysis and distribution models to summarize the importance of each predictor of endemism. Results: We found correlations among endemism, elevation, and marginality, supporting the plateau/valley and core/peripheral hypotheses. Although plateaus are more stable climatic
 92 93 94 95 96 97 98 	 Major taxa studied: Angiosperms. Methods: We generated an endemism map using records of 174 woody plant species, comprising most vegetation types of the Cerrado domain. We applied spatial analysis and distribution models to summarize the importance of each predictor of endemism. Results: We found correlations among endemism, elevation, and marginality, supporting the plateau/valley and core/peripheral hypotheses. Although plateaus are more stable climatic environments, their elevation and centrality, not their climatic stability, predict higher
92 93 94 95 96 97 98 99	 Major taxa studied: Angiosperms. Methods: We generated an endemism map using records of 174 woody plant species, comprising most vegetation types of the Cerrado domain. We applied spatial analysis and distribution models to summarize the importance of each predictor of endemism. Results: We found correlations among endemism, elevation, and marginality, supporting the plateau/valley and core/peripheral hypotheses. Although plateaus are more stable climatic environments, their elevation and centrality, not their climatic stability, predict higher endemism. Our vegetation models using simulated datasets supported the expansion of

- 103 Main conclusions: We identified regions of higher plant endemism within the Cerrado
- 104 domain and verified elevation and centrality as stronger predictive factors of this endemism
- 105 compared with climatic stability. Our results also indicate that different vegetation types
- 106 within valleys presented different responses to the Quaternary climate.
- 107
- 108 Keywords: Biogeography, Community ecology, Species distribution modeling, Last Glacial
- 109 Maximum, Savanna, Plateaus, Valleys.
- 110

111 INTRODUCTION

112	The Cerrado is the largest savanna and the second largest major bioregion in South
113	America, with a complex and unique biogeographic history. The Cerrado harbors more plant
114	species than any other savanna in the world (> 7000 species; Mendonça et al., 1998), with
115	over 44% of its flora being endemic, making it the richest tropical savanna in the world in
116	this regard (Klink & Machado, 2005). The Cerrado landscape is divided into ancient plateaus,
117	which are large extension areas with relatively high elevations (500-1700 m), and peripheral
118	valleys, which are lower elevation regions (100–500 m) that surround the highlands (Silva,
119	1997; Silva & Bates, 2002). These landscape unities present different biotic compositions and
120	geological histories, indicating that their biogeographical histories were also distinct. The
121	biota of valleys is heterogeneous, composed of gallery, riverine, and dry forests, marshlands,
122	and enclaves of species from adjacent biomes (Silva & Bates, 2002), while plateaus present
123	the savanna as a dominant vegetation type (Silva, 1997).
124	The outstanding diversity of plant species in the Cerrado is a topic of present
124 125	The outstanding diversity of plant species in the Cerrado is a topic of present discussion in Neotropical biogeography. Many theories have been proposed to explain the
125	discussion in Neotropical biogeography. Many theories have been proposed to explain the
125 126	discussion in Neotropical biogeography. Many theories have been proposed to explain the high degree of endemism found for several taxa, but due to the variety of responses of
125 126 127	discussion in Neotropical biogeography. Many theories have been proposed to explain the high degree of endemism found for several taxa, but due to the variety of responses of organisms and the limited studies concerning this environment (Turchetto-Zolet, Pinheiro,
125 126 127 128	discussion in Neotropical biogeography. Many theories have been proposed to explain the high degree of endemism found for several taxa, but due to the variety of responses of organisms and the limited studies concerning this environment (Turchetto-Zolet, Pinheiro, Salgueiro, & Palma-Silva, 2013), no prevailing process acting on the biogeographic history
125 126 127 128 129	discussion in Neotropical biogeography. Many theories have been proposed to explain the high degree of endemism found for several taxa, but due to the variety of responses of organisms and the limited studies concerning this environment (Turchetto-Zolet, Pinheiro, Salgueiro, & Palma-Silva, 2013), no prevailing process acting on the biogeographic history of this domain has emerged thus far. Regarding the currently discussed theories, three
125 126 127 128 129 130	discussion in Neotropical biogeography. Many theories have been proposed to explain the high degree of endemism found for several taxa, but due to the variety of responses of organisms and the limited studies concerning this environment (Turchetto-Zolet, Pinheiro, Salgueiro, & Palma-Silva, 2013), no prevailing process acting on the biogeographic history of this domain has emerged thus far. Regarding the currently discussed theories, three particular hypotheses of diversification are the most supported scenarios: (1) the geographic
125 126 127 128 129 130 131	discussion in Neotropical biogeography. Many theories have been proposed to explain the high degree of endemism found for several taxa, but due to the variety of responses of organisms and the limited studies concerning this environment (Turchetto-Zolet, Pinheiro, Salgueiro, & Palma-Silva, 2013), no prevailing process acting on the biogeographic history of this domain has emerged thus far. Regarding the currently discussed theories, three particular hypotheses of diversification are the most supported scenarios: (1) the geographic compartmentalization of the landscape in highlands and depressions of the Late Miocene as a
 125 126 127 128 129 130 131 132 	discussion in Neotropical biogeography. Many theories have been proposed to explain the high degree of endemism found for several taxa, but due to the variety of responses of organisms and the limited studies concerning this environment (Turchetto-Zolet, Pinheiro, Salgueiro, & Palma-Silva, 2013), no prevailing process acting on the biogeographic history of this domain has emerged thus far. Regarding the currently discussed theories, three particular hypotheses of diversification are the most supported scenarios: (1) the geographic compartmentalization of the landscape in highlands and depressions of the Late Miocene as a driver of allopatric speciation between disjoint landscape units; (2) the differences in

136	extinction rates in nuclear regions, which favored the maintenance of endemism in the center
137	of the domain. Although they are not mutually exclusive, the relative importance of these
138	theories remains a major focus of debate because most individual patterns of taxa seem to
139	support different scenarios (e.g., Turchetto-Zolet et al., 2013).
140	The first hypothesis attributes differential endemism across the Cerrado to the older
141	geological origin of plateau formations, which date from the Late Tertiary, while valleys are
142	the result of recent erosive processes (Ab'Sáber, 1983; Silva, 1997; Werneck, 2011). Given
143	this scenario, ancient geomorphological processes acting on these environments might have
144	promoted the isolation of older lineages in the highlands. Consequently, the recently formed
145	valleys were gradually occupied by neoendemic species (Silva, 1997). Therefore, for this
146	hypothesis, higher elevation regions are expected to present more endemism than
147	depressions. This model is consistent with endemism patterns reported for birds (Silva,
148	1997), plants of the genus Mimosa (Simon & Proença, 2000), and squamate lizards
149	(Nogueira, Ribeiro, & Costa, 2011).
150	In addition to the geomorphological processes of the Late Miocene, the Pleistocene
151	climate was also proposed as a major driver of diversification of species and lineages within
152	the Cerrado (Werneck, Nogueira, Colli, Sites, & Costa, 2012; Santos, Nogueira, & Giugliano,
153	2014; Bueno et al., 2017; Arruda, Schaefer, Fonseca, Solar, & Fernandes-Filho, 2018; Costa
154	et al., 2018). This hypothesis is closely associated with both plateau/valley and
155	core/periphery hypotheses, as both valleys (Ab'Sáber, 1983) and marginal regions (Costa et
156	al., 2018) of the Cerrado were more sensitive to Quaternary climatic shifts than highlands or
157	the central regions of the domain, as suggested by their pollen record and the frequent
158	presence of species from adjacent biomes (Ledru, 2002; Costa et al., 2018). In this scenario,
159	during cycles of cold and dry climates, the distribution of moist vegetation from valley
160	environments underwent strong retractions. By contrast, the plateau vegetation expanded into

161	valleys, possibly even penetrating the modern distribution of adjacent domains (van der
162	Hammen, 1974). Indeed, stable climatic regions are considered to predict diversity at both
163	interspecific (Werneck, 2011) and intraspecific levels (Carnaval & Moritz, 2008; Carnaval,
164	Hickerson, Haddad, Rodrigues, & Moritz, 2009), as areas presenting less stable
165	environmental conditions are more prone to face local extinction (Harrison & Noss, 2017).
166	The third hypothesis argues that core regions of the Cerrado historically presented
167	relatively more optimal conditions for the maintenance of regionally adapted populations of
168	its species, supporting the diversification of endemics through time (Soule, 1973; Eckert,
169	Samis, & Lougheed, 2008). In this scenario, nuclear regions of the Cerrado are expected to
170	show higher levels of endemism, whereas communities in peripheral regions are more prone
171	to undergo stochastic events of local extinction, given the exposure of populations of species
172	to sub-optimal conditions in comparison with nuclear regions (Soule, 1973). An example
173	supporting this scenario is the genetic diversity of populations of the squamate lizards of the
174	genus Micrablepharus (Santos et al., 2014).
175	Multiple species niche models are useful for detecting general patterns, which are
176	important for assembling large-scale scenarios. Large-scale hypothesis testing for the
177	identification of refugia has been conducted for several regions around the world, with
178	important biogeographic outcomes (Thuiller, 2004; Svenning, Normand, & Kageyama,
179	2008). Mostly, single species patterns or simulated dataset models have been applied in past
180	distributional reconstructions for the Cerrado (Collevatti et al., 2012; Werneck et al., 2012;
181	Lima, Telles, Chaves, & Lima-Ribeiro, 2017; Arruda et al., 2018), while multiple species
182	approaches are less common (de Siqueira & Peterson, 2003; Bonaccorso, Koch, & Peterson
183	2006; Bueno et al., 2017). These studies addressed future climatic changes based on a
184	conservation biology approach (de Siqueira & Peterson, 2003), simulated the history of
185	Amazonian forest fragmentation and the potential occupation of open areas by Cerrado

10

200	Species occurrence data and endemism calculation
199	METHODS
198	
197	cycles.
196	retraction/expansion of different vegetation types occurring in these landscapes during glacial
195	simulated occurrence data of woody plants from valley and plateaus to test the scenarios of
194	climatically stable areas show higher levels of endemism. In addition, we modeled real and
193	explain its diversification. We tested whether higher elevations, central regions or
192	endemism of the woody flora of the Cerrado domain with the three scenarios proposed to
191	abiotic and biotic compositions of valleys and plateaus. Here, we compared the levels of
190	none of these studies included simulations that explicitly incorporated the differences in the
189	shifts in the distribution of the savanna during glaciations (Bueno et al., 2017). However,
188	These studies also identified an important relationship between landscape composition and
187	seasonally dry tropical forests (SDTF) vegetation under past scenarios (Bueno et al., 2017).
186	species (Bonaccorso et al., 2006) and reconstructed the distribution of woody savanna and

201 To generate the maps of endemism for woody species of the Cerrado, we gathered occurrence data for 63 savanna species, 54 SDTF species, 36 gallery forest species, and 21 202 203 riverine forest species (Table 1). We elaborated the species list for savanna, gallery and 204 riverine forests based on the NeoTropTree database (Oliveira-Filho 2017), the Cerrado 205 physiognomy description published by Ribeiro and Walter (1998), and the SDTF catalogue 206 proposed by Prado and Gibbs (1993). The savanna list included species solely present in 207 Cerrado arid woodlands following the NeoTropTree database. The SDTF species list 208 included all valid species listed in Prado and Gibbs (1993), not considering infraspecific 209 classification. The riverine forest species list and the gallery forest species list included 210 typical species of each vegetation type, following the classification system proposed by

11

011	
211	Ribeiro and Walter (1998). We considered riverine forests and gallery forests to be different
212	vegetation types due to their composition and the restricted distribution of riverine forests in
213	association with major rivers of the domain (Ribeiro & Walter, 1998; Silva & Bates, 2002).
214	We excluded species present in multiple vegetation types to reduce the bias of widespread
215	species in models. We retrieved species occurrence data from GBIF using the R package
216	"rgbif" (Chamberlain, Ram, Barve, & Mcglinn, 2016). To ensure the quality of the data, we
217	adopted search parameters that restrict data without original coordinates and with spatial
218	issues. A full list of material data sources is presented in Appendix 2. We manually checked
219	points by plotting individual maps and discarding outliers. We also discarded species with
220	poor occurrence information or a low number of registries (< 10 registries).
221	We generated a map of weighted endemism using the algorithm proposed by Guerin,
222	Ruokolainen, and Lowe (2015), applying a geographic grid with 0.25×0.25 degrees cells to
223	generate the presence/absence matrix. We calculated the number of unique species that
224	occurred in each cell and weighted this statistic for each species by dividing it by the number
225	of grid cells in which they occurred (Guerin et al., 2015). By doing so, we expected to reduce
226	the bias of widespread generalist species in the estimates of endemism.
227	
228	Endemism correlation with elevation, marginality and climate
229	To evaluate the relative climatic stability of plateaus and valleys, we divided the
230	entire Cerrado domain into highlands (\geq 500 m elevation) and depressions (< 500 m
231	elevation). We randomly sampled 1000 points for each landscape unity and extracted values
232	of 19 WorldClim bioclimatic variables (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) to
233	compare the present environmental conditions between areas. To compare climatic stability,

234 we sampled the same random points for past climatic scenarios (mid-Holocene, Last Glacial

235 Maximum and Last Interglacial; Hijmans et al., 2005). We calculated the variances of each

12

236	environmental variable of plateaus and valleys and compared them using a bootstrap
237	approach by sampling 1000 repetitions of the variances and comparing the significance of
238	outcomes with Welch's t-test (Welch, 1938) for each variable in each landscape unit.
239	To test the correlation of endemism with elevation and marginality, we extracted
240	values of elevation and distance from the Cerrado shape centroid for 1000 random points. We
241	extracted the values of endemism for these same points and fitted them into linear models
242	using Pearson's product-moment correlation test to estimate the significance of these
243	associations. To test the relationship between endemism and stability, we fitted a generalized
244	linear model with endemism as a response variable, with the variances of each of the 19
245	bioclimatic variables between the present, mid-Holocene, LGM, and LIG as predictors, as
246	well as elevation and distance to the core. We then compared the p-values of each predictor
247	to discuss their relative importance.
248	
249	Historical vegetation distribution
250	To test the historical climate hypothesis, we assessed whether plateau vegetation
251	expanded or retracted during glaciations and whether the response of valleys was the
252	opposite, as proposed in the refugia scenario. We generated models for simulated points of
253	valleys and plateaus and for the real occurrence of species associated with gallery forests,
254	riverine forests, SDTF and savanna (Table 1). We sampled 1000 random points from all 19
255	Worldclim bioclimatic variables to calculate Pearson's pairwise correlation and discard
256	variables with a high correlation (≥ 0.75). We obtained a set of 12 less correlated variables:
257	annual precipitation, precipitation seasonality, precipitation of the driest quarter, precipitation
258	of the warmest quarter, precipitation of the coldest quarter, mean diurnal range, isothermality,
259	temperature seasonality, maximum temperature of the warmest month, mean temperature of

260 the wettest quarter, mean temperature of the driest quarter, and elevation. For past scenarios

13

261 (mid-Holocene, Last Glacial Maximum and Last Interglacial), we used the variables from 262 MIROC-ESM and CCSM4-scaled climatic models (Hijmans et al., 2005). We averaged 263 models between both scenarios (MIROC-SM and CCSM4) and presented a consensus model 264 for each of these time periods. For the Last Interglacial (LIG; $\sim 120,000 - 140,000$ years BP), 265 we adopted a projection of bioclimatic values from WorldClim following Otto-Bliesner et al. 266 (2006).267 We used the maximum entropy machine-learning algorithm Maxent v. 3.3.3 (Phillips, 268 Anderson, & Schapire, 2006) to model the potential distribution for each species and for the 269 simulated datasets. We processed the models and bioclimatic layers using R packages 270 "dismo" (Hijmans, Phillips, Leathwick, & Elith, 2013) and "raster" (Hijmans & van Etten, 271 2014). For species distribution models, we used 1000 background points for each species to 272 estimate background information with pseudo-absences. The model performance was 273 evaluated by AUC-ROC values. We converted present models into binary models by 274 establishing a threshold based on the lower presence training (LPT) value from which a 275 presence point is recorded in the actual data for the present model (Pearson, Raxworthy, 276 Nakamura, & Townsend Peterson, 2007). Then, we applied this same procedure to past 277 scenarios using the present model threshold. We summarized information from models by 278 counting per species presence cells for each scenario reconstruction. To facilitate comparison 279 between species, we converted the values into percentages by dividing areas by the larger 280 range registered for each species. In so doing, we were able to detect under which climatic 281 scenario a species reached the maximum range of its distribution, and we were able to 282 compare glacial and interglacial distributions of species. We also combined all binary 283 models, for each species and for the whole dataset, to identify individual- and community-284 level stable areas. The same approach was implemented for the simulated datasets.

14

286 **RESULTS**

287 Species list and endemism calculation

- In our survey, we obtained 9452 registries for 54 SDTF species, 1085 occurrence
- 289 records for 21 riverine forest species, and 6903 records for 36 gallery forest species. For the
- 290 savanna (Cerrado sensu stricto), we recovered 9145 occurrences for 63 species (Appendices
- 291 S1, S2, S3 and S4). Our estimates of weighted endemism for the Cerrado domain returned
- 292 higher levels of endemism in the states of Minas Gerais, Goiás, Mato Grosso, Mato Grosso
- do Sul, São Paulo, and Bahia (Figure 1). We were able to identify endemism nuclei in (1)
- 294 Chapada dos Guimarães, (2) Serra do Roncador, (3) Araguaia Valley, (4) Chapada das Emas,
- 295 (5) Serra dos Pirineus, (6) Chapada dos Veadeiros, (7) Chapada do São Francisco, (8)
- Planalto do Distrito Federal, (9) Serra do Cipó, and (10) Serra de Botucatu.

297

298 Endemism correlation with elevation, marginality and climate

All 19 bioclimatic variables analyzed presented significant differences between

300 valleys and plateaus (Table 1). A total of 16 variables (84%) presented lower variances for

301 plateaus than for valleys, suggesting that plateau climatic conditions were slightly more

302 stable during the time periods that we compared. The other three variables displayed lower

- 303 variances in valleys. Welch's two-sample t-test returned p-values lower than 0.01 for all
- 304 comparisons. We observed a positive correlation for elevation and endemism, while distance
- to the core and endemism showed a negative correlation (Figure 2).
- 306

307 Historical vegetation distribution

The AUC for simulated datasets models was 0.736 for plateaus and 0.722 for valleys. For these data, our results recovered a pattern of glacial expansion for plateaus, while valleys presented glacial retraction in terms of suitability (Figure 3). In fact, the lowest proportional

15

311 distribution for valleys and the highest for plateaus occurred during the LGM (Figure 4). For 312 real occurrence data, average AUC values were 0.892 for SDTF models, 0.956 for riverine 313 forest models, 0.879 for gallery forest models and 0.915 for savanna models, indicating high 314 predictive accuracy of models. We found that 38% of savanna species presented their 315 maximum range during glacial periods, while gallery species, riverine species and SDTF 316 species presented variable patterns (Figure 5; Appendices S1, S2, S3 and S4). For the forest 317 vegetation types, 81% of the modeled riverine species displayed wider distribution ranges 318 during interglacial periods. SDTF and gallery forests presented an opposite pattern to that of 319 the riverine forests, with 72% of gallery forest species and 54% of SDTF species presenting 320 their wider distribution during the LGM. With respect to the savanna, we found that 65.08% 321 of the species presented wider LGM ranges than the present distribution. Combined models 322 for all species binary distributions resulted in community-level reconstructions of vegetation 323 types (Figure 5). For these combined reconstructions, we also observed a similar response of 324 a wider occurrence of SDTF and gallery forests during the LIG and LGM, while the savanna 325 presented a more local expansion within the Cerrado. Riverine forests, in comparison, 326 presented a slightly narrower distribution during the LGM and were greatly restricted during 327 the LIG. 328 The potential distribution of species from the different vegetation types indicated that 329 suitable areas for the occurrence of species from the savanna, gallery forests, and riverine

330 forests increased from LIG to LGM. Expansion for the savanna, however, was much more

331 subtle than that for the gallery and riverine forests. In comparison, SDTF models showed a

clearer retraction in overall species potential distribution, with a notable retraction in the

LGM. From the mid-Holocene to the present scenario, potential areas for all vegetation typesdecreased.

16

336 **DISCUSSION**

337	We generated endemism maps for Cerrado woody plants and compared the patterns
338	observed with biogeographical theories of the Cerrado, which assumed plateau/depression,
339	stability/instability and core/peripheral processes involved in the generation of endemism.
340	We demonstrated that the climate presented an overall higher stability in the plateaus than in
341	the valleys. This stability, however, showed a weak correlation with endemism. Additionally,
342	we reconstructed the distribution of these species and environments for the recent Quaternary
343	period. We managed to link the distribution of higher endemism nuclei to elevation and
344	centrality, reinforcing the importance of these elements in the biogeographic processes that
345	generated the Cerrado diversity. For vegetation history reconstructions, we concluded that the
346	savanna, a vegetation type associated with plateaus, expanded during the Last Glacial period,
347	while the different valley vegetation types presented variable responses. With respect to
348	valleys, SDTF retracted during the Last Glacial period, while riverine forests and gallery
349	forests expanded. Moreover, we found evidence that plateaus configure stable scenarios for
350	most climatic variables, but this stability is not necessarily linked with higher levels of
351	endemism. In sequence, we discuss our results within the context of the climate changes,
352	tectonic history and biogeographic processes of the domain.
353	

354 Elevation and marginality as predictors of endemism

The identification of nuclei of endemism in Chapada dos Guimarães, Chapada dos Veadeiros, Serra do Cipó, and Distrito Federal is consistent with endemism patterns identified for other taxa (Simon & Proença 2000; Nogueira et al., 2011). Most of these areas are located at high elevation, with a single valley region (Vale do Araguaia) identified as highly endemic, supporting the results of our correlation analysis. Elevation, along with landscape compartmentalization, is considered an important driver of diversification

17

361	worldwide, as differences in elevation often promote isolation, a key process for speciation
362	(Slaton, 2015). Although the concentration of endemism levels of plants at high elevations
363	has already been suggested on a global scale (Steinbauer et al., 2016), a finer scale pattern for
364	the Cerrado, as we presented here, reinforces the role of this relationship for this specific
365	domain, as previously suggested (e.g., Fiaschi & Pirani, 2009).
366	In addition to elevation, marginality is also an important predictor of endemism. This
367	pattern might be explained by the fact that species that are adapted to a particular
368	environment tend to present higher survivability, reproductive success and population growth
369	under their optimal conditions (Eckert et al., 2008). These conditions are gradually
370	distributed across space and are expected to be more available in nuclear areas of
371	distributions. This result is also supported by the higher historical suitability of nuclear region
372	habitats for plants of the Cerrado, proposed by Bueno et al. (2017) and Costa et al. (2018).
373	The real importance of interactions between marginality and endemism is controversial,
374	however, as differential performances for nuclear populations have not been demonstrated by
375	the available studies so far (Abeli, Gentili, Mondoni, Orsenigo, & Rossi, 2014; Pironon,
376	Villellas, Morris, Doak, & García, 2015). However, we were able to demonstrate a
377	convergence of endemism and centrality for the Cerrado. Hence, these variables are not
378	independent of each other; due to the uplift of the Central Brazilian plateau in the late
379	Miocene, the central region of Brazil displays considerably higher elevations than the
380	marginal regions of the Cerrado (e.g., Werneck, 2011).
381	
382	Climate dynamics in the Cerrado, vegetation changes and climatic refugia

The plateaus presented higher climatic stability for most (16) of the environmental variables included in our analysis. Valleys, comparatively, only presented lower variances than plateaus for annual mean temperature, precipitation seasonality, and precipitation of the

18

386 warmest month. The absence of a correlation between climatic stability and endemism is 387 justified by the fact that although the climatic component is a major driver of species 388 distribution, it does not determine the species distribution by itself. Distributions and range 389 shifts are determined by complex interactions between abiotic and biotic components and 390 species mobility (Soberón & Peterson, 2005). Therefore, constraints to dispersal, such as the 391 heterogeneous landscape composition of the central Brazilian region, most likely configured 392 fundamental barriers, shaping the distribution of the flora of the Cerrado throughout the 393 Quaternary. 394 For the potential distribution models, we observed very similar patterns for simulated 395 and real occurrence datasets of the savanna and plateau points, supporting the close 396 association of this vegetation with highlands in the Cerrado. Our results differed, however, 397 with the widespread savanna scenario in the LIG with posterior glacial retraction proposed by 398 Bueno et al. (2017). Their models indicated a retraction for plateaus of the savanna during the 399 LGM, which was interpreted as evidence of the role of the valleys as refugia during 400 glaciations. Our models, in contrast, suggested a progressive retraction from the LGM to the 401 present, with no significant glacial retraction, coinciding with the pollen registry for Central 402 West Brazil (van der Hammen, 1974). Our interpretation of our results is that interglacial 403 climates enhanced humidity, instead of glacial aridity, promoting retraction of the range of 404 most species from the savanna formations of the Cerrado into interglacial refugia; this 405 scenario was previously proposed for the lineage diversification of highland restricted dry-406 adapted taxa in the Cerrado, such as *Pilosocereus aurisetus* (Bonatelli et al., 2014) and 407 *Tibouchina papyrus* (Collevatti et al., 2012). 408 While simulated dataset models fit the previously suggested (Werneck, 2011) 409 scenario of glacial expansion under plateau and retraction under valley environmental

410 conditions, real occurrence data models agreed with the savanna expansion but showed a

411	variety of responses for the different valley vegetation types. For the glacial scenario, most
412	savanna, gallery forest, and riverine forest species presented expansion, while SDTF
413	retracted. The closest relationships of riverine forests and gallery forests with rivers and
414	watersheds (Ribeiro & Walter, 1998) are potential indicators that these species, although also
415	occurring in valleys, show different tolerance and adaptation than species of SDTF. This may
416	also be interpreted as an effect of the heterogeneity of climatic conditions observed for valley
417	landscapes, which comprise more complex environmental gradients than plateaus. Our
418	models support this assumption, indicating that even though the overall environmental space
419	in valleys decreased during the LGM, riverine and gallery forests were able to expand their
420	ranges. With respect to the mid-Holocene (6000 ybp), the driest phase of Central Brazil, most
421	regions in South America maintained their vegetation types or experienced the advance of
422	more arid/dry vegetation types (Marchant et al., 2009; Costa et al., 2018). As the savanna is
423	the dominant vegetation type in plateaus (Silva & Bates, 2002; Werneck, 2011), the overall
424	stability of savanna models during the climatic scenarios recovered for our models supports
425	the assumption of more stable climates for these regions compared to valleys.
426	Among the vegetation types of valleys, riverine forests and gallery forests showed
427	different responses than SDTF, which was coincident with the simulated dataset model for
428	valleys. STDF models were consistent with a scenario of glacial retraction, followed by mid-
429	Holocene expansion. Previous distribution models for SDTF also refuted the proposal of a
430	wider distribution for this vegetation type during glacial periods (Werneck, Costa, Colli,
431	Prado, & Sites, 2011). Our results differ from those of Werneck et al. (2011) by suggesting
432	the expansion of SDTF during the LGM into the eastern corridor of the Amazon Basin, which
433	was a scenario previously proposed by Pennington, Prado and Pendry (2000). The
434	discrepancy between the simulated models and the species models is mostly associated with
435	the fact that taxa associated with plateaus or valleys are not restricted to their environments,

20

436	as species often occur in different habitats than those to which they are mostly adapted, due
437	to ecological plasticity (e.g., Hortal, Triantis, Meiri, Thébault, & Sfenthourakis, 2009). Using
438	real occurrence data, we were able to identify a wide corridor in the eastern Amazon,
439	potentially suitable for most savanna, SDTF and gallery forest species throughout the LGM,
440	as well as gradually reduced suitability over the last 22,000 years. Although we noticed that
441	models of species from the savanna and SDTF responded similarly to the simulated models,
442	gallery and riverine forests did not. The variety of vegetation types occurring in valleys is
443	also an indicator of the higher habitat diversity (Silva & Bates, 2002) and, possibly, of a
444	complex biogeographic history, which may not be fully explained by a single vegetation
445	response model.
446	
447	CONCLUSION
448	We conclude that climatic stability alone is not able to predict endemism distribution

449 in the Cerrado, which is mostly strongly correlated with the elevation and centrality of the 450 environments in this domain. The majority of endemics is concentrated in higher elevation 451 nuclear regions, while peripheral depressions present lower endemism levels. The Quaternary 452 climate was indeed more stable in plateaus than in valleys, which demonstrates the overlap of 453 these hypotheses. We conclude that the three hypotheses interacted in the origin and 454 distribution of the diversity of the domain, with different magnitudes. Additionally, we 455 demonstrate how the different vegetation types of the Cerrado responded individually to the 456 climatic shifts of the last 130,000 years. We expect our results to provide new hypotheses and 457 possible scenarios for further investigations about how past climatic changes affected the 458 endemism distribution of Neotropical biota. By demonstrating that vegetation types across a 459 domain may present differential responses to climatic changes, we recommend that 460 approaches in reconstructions aiming to estimate the impacts of future climatic changes on

- 461 wider scales take in account the different patterns of responses of these vegetation types.
- 462 Additionally, we recommend further studies on community-level approaches, as we
- 463 implemented here, with other organisms, to test the extent of our interpretations.

22

465 **REFERENCES**

- 466 Ab'Sáber, A. N. (1983). O domínio dos cerrados: introdução ao conhecimento. *Revista do*467 Servico Público, 111, 41–55.
- 468 Abeli, T., Gentili, R., Mondoni, A., Orsenigo, S. & Rossi, G. (2014). Effects of marginality
- 469 on plant population performance. *Journal of Biogeography*, 41, 239–249. doi:
- 470 10.1111/jbi.12215.
- 471 Arruda, D. M., Schaefer, C. E. G. R., Fonseca, R. S., Solar, R. R. C. & Fernandes-Filho, E. I.
- 472 (2018). Vegetation cover of Brazil in the last 21 ka: new insights into the Amazonian
- 473 refugia and Pleistocenic arc hypotheses. *Global Ecology and Biogeography*, 27, 47–
- 474 56. doi: 10.1111/geb.12646.
- 475 Bonaccorso, E., Koch, I. & Peterson, A. T. (2006). Pleistocene fragmentation of Amazon
- 476 species' ranges. *Diversity & Distributions*, 12, 157–164. doi: 10.1111/j.1366-
- 477 9516.2005.00212.x.
- 478 Bonatelli, I. A. S., Perez, M. F., Peterson, A. T., Taylor, N. P., Zappi, D. C., Machado, M. C.,
- 479 ... Moraes, E. M. (2014). Interglacial microrefugia and diversification of a cactus
- 480 species complex: phylogeography and palaeodistributional reconstructions for
- 481 Pilosocereus aurisetus and allies. *Molecular Ecology*, 23, 3044–3063. doi:
- 482 10.1111/mec.12780.
- Bueno, M. L., Pennington, R. T., Dexter, K. G., Kamino, L. H. Y., Pontara, V., Neves, D. M.,
 ... de Oliveira-Filho, A. T. (2017). Effects of Quaternary climatic fluctuations on the
- distribution of Neotropical savanna tree species. *Ecography*, 40, 403–414. doi:
- 486 10.1111/ecog.01860.
- 487 Carnaval, A. C. & Moritz, C. (2008). Historical climate modelling predicts patterns of current
- 488 biodiversity in the Brazilian Atlantic forest. *Journal of Biogeography*, 35, 1187–1201.
- 489 doi: 10.1111/j.1365-2699.2007.01870.x.

490	Carnaval, A.	C	Hickerson.	M. J.,	Haddad.	C. F.	. Rodrigues.	M.	T.	& Moritz.	C.	(2009)	١.

- 491 Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. *Science*,
- 492 323, 785–789. doi: 10.1126/science.1166955.
- Chamberlain, S., Ram, K., Barve, V. & Mcglinn, D. (2016) *Rgbif: Interface to the Global Biodiversity Information Facility API. R Package Version 0.9.2.*
- 495 Collevatti, R. G., de Castro, T. G., de Souza Lima, J. & de Campos Telles, M. P. (2012).
- 496 Phylogeography of Tibouchina papyrus (Pohl) Toledo (Melastomataceae), an
- 497 endangered tree species from rocky savannas, suggests bidirectional expansion due to
- 498 climate cooling in the Pleistocene. *Ecology and Evolution*, 2, 1024–1035. doi:
- 499 10.1002/ece3.236.
- 500 Costa, G. C., Hampe, A., Ledru, M. P., Martinez, P. A., Mazzochini, G. G., Shepard, D. B.,
- 501 ... Carnaval, A. C. (2018). Biome stability in South America over the last 30 kyr:
- 502 inferences from long-term vegetation dynamics and habitat modelling. *Global*

503 *Ecology and Biogeography*, 27, 285–297. doi: 10.1111/geb.12694.

da Silva, J. M. C. & Bates, J. M. (2002). Biogeographic patterns and conservation in the

505 South American Cerrado: a tropical savanna hotspot. *BioScience*, 52, 225.

506 da Silva, J. M. C. (1997). Endemic bird species and conservation in the Cerrado Region,

507 South America. *Biodiversity and Conservation*, 6, 435–450. doi:

- 508 10.1023/A:1018368809116.
- 509 de Siqueira, M. F. & Peterson, A. T. (2003). Consequences of global climate change for
- 510 geographic distributions of Cerrado tree species. *Biota Neotropica*, 3, 1–14.
- 511 Eckert, C. G., Samis, K. E. & Lougheed, S. C. (2008). Genetic variation across species'
- 512 geographical ranges: the central-marginal hypothesis and beyond. *Molecular Ecology*,
- 513 17, 1170–1188. doi: 10.1111/j.1365-294X.2007.03659.x.

- 514 Fiaschi, P. & Pirani, J. R. (2009). Review of plant biogeographic studies in Brazil. *Journal of*
- 515 *Systematics and Evolution*, 47, 477–496. doi: 10.1111/j.1759-6831.2009.00046.x.
- 516 Guerin, G. R., Ruokolainen, L. & Lowe, A. J. (2015). A georeferenced implementation of
- 517 weighted endemism. *Methods in Ecology and Evolution*, 6, 845–852. doi:
- 518 10.1111/2041-210X.12361.
- 519 Harrison, S. & Noss, R. (2017). Endemism hotspots are linked to stable climatic refugia.
- 520 *Annals of Botany*, **119**, 207–214. doi: 10.1093/aob/mcw248.
- 521 Hijmans, R. J. & van Etten, J. (2014) *Raster: Geographic Data Analysis and Modeling. R*
- 522 Package Version 2.
- 523 Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005). Very high
- resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, 25, 1965–1978. doi: 10.1002/joc.1276.
- Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. (2013) *Dismo: Species Distribution Modeling. R Package Version 0.9–3.*
- 528 Hortal, J., Triantis, K. A., Meiri, S., Thébault, E. & Sfenthourakis, S. (2009). Island species
- 529 richness increases with habitat diversity. *American Naturalist*, 174, E205–E217. doi:
- 530 10.1086/645085.
- Klink, C. A. & Machado, R. B. (2005). Conservation of the Brazilian Cerrado. *Conservation Biology*, 19, 707–713. doi: 10.1111/j.1523-1739.2005.00702.x.
- 533 Ledru, M. P. (2002). Late Quaternary history and evolution of the Cerrados as revealed by
- 534 palynological records. In: P.S. Oliveira, R.J. Marquis (Eds.), The Cerrados of Brazil:
- 535 ecology and natural history of a neotropical savanna (Vol. 1, pp. 33–50). New York,
- 536 NY: Columbia University Press.
- 537 Lima, J. S., Telles, M. P. C., Chaves, L. J., Lima-Ribeiro, M. S., Collevatti, R. G.
- 538 (2017).Demographic stability and high historical connectivity explain the diversity of

539	a savanna tree species in the Quaternary. Annals of Botany, 119, 645-657. doi:
540	10.1093/aob/mcw257.
541	Marchant, R., Cleef, A., Harrison, S. P., Hooghiemstra, H., Markgraf, V., van Boxel, J.,
542	Wille, M. (2009). Pollen-based biome reconstructions for Latin America at 0, 6000
543	and 18 000 radiocarbon years ago. Climate of the Past, 5, 725-767. doi: 10.5194/cp-
544	5-725-2009.
545	Mendonça, R. C., Felfili, J. M., Walter, B. M. T., Júnior, M. C. S., Rezende, A. V.,
546	Filgueiras, T. S. & Nogueira, P. E. (1998). Flora vascular do Cerrado. In S. M. Sano
547	& S. P. Almeida (Eds.), Cerrado: Ambiente e Flora (Vol. 1, pp. 289-556). Brasília,
548	DF: EMBRAPA.
549	Nogueira, C., Ribeiro, S., Costa, G. C., Colli, G. R. (2011). Vicariance and endemism in a
550	Neotropical savanna hotspot: distribution patterns of Cerrado squamate reptiles.
551	Journal of Biogeography, 38, 1907–1922. doi: 10.1111/j.1365-2699.2011.02538.x.
552	Oliveira-Filho, A. T. (2017) NeoTropTree, Flora arbórea da Região Neotropical: um banco
553	de dados envolvendo biogeografia, diversidade e conservação. Universidade Federal
554	de Minas Gerais. < http://www.neotroptree.info>.
555	Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. (2006).
556	Simulating arctic climate warmth and icefield retreat in the Last Interglaciation.
557	Science, 311, 1751–1753. doi: 10.1126/science.1120808.
558	Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. (2007). Predicting
559	species distributions from small numbers of occurrence records: a test case using
560	cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.
561	Pennington, R. T., Prado, D. E. & Pendry, C. A. (2000). Neotropical seasonally dry forests
562	and Quaternary vegetation changes. Journal of Biogeography, 27, 261-273. doi:

10.1046/j.1365-2699.2000.00397.x.

564	Phillips, S. J., And	lerson. R. P. &	Schapire, R. E. ((2006). Maximum er	ntropy modeling of

- 565 species geographic distributions. *Ecological Modelling*, 190, 231–259. doi:
- 566 10.1016/j.ecolmodel.2005.03.026.
- 567 Pironon, S., Villellas, J., Morris, W. F., Doak, D. F. & García, M. B. (2015). Do geographic,
- 568 climatic or historical ranges differentiate the performance of central versus peripheral
- 569 populations? *Global Ecology and Biogeography*, 24, 611–620. doi:
- 570 10.1111/geb.12263.
- 571 Prado, D. E. & Gibbs, P. E. (1993). Patterns of species distributions in the dry seasonal
- forests of South America. *Annals of the Missouri Botanical Garden*, 80, 902–927. doi:
 10.2307/2399937.
- 574 Ribeiro, J. F. & Walter, B. M. T. (1998). Fitofisionomias do bioma Cerrado. In S.M. Sano &
- 575 S.P. Almeida (Ed.), *Cerrado: ambiente e flora* (pp. 87–166). Brasília: Embrapa
 576 Cerrados.
- 577 Santos, M. G., Nogueira, C., Giugliano, L. G., Colli, G. R. (2014). Landscape evolution and
- 578 phylogeography of Micrablepharus atticolus (Squamata, Gymnophthalmidae), an
- 679 endemic lizard of the Brazilian Cerrado. *Journal of Biogeography*, 41, 1506–1519.
- 580 doi: 10.1111/jbi.12291.
- 581 Simon, M. F. & Proença, C. (2000). Phytogeographic patterns of Mimosa (Mimosoideae,
- 582Leguminosae) in the Cerrado biome of Brazil: an indicator genus of high-altitude583centers of endemism? *Biological Conservation*, 96, 279–296. doi: 10.1016/S0006-
- 584 3207(00)00085-9.
- Slaton, M. R. (2015). The roles of disturbance, topography and climate in determining the
 leading and rear edges of population range limits. *Journal of Biogeography*, 42, 255–
 266. doi: 10.1111/jbi.12406.

27

	27
588	Soberón, J. & Peterson, A. T. (2005). Interpretation of models of fundamental ecological
589	niches and species' distributional areas. Biodiversity Informatics, 2, 9-32. doi:
590	10.17161/bi.v2i0.4.
591	Soule, M. (1973). The epistasis cycle: a theory of marginal populations. Annual Review of
592	Ecology and Systematics, 4, 165–187. doi: 10.1146/annurev.es.04.110173.001121.
593	Steinbauer, M. J., Field, R., Grytnes, J. A., Trigas, P., Ah-Peng, C., Attorre, F.,
594	Beierkuhnlein, C. (2016). Topography-driven isolation, speciation and a global
595	increase of endemism with elevation. Global Ecology and Biogeography, 25, 1097-
596	1107. doi: 10.1111/geb.12469.
597	Svenning, J. C., Normand, S. & Kageyama, M. (2008). Glacial refugia of temperate trees in
598	Europe: insights from species distribution modelling. Journal of Ecology, 96, 1117-
599	1127. doi: 10.1111/j.1365-2745.2008.01422.x.
600	Thuiller, W. (2004). Patterns and uncertainties of species' range shifts under climate change.
601	Global Change Biology, 10, 2020–2027.

- 602 Turchetto-Zolet, A. C., Pinheiro, F., Salgueiro, F. & Palma-Silva, C. (2013).
- 603 Phylogeographical patterns shed light on evolutionary process in South America.

604 *Molecular Ecology*, 22, 1193–1213. doi: 10.1111/mec.12164.

- van der Hammen, T. (1974). The Pleistocene changes of vegetation and climate in tropical
 South America. *Journal of Biogeography*, 1, 3. doi: 10.2307/3038066.
- Welch, B. L. (1938). The significance of the difference Between two means when the
- 608 population variances are unequal. *Biometrika*, 29, 350–362. doi: 10.1093/biomet/29.3609 4.350.
- 610 Werneck, F. P. (2011). The diversification of eastern South American open vegetation
- 611 biomes: historical biogeography and perspectives. *Quaternary Science Reviews*, 30,
- 612 1630–1648. doi: 10.1016/j.quascirev.2011.03.009.

613	Werneck, F. P., Costa,	G. C., Colli, G. R.	, Prado, D. E. & Sites Jr, .	J. W. (2011). Revisiting

- 614 the historical distribution of Seasonally Dry Tropical Forests: new insights based on
- 615 palaeodistribution modelling and palynological evidences. *Global Ecology and*
- 616 *Biogeography*, 20, 272–288.
- 617 Werneck, F. P., Nogueira, C., Colli, G. R., Sites, J. W. & Costa, G. C. (2012). Climatic
- 618 stability in the Brazilian Cerrado: implications for biogeographical connections of
- 619 South American savannas, species richness and conservation in a biodiversity hotspot.
- 620 *Journal of Biogeography*, 39, 1695–1706. doi: 10.1111/j.1365-2699.2012.02715.x.

29

- 622 **Data accessibility statement**: The weighted endemism raster data generated in this study are
- 623 available as raster grids from the Pangaea database: <u>https://issues.pangaea.de/browse/PDI-</u>
- 624 <u>17312</u>. The GBIF material list used for the endemism maps and models is available as
- 625 supplementary material.

30

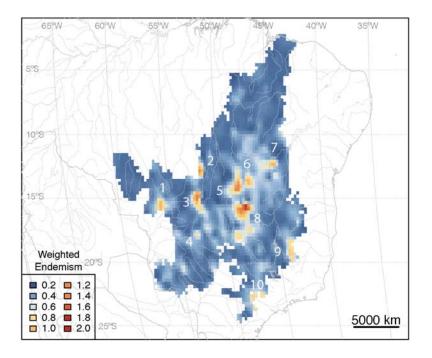
627 **Table 1**. Mean values and confidence intervals of the variances of 19 bioclimatic variables

628 for valley and plateau environments in the Brazilian Cerrado based on 1000 bootstrap

629 replicates. Variances were calculated by comparing cell values for 1000 random points within

- 630 each landscape unity for the present, mid-Holocene (6,000 years before present), Last Glacial
- 631 Maximum (22,000 years before present), and Last Interglacial (130,000 years before present).
- 632 *t-values*: t-values calculated with a paired t-test. (*) p-value > 0.01.

		Val	leys	Plateaus			
Variabl			95%		95%	t-	
e	Description	Mean	ci	Mean	ci	value	
bio1	Mean Annual Temperature	386	6	392	7	27	*
bio2	Mean Diurnal Range	132	-19	113	-20	-221	*
bio3	Isothermality	22	-5	16	-5	-440	×
	-	28558	-	20304	-		
bio4	Temperature Seasonality	2	82242	0	82843	-538	>
	Max. Temperature of Warmest						
bio5	Month	569	47	615	46	152	>
	Min. Temperature of Coldest						
bio6	Month	909	-232	676	-234	-501	:
bio7	Annual Temperature Range	468	-139	329	-140	-469	:
	Mean Temperature of Wettest						
bio8	Quarter	282	47	329	46	287	
	Mean Temperature of Driest						
bio9	Quarter	820	-115	705	-116	-252	:
	Mean Temperature of Warmest						
bio10	Quarter	422	-6	416	-7	-31	
	Mean Temperature of Coldest						
bio11	Quarter	555	-29	525	-30	-81	:
bio12	Annual Precipitation	89629	- 18262	71271	- 18455	-373	:
bio13	Precipitation of Wettest Month	3440	-1174	2263	-1180	-764	
bio14	Precipitation of Driest Month	137	-44	92	-45	-313	:
bio15	Precipitation Seasonality	194	-45	149	-45	-304	:
bio16	Precipitation of Wettest Quarter	25724	-9928	15775	-9970	-923	
bio17	Precipitation of Driest Quarter	1871	-623	1245	-630	-338	
bio18	Precipitation of Warmest Quarter	46822	-9568	37211	-9655	-431	
01010	recipitation of warmest Qualter	70022	-7508	57411	-7055	-+31	
bio19	Precipitation of Coldest Quarter	58886	28905	29912	29043	-821	:


634 **Table 2**. Generalized linear model for endemism, elevation, marginality and variances of

635 bioclimatic variables among the Last Interglacial, Last Glacial Maximum, mid-Holocene and

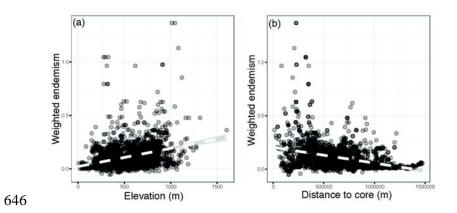
636 present.

			Std.	t-	
	Description	Estimate	error	value	Pr(> t)
	I I	9.14E-	4.24E-		0.031
(Intercept)		02	02	2.156	2 *
× 1 /		1.30E-	1.39E-		<2e- **
Elevation		04	05	9.406	16 *
Marginalit		-1.13E-	1.01E-	-	<2e- **
y	Distance to centroid	07	08	11.18	16 *
5		1.09E-	2.48E-		0.964
bio1	Mean Annual Temperature	05	04	0.044	9
	*	-2.09E-	2.54E-	-	0.409
bio2	Mean Diurnal Range	04	04	0.825	3
	-	-4.65E-	5.89E-	-	0.429
bio3	Isothermality	04	04	0.789	9
		1.28E-	4.26E-		0.763
bio4	Temperature Seasonality	08	08	0.301	4
	Max. Temperature of Warmest	-7.00E-	3.97E-	-	0.078
bio5	Month	05	05	1.763	1.
	Min. Temperature of Coldest	-7.21E-	7.96E-	-	0.365
bio6	Month	05	05	0.906	3
		8.14E-	7.38E-		0.269
bio7	Annual Temperature Range	05	05	1.104	8
	Mean Temperature of Wettest	1.14E-	8.39E-		0.175
bio8	Quarter	04	05	1.354	8
	Mean Temperature of Driest	-4.92E-	8.67E-	-	0.570
bio9	Quarter	05	05	0.567	9
	Mean Temperature of Warmest	4.50E-	8.47E-		0.595
bio10	Quarter	05	05	0.532	1
	Mean Temperature of Coldest	1.04E-	1.01E-	1.000	0.004
bio11	Quarter	04	04	1.028	0.304
1 : 10		1.12E-	1.08E-	1.0.4	0.298
bio12	Annual Precipitation	06	06	1.04	5
1 . 10		4.85E-	8.27E-	0.506	0.557
bio13	Precipitation of Wettest Month	06 2.96E		0.586	8
h = 14	Dressinitation of Drisst Manth	-2.86E-	3.44E-	-	0.404
bio14	Precipitation of Driest Month	04 2.01E	04	0.833	9
bio15	Draginitation Secondity	2.01E-	2.77E-	0.073	0.942 1
bio15	Precipitation Seasonality	05 -2.31E-	04 2.11E	0.075	1
bio16	Precipitation of Wettest Quarter	-2.31E- 06	2.11E- 06	- 1.097	0.273
01010	recipitation of wettest Quarter	8.16E-	2.94E-	1.077	0.273
bio17	Precipitation of Driest Quarter	8.10E- 06	2.94E- 05	0.277	0.781
01017	recipitation of Direst Quarter	2.17E-	1.33E-	0.277	0.103
bio18	Precipitation of Warmest Quarter	2.1712-07	1.33 <u>L</u> - 07	1.63	0.103
01010	r recipitation of warmest Qualter	07	07	1.05	2

			6.99E-	9.61E-			
	bio19	Precipitation of Coldest Quarter	08	08	0.727	0.467	
637							

638

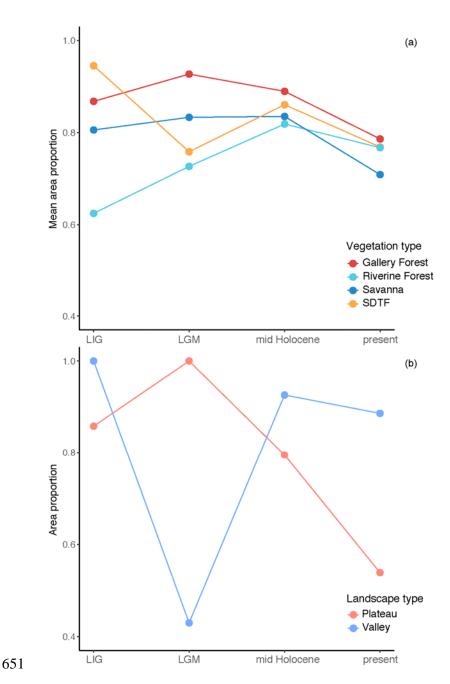
639 **Figure 1**. Weighted endemism (Guerín et al., 2015) map for woody species of the Cerrado 640 domain. Grid cells are 0.25×0.25 degrees wide. Map in Mollweide projection. Numbers

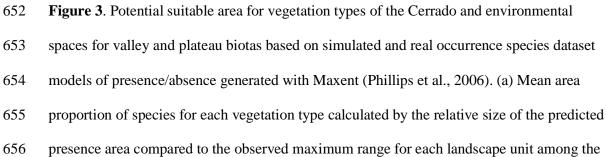

I I I J

641 indicate geographic regions with higher endemism, identified as the following: (1) Chapada

dos Guimarães; (2) Serra do Roncador; (3) Araguaia Valley; (4) Chapada das Emas; (5) Serra

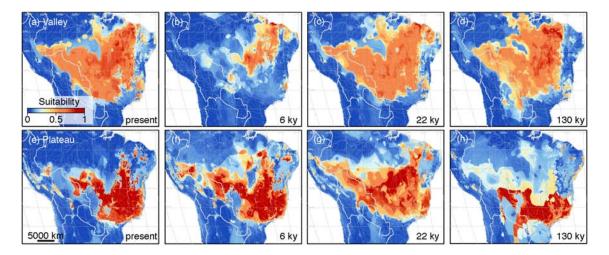
dos Pirineus; (6) Chapada dos Veadeiros; (7) Chapada do São Francisco; (8) Planalto do


644 Distrito Federal; (9) Serra do Cipó; (10) Serra de Botucatu.



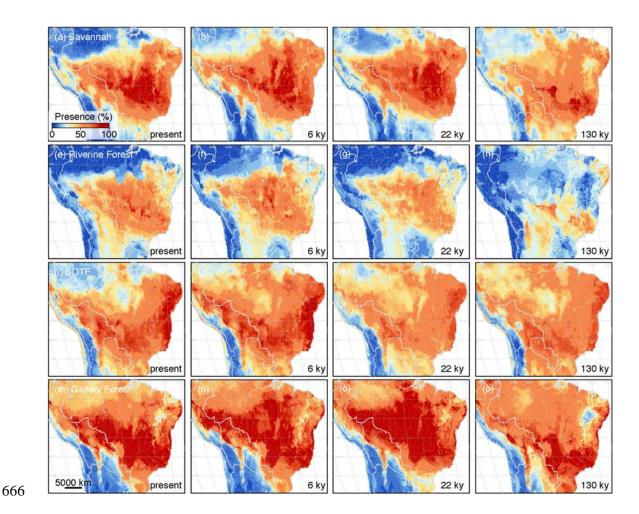
647 Figure 2. Linear models showing the correlation between weighted endemism, elevation, and

- distance to the core. (a) Weighted endemism vs. elevation; (b) Weighted endemism vs.
- 649 distance to the core.


35

36

- 657 four modeled scenarios. (b) Estimated environmental space proportion for plateaus and
- 658 valleys among the four modeled scenarios.



660

661 **Figure 4**. Potential suitable area for valley and plateau biotas of the Cerrado domain based on

- simulated dataset models of presence/absence generated with Maxent (Phillips et al., 2006).
- 663 The area proportion is the relative size of the predicted presence compared to the maximum
- observed range for each landscape unit among the four modeled scenarios.
- 665

38

667 Figure 5. Potential suitable area for valley and plateau biotas of the Cerrado domain based on

simulated dataset models of presence/absence generated with Maxent (Phillips et al., 2006).

669 The area proportion is the relative size of the predicted presence compared to the maximum

- 670 observed range for each landscape unit among the four modeled scenarios.
- 671
- 672