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ABSTRACT 35 
With the widespread uptake of 2D and 3D single molecule localization microscopy, a large set of 36 
different data analysis packages have been developed to generate super-resolution images. To guide 37 
researchers on the optimal analytical software for their experiments, we have designed, in a large 38 
community effort, a competition to extensively characterise and rank these options. We generated 39 
realistic simulated datasets for popular imaging modalities – 2D, astigmatic 3D, biplane 3D, and double 40 
helix 3D – and evaluated 36 participant packages against these data. This provides the first broad 41 
assessment of 3D single molecule localization microscopy software, provides a holistic view of how 42 
the latest 2D and 3D single molecule localization software perform in realistic conditions, and 43 
ultimately provides insight into the current limits of the field.   44 
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INTRODUCTION 45 
Image processing software is central to single molecule localization microscopy (SMLM), which 46 
delivers an order of magnitude resolution improvement on diffraction limited conventional 47 
fluorescence microscopy, from 250 nm to approximately 20 nm resolution, by temporal separation of 48 
fluorophores within a sample1–3. Efficient and automated image processing is essential to extract the 49 
super-resolved positions of individual molecules from thousands of raw microscope images, 50 
containing millions of blinking fluorescent spots. 51 

Improvements in SMLM image processing algorithms have been crucial in maximizing spatial 52 
resolution and in reducing the imaging time of SMLM for compatibly with live cell imaging4–6. If SMLM 53 
is to achieve a resolving power approaching that of electron microscopy, the analysis software 54 
employed needs to be robust, accurate, and performing at current algorithmic limits. This can only be 55 
achieved through rigorous quantification of SMLM software performance. 56 

The first localization microscopy software challenge was carried out in 2013, to enable robust 57 
benchmarking of 2D localization microscopy software packages7. But biology is not just a 2D problem, 58 
and a key focus of localization microscopy is the imaging of 3D imaging of nanoscale cellular 59 
processes8,9. 3D localization microscopy is a more difficult image processing problem than 2D SMLM. 60 
In addition to finding the center of diffraction limited spots to super-resolve lateral position,  3D SMLM 61 
algorithms must also extract axial information from the image, usually by measuring small changes in 62 
the shape of a fluorophore’s PSF10.  63 

There are roughly three common approaches for 3D SMLM. First, point spread function engineering, 64 
where the axial asymmetry of the microscope point spread function (PSF) is increased by introducing 65 
intentional aberrations in the system, ranging from simple astigmatism10 to more complex PSF 66 
manipulation such as the double helix PSF method11. Second, biplane or multiplane imaging, where 67 
axial position is measured based on simultaneous measurement of PSF shape at two or more focal 68 
planes12. Third, dual objective based interferometry, where Z-position is calculated from single photon 69 
interference between opposing objectives13. Multiplane and PSF engineering methods typically obtain 70 
axial resolutions on the order of 50 nm10,11. Interferometry achieves the best axial resolution, 10-20 71 
nm13, but is not yet widely adopted.  72 

Despite the widespread use of 3D localization microscopy, and challenging nature of 3D SMLM image 73 
processing, the performance of software for 3D single molecule localization microscopy has previously 74 
only been assessed  for 2 or 3 software packages at a time, and without standard test data or metrics14–75 
17. In the absence of common reference datasets and reliable assessment procedure of 3D software 76 
performance, it is not possible to objectively assess how different software affects final image quality, 77 
or which algorithmic approaches are most successful. Crucially, end-users cannot determine which 3D 78 
SMLM software package and imaging modality is optimal for their application. 79 

We therefore ran the first 3D localization microscopy software challenge, to assess the performance 80 
of 3D SMLM software. We generated synthetic datasets for three popular 3D SMLM modalities: 81 
astigmatic imaging, biplane imaging and double helix point spread function microscopy. We also ran 82 
a second 2D localization microscopy software challenge, to reassess the 2D SMLM software state-of-83 
the art on new, tougher, more realistic datasets.  84 

Our simulations incorporate experimentally acquired point spread functions for maximal authenticity, 85 
used signal and noise levels based closely on common experimental conditions, and incorporated a 86 
realistic 4-state model of fluorophore photophysics18. Our synthetic data was designed to mimic two 87 
common classes of cellular structure: narrow line-like microtubules (MT) and larger tubes similar to 88 
the endoplasmic reticulum (ER) or mitochondria. Our simulations also included conditions with low 89 
density (LD) of active fluorophores, used experimentally to obtain maximal resolution, and with high 90 
density (HD) of active fluorophores, used experimentally for fast or live cell imaging. 91 
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RESULTS 92 

Competition design 93 
We established a large committee from within the SMLM research community, including 94 
experimentalists and software developers, to define the scope of the challenge, ensure realism of the 95 
datasets and define analysis metrics. We further opened this discussion to the whole community, 96 
through an open forum, discussing best practices for the implementation of this contest19.  97 

Thirty-six software packages have been entered in the competition thus far (Table S1). Excitingly, 98 
participation in the competition actually led at least 8 teams to their software to support additional 99 
3D SMLM modalities, showing how competition fosters microscopy software development. 100 

In 2016, we ran a first round of the 3D SMLM competition with explicit submission deadlines, with 30 101 
competitor teams, culmination in a special session at the 6th annual Single Molecule Localization 102 
Microscopy Symposium (SMLMS 2016). Since then, the challenge has been opened to continuously 103 
accept new entries. We have had 12 new registrations of which 5 have submitted localizations, 104 
including a multiple best-in-class performer (SMAP-201820, an updated version of previously entered 105 
software) demonstrating the utility of the competition as an evolving measure of the state of the field.  106 

Realistic 3D simulations 107 
Testing super-resolution software on experimental data lacks the ground truth information required 108 
for rigorous quantification of software performance. Therefore, realistic simulated 3D SMLM datasets 109 
are required.  After comparison of simulated microscope PSFs with multiple experimental PSFs from 110 
SMLM microscopes around the world, we observed that a critical challenge to realistic 3D SMLM 111 
simulations was to accurately model the experimental microscope PSF for each 3D modality. Even 112 
experimental 2D PSFs showed significant aberrations away from the focal plane (Fig S9). 113 

3D SMLM inherently involves addition of aberrations to the microscope PSF to encode the Z-position 114 
of the molecule. For the PSF models included in the competition: 2D, astigmatic (AS), double helix 115 
(DH), and biplane (BP), we observed that the PSFs showed complex aberrations not well described by 116 
simple analytical models (Fig S9). We thus combined experimental 3D PSFs with simulated ground 117 
truth by performing simulations using PSFs directly derived from experimental calibration data (Fig 1, 118 
Methods).   The experimental PSFs used to generate the simulated data are available online (Methods) 119 
and are representative of 3D SMLM PSFs obtained on typical microscopes.  120 

For the 3D competition, we simulated synthetic 25 nm diameter microtubules (Fig 1). For the 2D 121 
competition, in addition to synthetic microtubules (MT), we simulated larger diameter 150 nm 122 
cylinders, designed to approximate larger cellular structures such as mitochondria and the 123 
endoplasmic reticulum (ER) (Fig 1). We incorporated a 4-state model of fluorophore photophysics, 124 
including a transient dark state (dye “blinking”) and a bleaching pathway (Fig S1C).  125 

As performance at different density of active emitters is a key challenge for SMLM software, we 126 
generated 3D competition datasets at both sparse emitter density (0.2 mol. [molecule] μm-2) and high 127 
emitter density (2 mol.  μm-2). We additionally generated a very high density dataset (5 mol.  μm-2) for 128 
the 2D competition. 129 

We generated data at three different signal-to-noise ratio (SNR) levels, based on real signal to noise 130 
levels encountered under common SMLM experimental scenarios: fixed cells antibody labelled with 131 
organic dye10, fluorescent protein labelling1, and live cell affinity dye labelling21,22. 132 

Together, these simulations closely resemble experimental 3D and 2D data under a range of 133 
challenging conditions of SNR, spot density, axial thickness and test structure summarized in Table S2. 134 
In addition, we provide also a z-stack of extremely bright beads for software calibration. The 135 
competition datasets are available online (Methods). 136 
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Quantitative performance metrics for comparison of 3D software 137 
We assessed software performance by 24 quality metrics (Supplementary Note 2), in four categories: 138 
1) single molecule localization error, 2) ability to successfully detect molecules, 3) image-based 139 
resolution metrics and 4) image-based signal to noise ratio (Methods). We also recorded software run 140 
time. The complete set of summary statistics, axially resolved performance and super-resolved images 141 
is available for each competition software on the competition website. We generated an online 142 
leaderboard23, allowing easy ranking of each software by each metric. Software results can be 143 
accessed interactively through a visualization interface that allows side-by-side comparison of results 144 
for multiple software packages (Fig S10). 145 

In order to rank overall software performance, we performed a principal component analysis of core 146 
metrics to identify key variables (Fig S14). A correlation matrix identified four major blocks of metrics 147 
showing strong codependency (Fig S14B) corresponding closely to the manually identified categories 148 
above. We chose to focus further analysis primarily on the metrics directly derived from single 149 
molecule localizations, rather than image derived metrics, which we reasoned would be sensitive to 150 
additional factors such as image rendering method. We thus chose representative metrics from the 151 
first two blocks:  152 

1. Single molecule localization error. The foremost consideration for localization software is how 153 
accurately it finds the position of labelled molecules. This was quantified as the root mean squared 154 
localization error (RMSE) between the measured molecule position and the ground truth, in both the 155 
lateral (XY) and axial (Z) dimensions.   156 

2. Ability to successfully detect fluorescent molecules. In addition to localization precision, SMLM 157 
image resolution also depends critically on number of localized molecules24, so it is crucial for SMLM 158 
software to accurately detect a large fraction of molecules in a dataset, and minimize false 159 
localizations. For every frame, we identified the localizations that are close enough to a ground-truth 160 
position as true-positives (TP), the spurious localizations as false-positives (FP) and the undetected 161 
molecules as false-negatives (FN). We then computed the Jaccard index (JAC, %), which measures the 162 
fraction of correctly detected molecules in a dataset: 163 

 164 

The average JAC, lateral RMSE and axial RMSE measured the performance of a software. A very good 165 
RMSE should always read in context of the Jaccard index to check if good RMSE is not obtained only 166 
for the brightest molecules. 167 

For ranking purpose, we developed a single summary statistic for overall evaluation of software 168 
performance, which we term the efficiency (E), encapsulating both the software’s ability to find 169 
molecules, measured by the Jaccard index, and the software’s ability to precisely localize molecules.  170 

 171 
The trade-off between these two metrics is controlled by a parameter α. In a retrospective analysis, 172 
we chose α = 1 nm-1 for the lateral efficiency Elat, α = 0.5 nm-1 for the axial efficiency Eax, based on the 173 
linear regression slope between the localization errors and Jaccard index (Fig 14A). Using this 174 
definition, an average software performance has an efficiency in the range 25-75, ground-truth has 175 
the maximum efficiency of 100. Overall 3D efficiency was calculated as the average of lateral and axial 176 
efficiencies. 177 
Performance of 3D software  178 
Complete rankings for each imaging modality and spot density are presented (Fig 2, S13), together 179 
with summary information on all competition software (Table S1, Supplementary Note 1). As these 180 
data are continuously updated on the competition website, this resource provides microscopists with 181 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 5, 2018. ; https://doi.org/10.1101/362517doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=%5Cmathrm%7BE%7D%20=%20100%20-%20%5Csqrt%20%7B%5C%20(100-%5Cmathrm%7BJAC%7D)%5E2%20%20+%20%5Calpha%5E2%20%5Ccdot%20%5Cmathrm%7BRMSE%7D%5E2%20%7D
https://doi.org/10.1101/362517
http://creativecommons.org/licenses/by/4.0/


an easy quick reference for the current state of the art, including current best-in-class performers for 182 
each category. 183 

After assembling an overall summary of best performers for each competition category, we 184 
investigated the performance of software within each imaging modality.  185 

Astigmatic localization microscopy 186 

Astigmatic localization microscopy is probably the most popular imaging 3D SMLM modality, reflected 187 
by the highest number of software submissions in the 3D competition (Fig 2). For astigmatism, we 188 
observed a large spread of software performance, even for the most straightforward high SNR, low 189 
spot density (LD) conditions (Fig 3A-B, Table S5). The best-in-class software (SMAP-2018) has 190 
significantly better localization error and Jaccard index performance than average (lateral RMSE 26 191 
nm best vs 38 nm average, axial RMSE 29 nm best vs 66 nm average, Jaccard index 85 % best vs 74 % 192 
average). Clearly, the quality of the image reconstruction depends strongly on choice of 3D software. 193 

To investigate the reasons for software variation, we inspected plots of software performance as a 194 
function of axial position in the low density, high SNR dataset for best-in-class and representative 195 
middle-range software (Fig S6A). We observed that the key cause of the spread in software 196 
performance is variation in software performance away from the focal plane. Near the focal plane, 197 
most software packages perform well. However, the axial and lateral RMSE away from the plane of 198 
focus is significantly higher for the best in class software, and the Jaccard index is also slightly improved 199 
(Fig 6A). This is also visibly apparent in the super-resolved images (Fig 4, top panel). We observed that 200 
best-in-class software had a Z-range (the FWHM range of axially resolved software recall, Methods) of 201 
1170 nm, greater than two-thirds of the simulated range. Outside this range, the recall and Jaccard 202 
index dropped sharply, probably due the large increase in PSF size and decrease in effective SNR at 203 
significant defocus (Fig S9). 204 

When we examined results for the low SNR, low density dataset (Fig 2B, 3B), we found an expected 2-205 
fold degradation in best-in-class RMSE (lateral RMSE 39 nm, axial RMSE 60 nm), due to the decrease 206 
in image SNR. However, the best-in-class software (SMolPhot) Jaccard index was effectively constant 207 
between the low and high SNR datasets (86 % vs 85 %), although the Z-range did drop at lower SNR 208 
(930 nm vs 1120 nm). The best astigmatism software packages were thus remarkably good at finding 209 
spots at low SNR, even away from the plane of focus. 210 

We analyzed how close software performance was to theoretical limits by calculating the Cramer-Rao 211 
Lower Bound (CRLB) as a function of axial position for each dataset and comparing it to the best-in-212 
class software results (Fig S7, Fig S8). Close to the focus, best-in-class software was close to CRLB 213 
performance, but significant deviations for the CRLB limit occurred > 200 nm. This could be due to the 214 
difficulty in actually detecting the spots away from focus. 215 

When we examined astigmatic software performance for the challenging high spot density datasets 216 
(Fig 2B, 3), performance was reduced. For the high SNR high spot density dataset (best software, 217 
SMolPhot), localization error increased and Jaccard index decreased significantly compared to the low 218 
density condition (lateral RMSE best HD 51 nm vs best LD 27 nm, axial RMSE best HD 66 nm vs best 219 
LD 29 nm, Jaccard index best HD 66 % vs best LD 85 %).  Inspection of the super-resolved images (Fig 4) 220 
nevertheless shows acceptable results for the HD dataset, particularly in the lateral dimension. In 221 
many circumstances, the performance reduction at 10x higher spot density should be acceptable for 222 
10x faster, potentially live-cell-compatible, imaging speed. We also observed a large spread of 223 
software performance for the high density datasets, probably because a significant fraction of the 224 
software packages were primarily designed for low density conditions.  225 

We observed poor performance for the most challenging low SNR high spot density astigmatism 226 
dataset (Fig 2, 3, S3, best software SMolPhot). Best-in-class  localization precision and Jaccard index 227 
decreased significantly (lateral RMSE 76 nm, axial RMSE 101 nm, Jaccard index 58 %). These data 228 
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suggest that low SNR high density 3D astigmatic localization microscopy entails a significant reduction 229 
in image resolution.  230 

Double helix point spread function localization microscopy 231 

We next analyzed the performance of the double helix software (Fig S13). For the software in the high 232 
SNR low spot density condition, double helix software showed more uniform performance than 233 
astigmatism. Best-in-class software (SMAP-2018) showed only a limited improvement compared with 234 
average software (Fig 3B, lateral RMSE, 27 nm best vs 37 nm average; axial RMSE 21 nm best vs 34 nm 235 
average; Jaccard index 77 % best vs 73 % average). In general software localization performance was 236 
close to the CRLB (Fig S7, S8). We observed that performance of the software away from the focal 237 
plane is relatively uniform (Fig 4, S6A), and best-in-class Z-range at high SNR was large at 1180 nm (Fig 238 
S6). Double helix imaging may show less software-to-software variation and large Z-range at low spot 239 
density than astigmatic imaging because the PSF shape and intensity are fairly constant as a function 240 
of Z – compared to astigmatic imaging, where spot size, shape and intensity vary greatly as a function 241 
of Z (Fig S9).  242 

Double helix software performance decreased significantly for the low spot density low SNR condition 243 
(best software SMAP-2018), particularly in terms of best-in-class Jaccard index (66 % low SNR vs 77 % 244 
high SNR, Figure 3B, S3, S13A). DH Jaccard index was also significantly worse than astigmatism results 245 
at either high or low SNR (85 % high SNR, 86 % low SNR). This indicates that it was quite hard to 246 
successfully find localizations in the low SNR DH dataset, likely because the large size of the DH PSF 247 
spreads emitted photons over a large area, lowering effective image SNR.   248 

Double helix software performed poorly on the high spot density datasets at high SNR (best software 249 
CSpline), especially in terms of the Jaccard index (Fig 3B, S13A, best lateral RMSE  67 nm, best axial 250 
RMSE 69 nm, best Jaccard index 46 %). The poor performance at high spot density is again probably 251 
because the large DH PSF size increases spot density and decreases SNR (Fig S9). DHPSF performance 252 
at high spot density and low SNR was also not reliable (Fig. 3B, S13A, best software SMAP-2018). 253 

Biplane localization microscopy 254 

Best-in-class biplane software (SMAP-2018), at low spot density and for both high and low SNR, 255 
delivered the best performance in any modality (high SNR: lateral RMSE 12.3 nm, axial RMSE 21.7 nm, 256 
Jaccard 87 %), despite a slightly decreased image SNR for the biplane simulations (Methods). We 257 
observed a significant spread in software performance in terms of lateral RMSE and Jaccard index, 258 
with the best-in-class software significantly outperforming the other competitors (Fig S13B, 2D). At 259 
low spot density, best-in-class biplane software (SMAP-2018) showed good performance as a function 260 
of Z, with high Jaccard index over almost the entire Z-range of the simulations, and with a Z-range of 261 
1200 nm at high SNR (Fig S6A, C, Table S5). The axial RMSE was relatively uniform as a function of Z 262 
and close to the CRLB limit (Fig S7).  As axial and lateral RMSE are both averaged over the entire Z-263 
range, the strong biplane results arise from good performance across a large Z-range (Fig S6). 264 

At high spot density and high SNR, best-in-class biplane software (SMAP-2018) showed acceptable 265 
super-resolved performance (Fig 3B, 4, S13B, best lateral RMSE 43 nm, best axial RMSE 49 nm, best 266 
Jaccard index 61 %). Uniquely among the 3D modalities, best-in-class biplane software also gave 267 
acceptable performance at high spot density and low SNR (Fig 3B, 4, S13B, best lateral RMSE 55 nm, 268 
best axial RMSE 72 nm, best Jaccard index 61 %, best software SMAP-2018). 269 

Performance of 2D software  270 
Alongside the 3D challenge, we ran a second edition of the 2D localization microscopy software 271 
challenge7 to assess how the latest 2D software performed on more challenging, more realistic 272 
datasets, and to provide an assessment of how the field had progressed since the last challenge. We 273 
used the new simulation software, including an experimentally derived PSF and a realistic blinking 274 
model, and also simulated a very high spot density condition (5 molecules/ μm2). We created a more 275 
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spatially extended test structure, "pseudo-endoplasmic reticulum" (pseudo-ER), composed of 150 nm 276 
diameter hollow tubes, to avoid artefacts due to 1D simulated structures25. We generated two 277 
different imaging conditions with overall similar SNR but different brightness properties; one with low 278 
fluorophore brightness and low autofluorescence (the low SNR condition for the 3D challenge, 279 
designed to simulate fluorescent protein based SMLM, Fig S4) and one with high fluorophore 280 
brightness and high autofluorescence (to simulate affinity-dye-based live cell SMLM, Fig S5). We used 281 
lateral RMSE, Jaccard index and overall lateral efficiency to rank the 2D software (Fig 2, S2, Table S1).  282 

For the pseudo-ER dataset, at low density, best-in-class software (ADCG) performed well (Fig. S4, S5), 283 
with a Jaccard index of 90 % and lateral RMSE of 31 nm, substantially better than the class average 284 
(Jaccard index 72 %, lateral RMSE 36 nm). Low density results for the dimmer fluorophore 285 
microtubules dataset were similar to the brighter pseudo-ER dataset (Fig S2, best software SMolPhot). 286 
For the very high density 2D dataset, which had 25x higher spot density than the LD dataset, best-in-287 
class software (ADCG) showed excellent performance, with Jaccard index of 75% and lateral RMSE of 288 
45.5 nm (Fig S2). Best-in-class performance (ADCG) on the dimmer fluorophore data at high spot 289 
density was also strong (Fig S2, best Jaccard index 70 %, best lateral RMSE 51 nm).  290 

Algorithms 291 
We identified several classes of algorithm participant software (Table S1):  292 

1) Non-iterative software tends to regroup the pixels in the local neighborhood of the candidates, like 293 
interpolation, center of mass (QuickPALM26) or template matching (WTM27). These (often older) 294 
algorithms are fast but tend to achieve poor performance (Table S1).  295 

2) Single emitter fitting software is usually built on a multi-step strategy of detection, spot localization, 296 
and optional spot rejection. The detection step finds bright spots in noisy images on the pixel grid. The 297 
selection of candidates is usually performed by local maximum search after a denoising filter. Others 298 
rely on more complex algorithms like the wavelet transform (e.g., WaveTracer28).  We did not observe 299 
software ranking to depend significantly on the choice of optimization scheme, least-square, weighted 300 
least-square or maximum-likelihood estimator (Table S1). 301 

3) Multi-emitter fitting software groups clusters of overlapping spots, and simultaneously fits multiple 302 
model PSFs to the data. Typically, fitted spots are added to the cluster until a stopping condition is 303 
met4,5. This leads to improved localization performance at high spot density, at the cost of reduced 304 
speed. This class of software (e.g., 3D-DAOSTORM14, CSpline14, PeakFit, ThunderSTORM29) was 305 
amongst the top performers in each 2D and 3D competition category (Table S1). 306 

As expected, single- and multiple-emitter fitting methods both performed well on low density data 307 
(Table S1); apparently at the densities studied, exclusion of occasionally overlapping spots by single-308 
emitter software is sufficient for strong performance; explicit multi-emitter fitting is not required. For 309 
the 2D challenge, multi-emitter fitting showed a clear advantage over single emitter fitting at high 310 
density (Table S1). Surprisingly however, well-tuned single-emitter fitting algorithms (SMolPhot, 311 
SMAP-2018) outperformed multi-emitter algorithms for the 3D high density conditions.  312 

4) Compressed sensing algorithms. One subset of these algorithms utilize deconvolution with sparsity 313 
constraints to reconstruct super-resolved images30–32.  Although deconvolution approaches can give 314 
good results, they are limited by the necessary use of a sub-pixel grid; increased localization precision 315 
requires smaller grid resolution, which must be balanced against increased computational time. 316 
Recent approaches address this issue by localizing the point sources in a grid-less manner using an 317 
alternating descent conditional gradient scheme under some sparsity constraint (ADCG33, SMfit, 318 
SOLAR_STORM, TVSTORM34). This software class consistently gave the overall best performance for 319 
2D high-density (ADCG33 1st, FALCON32 2nd, SMfit 3rd).  320 
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5) Other approaches. Of the alternative algorithmic approaches used (Table S1), the annihilating filter-321 
based method LEAP35 gave good performance for biplane imaging (the only condition for which it was 322 
entered).  323 

Post-hoc temporal grouping 324 

Because molecule on-time is stochastically distributed across multiple frames, a common post-325 
processing approach to improve localization precision is to group molecules detected multiple times 326 
in adjacent frames, and average their position36. Temporal grouping was used by the top performers 327 
(including SMolPhot37, MIATool38 and SMAP-201820), and is visibly apparent as a more punctate super-328 
resolved image (Fig 4). 329 

Choice of PSF model 330 

Most software used a variant of Gaussian PSF model. A few participants designed more accurate PSF 331 
models (Table S1). Either diffraction theory was used (MIATool38, LEAP35) or spline fitting of an 332 
analytical function to the experimental PSF was adopted (CSpline39, SMAP-201820). Although simple 333 
Gaussian model PSFs were sufficient to obtain best-in-class performance for the 2D and astigmatic 334 
modalities (ADCG33, PeakFit, SMolPhot), top results for the more optically complex biplane and double 335 
helix modalities were exclusively PSF-modelling algorithms (SMAP-2018, CSpline, MIATool, LEAP).  336 

Multi-algorithm packages 337 

Several software packages take a Swiss army knife approach of integrating multiple optional 338 
localization algorithms into one program, to be flexible enough to suit various experimental 339 
conditions20,29. SMAP and ThunderSTORM achieved strong across-the-board performance supporting 340 
this rationale.  341 

DISCUSSION 342 
We performed the first broad evaluation of software for 3D single molecule localization microscopy, 343 
to assess the state of the field and to allow non-specialists to determine the optimal software for their 344 
experiments.  345 

In order to provide a realistic assessment of 3D software performance we tested software on 346 
simulations incorporating experimentally acquired microscope point spread functions. Our 347 
experimental-PSF-derived simulation approach is readily adaptable to novel engineered 3D SMLM 348 
PSFs40 or to the PSF of individual microscopes.  For instance, it would be possible to combine our 349 
derived-PSF approach with the SMLM sample simulation tool SuReSim41 in order to generate ultra-350 
realistic synthetic data, which could then be personalized to each experimentalists sample and 351 
microscope, to easily determine the blocker factors to maximal resolution, for a given experiment.  352 

The strongest conclusion we draw from the 3D localization microscopy challenge is that choice of 353 
localization software greatly affects the quality of final super-resolution data, even at “easy” high SNR, 354 
low spot density conditions. Biplane performance was particularly dependent on software choice, with 355 
only one software (SMAP-201820) achieving near-Cramer-Rao lower bound performance. Double helix 356 
SMLM showed much less sensitivity to choice of software than biplane, and showed poorer 357 
performance overall, with astigmatic SMLM intermediate between the two. The best software in each 358 
modality performed close to the Cramer-Rao lower bounds over a wide focal range and successfully 359 
detected most molecules, even at low signal to noise. Average software in all three modalities was 360 
significantly worse, with the obtained axial resolution being particularly sensitive to software choice.  361 

The second major conclusion of the 3D challenge is that localization software that explicitly includes 362 
the experimental PSF in the fitting model gives a significant performance increase for 3D SMLM. For 363 
the more optically complex biplane and double helix modalities in particular, the best results were 364 
exclusively from software using PSF modelling approaches (SMAP, CSpline, MIATool). This result also 365 
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highlights the need for experimental PSF modelling not only in SMLM software, but also emphasizes 366 
the high degree of experimental realism required of SMLM simulations. The clear performance 367 
advantage of experimental PSF modelling software in the 3D software challenge would have been 368 
entirely unobservable had it been run with a simple analytic PSF. 369 

Of the different algorithm classes, well-tuned single-emitter and multi-emitter fitting algorithms (each 370 
capable of dealing well with occasional molecule overlap) gave good results for low density 3D SMLM. 371 
We also found that several software packages for astigmatic or biplane imaging gave adequate 372 
performance for the challenging case of high molecule densities, as long as the image SNR was high. 373 
Current software packages gave poor performance when molecule density was high and image SNR 374 
was low. These results suggest that, at least with current algorithms, high density 3D SMLM 375 
performance is mediocre at high SNR, and poor at low SNR. Surprisingly, multi-emitter fitting did not 376 
show significant improvement over well-tuned single emitter-fitting for 3D high-density; this may 377 
indicate that significant potential for improvement remains in this category. 378 

The second 2D localization microscopy challenge provided the opportunity to reassess the state of the 379 
field. The performance of best-in-class 2D software over a range of conditions, at both high and low 380 
spot density, is excellent. The performance of the best-in-class software at high spot density (ADCG33) 381 
was only moderately decreased compared with the low spot density results, with nearly identical 382 
molecule detection performance, and a 30 % increase in localization error. Interestingly, the top three 383 
performers in the 2D high density condition were all compressed sensing algorithms (ADCG33, 384 
FALCON32, SMfit). In low density 2D conditions, the best single-emitter, multi-emitter and compressed 385 
sensing algorithms all gave comparable, excellent, performance. We speculate that performance in 386 
this category may now be near optimal levels.  387 

Rapid improvements in sCMOS camera technology mean that these cameras are rapidly becoming a 388 
major platform for single molecule localization microscopy6. Therefore, a key future goal for SMLM 389 
software assessment should be to include sCMOS-specific localization microscopy software. 390 
Furthermore, there remain two important classes of super-resolution microscopy for which software 391 
performance is crucial, but no broad software assessment has yet been performed: fluorescence-392 
fluctuation-based super-resolution microscopies (e.g., 3B42, SOFI43, SSRF44) and structured illumination 393 
microscopy45.  394 

The results of this competition clearly demonstrate the formidable algorithmic performance of the 395 
best 2D and 3D localization microscopy software. However, a key outstanding challenge that often 396 
hinders adoption of new algorithms is that only a small subset of algorithms are packaged in, or 397 
compatible with fast, well-maintained, user-friendly software packages, which include all stages of the 398 
SMLM data analysis pipeline – analysis, visualization and quantification. One solution would be for the 399 
SMLM software community to collectively adopt both a standard data format and a single software 400 
platform for future software development, such as FIJI/ ImageJ46. Any new algorithm released in this 401 
environment could be immediately and widely adopted by users, and easily integrated into existing 402 
packages for SMLM analysis, visualization and quantification. 403 

Both the 3D and 2D localization challenges remain open and continuously updated on the competition 404 
website. This continuously evolving analysis of state of the art super-resolution software performance 405 
provides a valuable resource to super-resolution microscopists, helping to ensure they use software 406 
that gets the best out of hard-won data. It also provides SMLM software developers with a robust 407 
means of benchmarking new algorithms against current state of the art. 408 
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Figure 1: Summary of SMLM challenge simulations. A. 3D rendering of microtubules and endoplasmic 544 
reticulum samples in a 6.4 𝜇𝜇m x 6.4 𝜇𝜇m x 1.5 𝜇𝜇m volume. B. Key simulation steps. The structure is 545 
constructed from 3D tubes continuously defined by three B-spline functions in the volume of interest. 546 
Membranes of the tubes are densely populated with possible positions. Fluorophores follow a 4-state 547 
photophysics model. Activations of a given frame are convolved with the experimental PSF and shot 548 
& camera noise is added. C. Summary of all 16 challenge datasets, calibration data and experimental 549 
PSFs. Each dataset is characterized by its structure (endoplasmic reticulum (ER) or microtubules (MT)), 550 
by it modality (2D, AS, DH, BP), its density (LD or HD) and by its SNR determined by the level of noise 551 
N1, N2, and N3. Left column: orthogonal projections of the experimentally-derived PSF. Eight 552 
categories were proposed for the challenge containing two datasets each, 2D-LD and 2D-HD, grey; AS-553 
LD and AS-HD, red, DH-LD and DH-HD, green; BP-LD and BP-HD, blue. 554 

 555 
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 557 

Figure 2: Leaderboards for each competition category. Ranking is based on the efficiency of software 558 
based on fraction of successfully detected molecules (Jaccard index) and precision of localization 559 
(RMSE, root mean square error, lateral & axial). The contribution of the high SNR dataset is plotted in 560 
orange and the contribution of low SNR dataset to the efficiency is plotted in blue.   561 
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562 
Figure 3: Comparison of 3D software performance. Gold stars indicate top performers for each 563 
dataset. Dashed lines in top, middle panels indicate overall efficiency (higher is better). A. 564 
Performance of all astigmatic SMLM software (for other modality results see Supporting Material). B. 565 
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Average (colored marker with error bars) and best-in-class (colored marker with gold star) software 566 
performance for all competition modalities. AS, astigmatism; DH, double helix; BP, biplane. 567 
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Figure 4:  Super-resolved images of 3D competition datasets for best-in-class (top) and representative 570 
average (bottom) software in each modality, for high SNR datasets. Box indicates zoomed region (left) 571 
or region of line profile (middle). Red, ground truth; green, software results. GT, ground truth; AS, 572 
astigmatism; DH, double helix; BP, biplane. Panel label key: Software_name Ranking° (Efficiency). 573 
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METHODS 575 

1. CHALLENGE ORGANIZATION 576 
We first ran the 3D SMLM software challenge as a time limited competition, with a results session 577 
hosted as a special session of the 6th Annual Single Molecule Localization Microscopy Symposium in 578 
August 2016. The competition has now been converted to a permanent software challenge accepting 579 
new submissions. Special mention to the software SMAP and 3D-WTM that participate to our eight 580 
categories (density x modality). The current list of participants is at: 581 

http://bigwww.epfl.ch/smlm/challenge2016/index.html?p=participants 582 

All datasets, methods, participations, and results of the challenge 2016 made available at 583 
http://bigwww.epfl.ch/smlm/challenge2016/. Software for simulation and analysis is hosted on the 584 
competition GitHub repository: https://github.com/SMLM-Challenge/Challenge2016/  585 

2. LOCALIZATION MICROSCOPY SIMULATIONS 586 

21. Structure 587 
The synthetic datasets were designed to be similar to images derived from cellular structures in real 588 
experimental conditions. We defined mathematical models for cellular structures that imitate 589 
cytoskeletal filaments such as microtubules and larger tubular structures such as the endoplasmic 590 
reticulum or mitochondria (Fig S1A). These structures have a tubular shape in the 3D space. Psuedo-591 
microtubules are defined with their central axis elongating in a 3D space having an average outer 592 
diameter of 25 nm with an inner, hollow tube of 15 nm diameter. Pseudo-endoplasmic reticulum is 593 
defined as having a diameter of approximately 150nm. 594 

The underlying sample structure is formalized in a continuous space which allows rendering of digital 595 
images at any scale, from very high resolution (up to 1 nm/pixel) to low resolution (camera resolution: 596 
100 nm/ pixel). The continuous-domain 3D curve is represented by means of a polynomial spline. The 597 
sample is imaged in a 6.4 × 6.4 μm2 field of view, and the center lines of the microtubules have limited 598 
variation along the z (vertical) axis, i.e., less than 1.5 μm. The fluorescent markers are uniform 599 
randomly distributed over the structure according to the required density. The photon emission rate 600 
of each fluorophore is controlled by a photo-activation model (see below).  601 

The exact locations of all fluorophores are stored at high precision floating-point numbers expressed 602 
in nanometers. This ground-truth file is useful for conducting objective evaluations without human 603 
bias. 604 

2.2. Photophysics activation model 605 
Given a list of source locations from the structure simulator, fluorophore blinking was simulated by a 606 
4-states Markov chain model. The states are ON, OFF, BLEACH, DARK and the transition are Poisson 607 
distributed (Fig S1C), except for the OFF to ON transitions which follow a uniform random distribution, 608 
to reflect that in typical experimental conditions, constant imaging density is maintained by tuning the 609 
photoactivation rate during the experiment. All switching is calculated at sub-frame resolution and 610 
then total fluorophore on-time was integrated over each frame. 611 

Due to two decay paths, the actual mean lifetime of the state ON is 612 

 613 

Switching rates were chosen to approximate photoactivatable fluorescent proteins TON = 3 frame, TDARK 614 
= 2.5 frames, and TBLEACH=1.5 frames. 615 
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Fractional fluorophore ON-times per frame (between 0 and 1) were then multiplied by the mean flux 616 
of photon emission. The flux of photons expressed in photons/seconds was given by the relation 617 

   618 

Φ is the quantum yield of the dye, P is power of the laser in W/cm2, e = h c / λ is the energy of one 619 
photon, σ = 1000 ln(10) ε / NA is the absorption cross section in cm2 and ε is the molar extinction 620 
coefficient (EC) or absorptivity in cm2/mol which is a characteristic of a given fluorophore. The laser 621 
power was Gaussian distributed over the field of view. At the end of this process a list of XY positions, 622 
on-frames and (noise-free) intensities for all activated fluorophores was obtained.  623 

2.3. Experimental Point-Spread Function 624 
Model PSFs, stored as high resolution look up tables, were derived from experimentally measured 625 
PSFs. Although the algorithmic approach is distinct, this concept of accurately modelling the 626 
experimental PSF based on calibration data bears relation to the PSF phase retrieval approach 627 
previously employed by Hanser and coworkers47.   628 

Images of fluorescent beads were recorded for each modality (Table S4). Signal to noise ratio of 629 
recorded PSFs was maximized in all cases by maximizing exposure time and averaging over several 630 
frames to increase dynamic range.  631 

To acquire experimental PSFs, we took 100 nm Tetraspek beads (Invitrogen) adsorbed to #1.5 (170 μm 632 
thick) coverglass, imaged in water. The excitation wavelength was between 640 nm and 647 nm, and 633 
a Cy5 emission filter was used. Exact data acquisition parameters for each modality are listed in Table 634 
S4.  635 

2.4 Simulation PSF construction 636 
For each modality, 3-6 beads were selected within a small (< 32 μm) region, to minimize PSF variation 637 
due to spherical aberration. Images for each selected bead were interpolated in XY to a pixel size of 638 
10 nm. Beads were then coaligned by cross-correlation on the in-focus frame. Coaligned beads were 639 
averaged in XY to minimize pixel quantization artefacts and to increase SNR. Where necessary, Z-stacks 640 
were interpolated to a Z-step size of 10 nm. A central Z-range of 1.5 μm was selected that represents 641 
151 optical planes with a Z-step of 10 nm. The Z-range covers -750 nm to +750 nm. The plane of best 642 
focus was chosen as the simulation 0 nm plane. Each model PSF was normalized such that the total 643 
intensity of the PSF in the in-focus frame within a diameter of 3 FWHM from the PSF center was equal 644 
to 1.   645 

For the DH PSF, the transmission of the combined phase mask system was measured as 96 %, which 646 
was approximated as 100 % brightness relative to the 2D and astigmatic PSFs. 647 

In biplane super-resolution microscopy, emitted fluorescence is split into two simultaneously imaged 648 
channels, with a small (500-1000 nm) defocus introduced between the two channels12. As the small 649 
defocus should introduce minimal additional aberration into an optical system, we semi-synthetically 650 
constructed a realistic biplane PSF from the experimental 2D PSF. The two defocused PSFs were 651 
constructed by duplicating the 2D PSF and offsetting it by -250 nm and 250 nm for each Z-plane.  652 

This yielded five high SNR model PSFs with an isotropic voxel size of 10x10x10 nm3. These normalized 653 
PSFs are provided on the competition website: http://bigwww.epfl.ch/smlm/challenge2016/psf   654 

The ground truth XY=0 was defined as the image centre of mass of the in-focus frame of the model 655 
PSF, and Z=0 was defined as the in-focus frame. Accounts for shifts in the fitted XY centre of the model 656 
PSF by localization software due to systematic offsets and Z-dependent variation of the model PSF 657 
centre of mass are dealt with below (wobble correction). 658 
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2.4. Noise model 659 
A constant mean autofluorescent background was added to the noise-free simulated images, and 660 
these images were then fed through the noise model representing Poisson distributed fluorescence 661 
emission recorded on a high quantum efficiency back-illuminated EMCCD48,49. 662 

The proposed noise model assumed as main contributions to the stochastic noise: 663 

• 𝜎𝜎𝑆𝑆 , the shot noise produced by the fluorescence background and signal and the spurious 664 
charge. Shot noise can be derived from the second moment of the Poisson distribution 665 

• 𝜎𝜎𝑅𝑅, the read noise of EMCCD camera, which is described by second moment of the Gaussian 666 
distribution 667 

• 𝜎𝜎𝐸𝐸𝐸𝐸, the electron multiplication noise introduced by the gain process, which is described by 668 
the second moment of the Gamma distribution49. 669 
 670 

We assumed as camera parameters the ones specified for the Photometrics Evolve Delta 512 EMCCD 671 
camera: 672 

• QE = 0.9, Evolve quantum efficiency at 700 nm absorption wavelength. 673 
• 𝜎𝜎𝑅𝑅= 74.4 electrons, manufacturer measured root mean square noise for Evolve 512 camera 674 
• c = 0.002 electrons, manufacturer quoted spurious charge (clock induced charge only, dark 675 

counts negligible) 676 
• EMgain = 300 677 
• eadu = 45 electron per analog to digital unit (ADU), analog to digital conversion factor  678 
• G = 0.9*300/45 = 6, total system gain  679 
• BL = 100 ADU 680 

The final simulated photon electrons will thus be given by:  681 

𝑛𝑛𝑖𝑖𝑖𝑖  =  𝒫𝒫(𝑄𝑄𝑄𝑄 ∙ 𝑛𝑛𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑐𝑐) 682 

𝑛𝑛𝑜𝑜𝑖𝑖  =  Γ�𝑛𝑛𝑖𝑖𝑖𝑖 ,𝑄𝑄𝑀𝑀𝑔𝑔𝑔𝑔𝑖𝑖𝑜𝑜� + 𝒢𝒢(0,𝜎𝜎𝑅𝑅) 683 

which leads to the final pixel counts: 684 

𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜  = 𝑚𝑚𝑚𝑚𝑛𝑛 �
𝑛𝑛𝑜𝑜𝑖𝑖 − 𝑛𝑛𝑜𝑜𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴

𝑒𝑒𝑝𝑝𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎
+ 𝐵𝐵𝐵𝐵, 65535�  685 

2.5. Depth-dependent lateral distortion: Wobble 686 
As the PSF models are experimentally derived, the 3D estimated localizations exhibit a depth-687 
dependent lateral distortion, here called wobble. This optical distortion is due to a combination of a 688 
systematic offset (arbitrary definition of PSF center) and optical aberrations50. In order to compare 689 
estimated and true localizations, we correct this effect during the assessment (Section 3.1). 690 

2.5 Comparison of software results between different modalities. 691 
The intensities of the PSF in each imaging modality were normalized to facilitate comparison of results 692 
between different modalities. Software results between 2D, 3D AS and 3D DH modalities are expected 693 
to be directly comparable. 694 

For the biplane model PSF, as the emitted fluorescence is split into two channels, the intensity in each 695 
of the two simulated biplane channels was additionally reduced by 50 %. We note that the 696 
fluorescence background was not reduced by 50 % as intended, leading to artificially high background 697 
for the biplane simulation (i.e., the background in each biplane channel is the same as in the single 698 
channel of the other modalities). However, due to the low background level in the 3D simulations, the 699 
effect on image SNR and thus localization error is small (see Fig S7), less than 5nm near the plane of 700 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 5, 2018. ; https://doi.org/10.1101/362517doi: bioRxiv preprint 

https://doi.org/10.1101/362517
http://creativecommons.org/licenses/by/4.0/


focus. Therefore, as long as the small drop in image SNR is taken into account, approximate 701 
comparisons of the biplane data to the other modalities can still be made. 702 

3. SOFTWARE ASSESSMENT 703 

3.1 Protocol 704 
Each localization file submitted by the participants was manually checked for erroneous systematic 705 
errors in the definition of the dataset coordinate system, such as offsets, XY axis flips or clear scaling 706 
errors. Datasets were then programmatically standardized into a consistent output format. All 707 
modifications are publicly available. If required, the modifications consisted of columns reordering, 708 
reversing axes, XY axis swap, and shifting the lateral positions by a half camera pixel. 709 

The assessment pipeline includes three main parts: localization processing, the pairing between true 710 
and estimated localization and the metrics calculations. The first one depends on the assessment 711 
settings. There are two switchable properties: photon thresholding and wobble correction. Their 712 
combinations yield four different assessment settings. Up to 64 assessment runs per software were 713 
possible (i.e., 4 modalities, 4 datasets per modality). For any setting, we excluded the fluorophores 714 
within a lateral distance of 450 nm from the border. This value corresponds to the radius of the largest 715 
PSF (i.e., Double Helix). The activations too close from the border are more difficult to localise and 716 
could bias the results.  717 

The pairing between true and estimated localizations was performed frame by frame. The procedure 718 
matches two sets of localizations. We deployed the presorted nearest-neighbor search for its 719 
efficiency. The results are effectively similar to the computationally intensive Hungarian algorithm7. 720 

Photon thresholding 721 

A photon threshold was required primarily due to the use of a realistic fluorophore blinking model. 722 
Since a fluorophore could activate/ bleach at any point in a simulated frame, this led to many frames 723 
containing very dim, undetectable localizations, eg. where a molecule had been active for one or more 724 
frames previously, and then bleached during the first 5 % of a frame. These fractional localizations 725 
should also be present but practically undetectable in an experimental dataset. 726 

In order to focus the software analysis on the localizations where the molecule was active for the 727 
majority of a frame, which we decided was most consistent with experimental expectations, we 728 
implemented a photon threshold means where we kept the 75% brightest ground truth fluorophore 729 
activations. Because this was performed after the pairing step, observed localizations that were paired 730 
to discarded ground truth activations were also removed from the metric calculations. 731 

Wobble correction 732 

The centroid of experimental point spread functions shifts laterally by as much as 50 nm, as a function 733 
of axial position10,50. This is most often ignored by localization software, and instead corrected post-734 
hoc by reference to a calibration curve37. Since our simulated PSF is experimentally derived, it was 735 
necessary to correct for these artefactual shifts between the observed localizations and ground truth, 736 
as part of the assessment process. This correction was performed using calibration data uploaded by 737 
competitors, similar to the correction typically performed on experimental data50. 738 

Three scenarios were proposed to the participants: no correction was applied during the assessment; 739 
the correction was based on a file provided by the participant itself or the correction was calculated 740 
by ourselves. The latter nevertheless requires the participant to localize a stack of beads we provided. 741 
Since the true positions of the beads are known, the difference between the estimated and true 742 
positions could be calculated and averaged. It thus yields the values for wobble correction. 743 

In certain specific cases (identified on the competition website), at the request of authors, we did not 744 
apply this correction, for example because the software explicitly considered the whole 3D PSF during 745 
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fitting and was thus immune to this lateral shift artefact. For accurate results, application of lateral 746 
shift correction is critical for analysis of localization microscopy simulations using experimentally 747 
derived PSFs, as can be seen by comparison of typical software results with and without wobble 748 
correction (Fig S11). 749 

3.2 Metrics 750 
The metrics are split into two categories: localization based and image based metrics.  751 

The former directly relies on the localizations positions and notably includes the Recall, the Precision, 752 
the Jaccard Index, the RMSE (axial and lateral) and the consolidated Z-range. For the calculation of 753 
average software performance (Fig 3B) outlier software with an efficiency less than eff=-30 were 754 
excluded from the measurement. 755 

The image based metrics are computed from a rendered image and includes the Signal-to-Noise Ratio 756 
(SNR) and the Fourier Ring / Shell Correlation (FRC/FSC). To render the image, we added the 757 
contribution of each localized molecule at the corresponding pixels. A contribution takes the form of 758 
a 3D additive Gaussian with a Full-Width Half Maximum (FWHM) of 20 nm. A complete list of all 759 
computed metrics is shown in the Supplementary Note 2. 760 

We also calculated localization based metric results as a function of axial position. We proceeded by 761 
considering a subset of activations lying within an interval of axial positions (i.e., from the true 762 
localizations). Then, most of the metrics (e.g., Recall) are locally computed. This yields a curve 763 
providing information on the depth performance of each software / modality. 764 

In order to summarize software axial performance, we analyzed how the recall varied as a function of 765 
Z.  A typical recall versus axial position curve (Fig S9) will drop at positions far from the focal plane, 766 
i.e., where software can no longer detect spots to defocus. We first smoothed the curve using a sliding 767 
window. Then we computed the software Z-range, defined as the full width half maximal Recall of the 768 
smoothed curve (Fig S12). This quantity is visually intuitive and useful for discussion of the recall 769 
performance if considered alongside a plot of recall vs axial position. However, because FHWM recall 770 
depends on the maximal recall, ranking based on this procedure would promote a software which 771 
poorly performed everywhere (i.e., flat curve), whereas a software which performed well in the focal 772 
plane but less well outside would obtain a worse FWHM recall. This observation leads us to produce 773 
a so-called consolidated Z-range, by multiplying the Z-range value by the maximal Recall, which should 774 
provide a robust metric that avoids the previous case scenario. 775 

Principal component analysis. In order to analyse the relationship between analysis metrics we 776 
computed the covariance matrix between each metric and the principal component analysis (PCA) on 777 
the metrics (Fig S14B). Each metric was standardized before applying the covariance and the PCA. For 778 
convenience, we took the additive inverse of the metrics for which lower values are best (i.e., FP, FN, 779 
RMSE, FRC, FSC). 780 

Summary statistics and detailed results for each software are available on the competition website 781 
(http://bigwww.epfl.ch/smlm/challenge2016/index.html?p=results), which also includes a tool for 782 
side-by-side comparison of the results of multiple software packages  783 

3.3 Baseline Localization Software 784 
We developed a minimalist Java tool software that performs localizations of bright emitters on the 4 785 
modalities of the challenge 2016: 2D, Astigmatism, Double-Helix, and Biplane. This 786 
SMLM_BaselineLocalization software is only designed to establish the performance baseline for the 787 
SMLM challenge. It has intentionally limited lines of code and relies only on few threshold parameters 788 
to localize particles. It has basic calibration tool that has to run on a z-stack of beads to find the linear 789 
f(x) relation between the axial position Z and the shape of the bead.  790 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 5, 2018. ; https://doi.org/10.1101/362517doi: bioRxiv preprint 

http://bigwww.epfl.ch/smlm/challenge2016/index.html?p=results
https://doi.org/10.1101/362517
http://creativecommons.org/licenses/by/4.0/


• Astigmatism: Z = f(WX - WY) , where WX and WY are respectively an estimation of the size in X 791 
and Y.  792 

• Double-Helix: Z = f(θ), where θ is the angle formed the pairing of two close points.  793 
• Biplane: Z = f (Wleft - Wright), where Wleft and Wright are respectively an estimation of the size of 794 

the spots in left and the right plane. 795 
The Java code is available: https://github.com/SMLM-Challenge/Challenge2016 796 
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