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Abstract

Hybrid breeding programs are driven by the potential to explore the heterosis phenomenon in traits
with non-additive inheritance. Traditionally, progress has been achieved by crossing lines from different
heterotic groups and measuring phenotypic performance of hybrids in multiple environment trials. With
the reduction in genotyping prices, genomic selection has become a reality for phenotype prediction and a
promising tool to predict hybrid performances. However, its prediction ability is directly associated with
models that represent the trait and breeding scheme under investigation. Herein, we assess modelling
approaches where dominance effects and multi-environment statistical are considered for genomic selec-
tion in maize hybrid. To this end, we evaluated the predictive ability of grain yield and grain moisture
collected over three production cycles in different locations. Hybrid genotypes were inferred in silico
based on their parental inbred lines using single-nucleotide polymorphism markers obtained via a 500k
SNP chip. We considered the importance to decomposes additive and dominance marker effects into
components that are constant across environments and deviations that are group-specific. Prediction
within and across environments were tested. The incorporation of dominance effect increased the predic-
tive ability for grain production by up to 30% in some scenarios. Contrastingly, additive models yielded
better results for grain moisture. For multi-environment modelling, the inclusion of interaction effects
increased the predictive ability overall. More generally, we demonstrate that including dominance and
genotype by environment interactions resulted in gains in accuracy and hence could be considered for
genomic selection implementation in maize breeding programs.

1 Introduction

Nearly a century ago, G. H. Schull proposed the term heterosis to describe the higher performance of “cross-
bred” individuals when compared with corresponding inbred or “pure-bred” genotypes [Shull, 1948]. Since
his pioneer studies, the development of hybrid varieties has been an integral part of many plant breeding
programs resulting in significant gains in global grain production. The clearest example of success has been
reported in maize (Zea mays L.), which hybrid varieties are now widely adopted, replacing open-pollinated
populations. Among the advantages, the better yield and greater uniformity are central features that favored
its rapid acceptance by companies and producers [Crow, 1998].

Hybrid vigor, in maize, is traditionally obtained by crossing inbred lines from genetically distinct pools,
the so-called heterotic groups. Depending on the stage of the breeding program, selected hybrids can be
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used for commercial deployment, or to continue the breeding cycle and generate new inbred lines using a
strategy known as advanced-cycle pedigree breeding [Lu and Bernardo, 2001]. In this process, an important
step for single-cross hybrids is the choice of parental lines that have good combining ability and hence
can capitalize this hybrid vigor. Traditionally, selection of promising genotypes relies on phenotypic field
records and pedigree data, which is a labor-intensive process. As pointed out by Technow et al. [2014],
assuming that a breeding program can generate 1000 lines in each heterotic group per year, the number
of potential hybrids to be evaluated in the field is 1 million. Given the difficulty to test all combination
in field experimental designs, prediction of hybrid performance is one of the current bottlenecks in maize
breeding programs. To circumvent this issue, a contemporaneous alternative is to adapt genomic prediction
algorithms – originally proposed to predict the genetic merit of an individual [Meuwissen et al., 2001] – to
predict hybrid performance. Much of the optimism of this approach is motivated by the opportunity to
reduce the cost and labor involved in field trials and increase the genetic gain.

Since genomic selection (GS) was introduced in plant breeding, its ability to predict the genetic merit has
been evaluated in several crops for different traits [de los Campos et al., 2012]. Initial developments focused
on additive models and largely overlooked dominance and epistatic effects, despite the fact that several lines
of evidence suggest that non-additive models drive the genetic basis of heterosis [Birchler et al., 2010]. This
source of genetic variation was neglected for different reasons, including the lack of informative pedigrees,
computational complexities related to estimation of dominance effects [Vitezica et al., 2013], the thought that
most genetic variance is additive [Hill, 2010] or can be captured with additive parameterizations [Huang and
Mackay, 2016], and the fact that even when non-additive effects are included in the models they are not easily
partitioned from additive effects [Muñoz et al., 2014]. Nonetheless, recent inclusion of non-additive effects
have demonstrated increased prediction accuracies in some traits in animal and plant breeding [Technow
et al., 2014, de Almeida Filho et al., 2016, dos Santos et al., 2016, Resende et al., 2017, Dias et al., 2018]

In addition to the source of genetic variability controlling a trait of interest, a second relevant issue to plant
breeders is how to manage the challenges of genotype-by-environment (G×E) interaction. G×E interactions
are expressed as changes in the relative performance of genotypes across environments, which can affect
the genotype ranking. From a statistical point of view, G×E can be modeled as an interaction effect in a
two-way ANOVA model, assuming genotypes and environments as main effects [Meyer, 2009]. More recently,
genotypic performance across the environments has been studied as correlated traits in a multivariate linear
mixed models framework [Smith et al., 2005, Meyer, 2009]. One of the first ideas to accommodate this in the
GS context was described by Burgueño et al. [2012]. These authors proposed an extension of the traditional
GBLUP method [VanRaden, 2008], where G×E interactions were modeled considering variance-covariance
structures with heterogeneity of genetic variance across individual environments and heterogeneity of genetic
correlations between pair of environments.

After the referred study, new methods addressing G×E interaction were proposed and investigated in
several crops, including maize [Burgueño et al., 2012, Cuevas et al., 2016a, Lopez-Cruz et al., 2015, Dias
et al., 2018, Fristche-Neto et al., 2018, e Souza et al., 2017, Ferrão et al., 2017]. One particular model -
introduced by Lopez-Cruz et al. [2015] and improved by Cuevas et al. [2016a] and Cuevas et al. [2016b]
- explicitly models the interactions of each marker with the environment (M×E interaction). The main
advantage of this method is the possibility to decompose marker effects into components that are common and
specific across environments, which are concepts related to adaptability and stability in the breeding context
[Eberhart and Russell, 1966]. Moreover, extending the M×E interaction also provides an opportunity to
investigate marker effect individually, which ultimately may shed light on the underlying genetic architecture
of traits [Crossa et al., 2016]. Although theoretical and empirical studies have shown the potential of GS
in multi-environment trials, it is still an open question how well can these models predict a completely
new and unobserved environment [Ferrão et al., 2018]. In the literature, much attention has been paid on
prediction in the so-called CV2 scheme - in reference to Burgueño et al. [2012]. This approach mimics the
prediction of incomplete field trials, and it is relevant in advanced stages of the breeding, where “soon-to-
be-deployed” hybrids have their performance predicted in multiple environments. However, the prediction
accuracies obtained in a CV2 scheme, does not reflect the case where breeders want to predict the phenotype
performance of a new genotype under an untested environmental condition.
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Table 1: Number of maize hybrids evaluated across three breeding cycles (2015, 2016 and 2017) in eight
locations in Brazil.

Location State 2015 2016 2017 Latitude Longitude Altitude
Location 1 (IP) MG 347 - - 18038′30”S 49053′06”W 415

Location 2 (PM) MG 470 580 800 18045′17”S 46038′28”W 889
Location 3 (NM) MT 618 750 925 13048′55”S 56005′36”W 475
Location 4 (SE) PR 512 585 714 23009′74”S 50058′74”W 379
Location 5 (SO) MT 469 580 800 12032′00”S 55042′00”W 365
Location 6 (PA) PR - 158 97 24016′38′′S 53049′388”W 310
Location 7 (PL) MT - 231 123 15030′00”S 54035′00”W 668
Location 8 (CN) MT - - 79 13039′32”S 53053′34”W 550

Total 618 750 925

Given the potential of GS to reshape breeding programs, in this study we report the expected response
of GS using additive and dominance models for predictions of two important traits in maize: grain yield
and grain moisture. We also emphasize the benefits to accommodate G×E interactions in GS model, in
order to achieve fast and longstanding genetic gains. More generally, we provide a critical analysis about GS
implementation in multi-environment trials. Although our work is motivated by prediction in hybrid maize,
many of the ideas and results can be applied broadly.

2 Material and Methods

The description of the Material and Methods is organized as follow. In Section 2.1, we describe the develop-
ment of the population used in the experiment, collection of phenotypic data and correction of phenotypes
taking into account experimental covariates prior to its use as input in the genomic models. Steps related to
genotyping, single nucleotide polymorphisms (SNPs) filtering, genetic diversity and definition of the hybrid
genotypes in silico were described in Section 2.2. The incorporation of additive and dominance effects in
Marker × Environment (M×E) genomic prediction models are described in Section 2.3. Finally, in Sections
2.4 and 2.5 we describe the computational implementation of the proposed methods and explain how these
models were compared in our experiment.

2.1 Plant Material

The phenotypic data consisted of grain yield (kg/ha) and percentage of grain moisture. Phenotypic records
were collected in 1831 hybrids during three years (2015, 2016 and 2017). Each cycle included a different set of
single-cross maize hybrids evaluated in different locations, as presented in Table 1. Hybrids were originated
from single crosses between 207 inbred lines from different heterotic groups. All field trials were established
in Brazil by the company Helix Seeds, São Paulo, Brazil. The presented analysis considered the collective
result from each year as a different environment. Phenotypes were adjusted using linear mixed models for
each evaluation cycle (year) in the SELEGEN software [Resende, 2016]. The experimental design was a
randomized complete block design with three replicates. For each evaluation cycle, the phenotypic model
consisted of locations and blocks considered as fixed effects; and hybrid genotypes treated as independently
and identically distributed random effects. The choice of treating genotypes as random effects was made due
to the highly unbalanced nature of the data. The Best Linear Unbiased Prediction (BLUP) for each hybrid
genotype was used as its phenotypic value in GS models. To compute the empirical phenotypic correlation
across the evaluation cycles, we used the commercial hybrids that were used as checks in all environments
and years.
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2.2 Genotyping and in silico crossing

The inbred lines were genotyped using the maize 500k Affymetrix chip. Raw data was filtered, removing
SNPs with the following quality control parameters: (i) all markers with missing values, (ii) all markers with
any heterozygous calls in the inbred lines, (iii) markers with a minor allele frequency (MAF) < 0.02. This
selection process resulted in a set of 24,758 filtered markers. As a first assessment, prediction accuracies
in a single location using full and filtered marker set resulted in very similar results (data not shown).
The hybrid genotypes were inferred by combining one allele from each of the respective parental lines. In
summary, parental bi-allelic marker loci were encoded as x{AA,BB} ⊂ {0, 2} in the maize lines. When both
parental loci were the same genotype, the corresponding hybrid genotype was encoded as homozygous, with
the same genotype as their parents. Heterozygous were encoded as x{AB} ⊂ {1}, when both parents were
homozygous for different alleles.

A genomic relationship matrix (G) based on the filtered markers was computed, using the respective

equation VanRaden [2008]: G = ZZ′

2
∑m

i piqi
where p and q are the allele frequencies at locus i, and Z (originally

coded as 0,1,2) is the matrix of centered markers. In order to examine the population structure and diversity
within the set of parental lines, we performed a principal component analysis (PCA) applied on the resulting
G matrix. The first two principal components were considered to represent the population stratification.
Individuals were assigned to groups by a k-means clustering approach. Appropriate cluster number was
determined by plotting k-values from 1 to 10 against their corresponding within-group sum of squares (SSE).

2.3 Statistical Models

Here, we assumed each evaluation cycle (years) – adjusted for the different locations and experimental de-
sign – as a different environment. Three statistical approaches to address M×E interactions were considered.
Firstly, we refer as single-environment (SE) the regression of phenotypes on markers separately in each
environment. The across-environment (AE) method addressed a combined analysis of years, assuming
that marker effects are constant across the environments and ignoring the genotype by environment inter-
action. Finally, the multi-environment (ME) method was the M×E interaction model that accounted
for common and specific marker effects across the environments. All the aforementioned approaches are, in
itself, not new and they were previously reported by Lopez-Cruz et al. [2015]; Crossa et al. [2016]; Cuevas
et al. [2016a] and Cuevas et al. [2016b]. Compared with these studies, our work makes contribution by
expanding the M×E model to include dominance effects. This following section presents details about these
models.

2.3.1 Single-environment (SE) model

This method fits a Gaussian linear regression, where a pre-adjusted phenotype vector is regressed on a set
of markers in each environment. The importance to incorporate marker effects with dominance effects was
investigated considering three versions of the SE models, referred as SE additive (Model 1); SE dominance
(Model 2); and SE additive+dominance (Model 3). These statistical models are given, respectively, by:

yj = 1ηjµj +Xjβj + εj (1)

yj = 1ηjµj + Zjθj + εj (2)

yj = 1ηjµj +Xjβj + Zjθj + εj (3)

where yj is the response vector containing ηj pre-adjusted phenotypic values, 1ηj is a vector of ones, µj
is an intercept of the j th environment; Xj and Zj are design matrices relative to additive and dominance
effects, respectively. These matrices are representing the allelic state of the hybrids at p genetic markers,
Xjwhere denotes the number of reference alleles at a specific locus in the genome (e.g., coded as 0,1,2), while
Zj indicates if this locus is homozygous (coded as 0) or heterozygous (coded as 1). Similar parametrization
has been used in plants [Muñoz et al., 2014, Fristche-Neto et al., 2018, Werner et al., 2018] and animal

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/362608doi: bioRxiv preprint 

https://doi.org/10.1101/362608
http://creativecommons.org/licenses/by/4.0/


studies [Toro and Varona, 2010]. β and θ and are p-vectors of (unknowns) additive and dominance marker
effects, respectively. Following the standard assumptions of the GBLUP model, additive and dominance
marker effects were assumed to be independent of each other and both normally distributed:βj ∼ N(0, Iσ2

β)

and θj ∼ N(0, σ2
θ) . ε is a n-vector of residual effects with ε ∼ N(0, Iσ2

ε).

2.3.2 Across-environment (AE) model

This model assumes that additive and dominance marker effects are the same across environments, that is:
β1 = β2 = β3 and θ1 = θ2 = θ3 , respectively. The AE additive+dominance model, in a matrix notation,
can be written as:

yj = µ+Xβ0 + Zθ0 + ε (4)

y1y2
y3

 =

µ1

µ2

µ3

 +

X1

X2

X3

β0 +

Z1

Z2

Z3

 θ0 +

ε1ε1
ε1


Formally, the main difference compared to the SE approach are matrices and vectors dimensions. Here,

all environments are concatenated in order to estimate a common effect. Thus, y vector is a m-vector of
pre-adjusted phenotypes, where m is the total number of individuals across the environments. X and Z
are m × p design matrices of additive and dominance marker effects, respectively, and β0 and θ0 are their
common marker effects. As reported in the SE approach (Model 1 and 2), dominance and additive versions
are also tested by omitting or the Xβ0 or Xθ0 the component in Model 4. The same standard assumptions
of the GBLUP model were considered.

2.3.3 Multi-environment (ME) model

The ME model is a hybrid between SE and AE approaches that includes both these models as special cases.
In this application, marker effects are separated in two components: (i) a main effect estimated across all
the environments, and (ii) a specific effect computed for each environment. In matrix notation, the ME
additive+dominance model is expressed as following:

yj = µ+X0β0 + +Xaβa + Z0θ0 + Zdθd + ε (5)

y1y2
y3

 =

µ1

µ2

µ3

 +

X1

X2

X3

β0 +

X1 0 0
0 X2 0
0 0 X3

β1β2
β3

 +

Z1

Z2

Z3

 θ0 +

Z1 0 0
0 Z2 0
0 0 Z3

θ1θ2
θ3

 +

ε1ε2
ε3


where the main additive and dominance effects are represented by β0 and θ0, respectively; specific additive

and dominant effects are represented by βa ∈ {β1, β2, β3} and θa ∈ {θ1, θ2, θ3}, respectively. Xa and Za refer
to design matrices associated to additive and dominance specific effects, respectively. Other components in
the Model 5 were previously described. As reported in SE and AE approaches, ME models in their dominance
and additive versions were also tested by omitting the respective terms. Likewise, standard assumptions of
normality regarding the additive (common and specific effects) and dominance (common and specific effects)
were considered. For the residual term, it is assumed a normal distribution with mean zero and heterogeneity
of residual environmental variances, such that, ε ∼ N(0,Σ ⊗ In) where Σ is a diagonal matrix of variance-
covariance structure denoting a residual variance for each environment and In is an n-dimensional identity
matrix.
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2.4 Computational Implementation

The aforementioned models were implemented using the R package Bayesian Generalized Linear Regression
(BGLR, Pérez and de los Campos [2013]). Common and specific marker effects were assigned as Gaussian
priors (Bayesian Ridge Regression, equivalent to the GBLUP model), while flat priors were considered for
the intercept. Error variances were assigned weakly informative, assuming an inverse Chi-squared density.
The hyperparameters were set using the default rules implemented in the BGLR software. All models were
fitted considering Markov Chain Monte Carlo (MCMC) using the Gibbs sampler with 30,000 iterations,
with a burn-in of 3000, and a thinning of five. Further details related to computational implementation are
described in Pérez and de los Campos [2013].

2.5 Assessing Model Performance

We considered two criteria to assess model performance: (i) goodness-of-fit statistics, via deviance informa-
tion criterion (DIC); and (ii) predictive ability measured by cross-validation. Goodness-of-fit statistics were
computed based on full data analyses. DIC is defined as a function of the deviance (likelihood function) and
effective number of parameters [Gelman et al., 2014]. Models with smaller DIC values are preferred to mod-
els with large DIC. For cross-validation (CV) analyses, we considered important aspects faced by breeders
when multi-environment data sets are considered (Figure 1). Two major scenarios were here defined as: i)
confined prediction and ii) cross-prediction.

• Confined prediction: simulates a situation where GS is implemented in a specific environment,
where individuals have already been genotyped and phenotyped (Fig 1a). In this scenario, marker
effects were estimated using the SE model and predictive abilities were assessed using a Replicated
Training-Testing evaluation [Crossa et al., 2013, Ferrão et al., 2018]. In each replication, 80% of the
individuals were assigned randomly for training data set (TRN), while the remaining 20% were assigned
for testing data set (TST). This division was replicated 30 times with independent random assignments
into TRN and TST.

• Cross-prediction: simulates the question if marker effects estimated in one set of environments are
useful to predict the genotype performance in another environment. In particular, we created the
follow strategies: i) SE models are calibrated in a specific environment and tested in others (Fig 1a);
and ii) environments were grouped to compose a new TRN data set and marker effects were estimated
using AE or ME models (Fig 1a).

For each CV scheme, predictive abilities for the models were estimated by Pearson’s correlation between
genomic estimated genetic values (GEGVs) and the corresponding phenotypic values corrected for environ-
mental and experimental effects. GEBVs were computed as described in Table 2. For the ME models,
we tested the follow alternatives to compute the GEBVs: i) considering only the common effects; or ii)
considering the common effect summed to the specific effects of one of the environments.

3 Results

3.1 Phenotypic Data

Figure 2 summarizes the phenotypic dispersion across the years and, for both traits, the empirical distribution
was reasonably symmetric. On average, 2015 was the most productive year for grain yield and showed the
largest variation. Conversely, the lowest average yield was observed in 2016. Breeding records indicated
that hybrids tested in 2016 across multiple locations were submitted to abiotic stress condition caused by
a reduction on fertilizing and drought, which could explain the reduced yield compared to 2015 and 2017.
Grain moisture distribution is skewed to the left with heavy tails (Figure 2). On average, 2016 showed the
highest values, whereas 2015 and 2017 showed similar ranges in the phenotypic distribution.
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Figure 1: Genomic selection scenarios. a) Confined prediction represents GS implementation in a specific
environment and within-sample data samples are considered in a cross-validation scheme; SE (single envi-
ronment) model mimics a cross-prediction scenario when models are calibrated in a specific environment and
tested in other. b) Environments were grouped to compose a new TRN data set. The estimated marker
effects were used to predict a new environment using the AE (across-environments) and ME (multiple-
environments) models. Direction of the arrows represented changes on training and testing data sets.

We used multiple commercial hybrids that were planted in all locations and all three environments (years)
to compute the empirical phenotypic correlation (Table 3). For both traits, correlations among environments
were moderately positive. For grain production, low correlation values were observed between 2016 and other
environments (Table 3, below the diagonal). A similar result was observed for grain moisture trait (Table 3,
above the diagonal), which supported the observation that 2016 was an atypical evaluation cycle with a less
intensive agricultural management practice.

3.2 Diversity and Heterotic Groups

In this study, we evaluated a total of 1831 hybrids produced from the crosses among 207 inbred lines. Figure
3a represents the maize hybrids that were tested in the field and illustrate the practical challenge in testing
all inbred combinations, given the demand of large experimental area and labor. The importance of GS

Table 2: Equations used to compute the genetic merit of individuals considering the single-environment
(SE), across-environment (AE) and multiple-environment (ME) models in their additive (a), dominance (d)
and additive+dominance (a+d) versions.Refer to Section 2.3 for an overview of the methods compared.

Model Additive (a) Dominance (d) Additive+Dominance (a+d)

SE ŷij =
∑m
i Xij β̂ij ŷij =

∑m
i Zij θ̂ij ŷij =

∑m
i Xij β̂ij +

∑m
i Zij θ̂ij

AE ŷ = Xβ̂0 ŷ = Zθ̂0 ŷ = Xβ̂0 + Zθ̂0
ME common ŷ = X0β̂0 ŷ = Z0θ̂0 ŷ = Xβ̂0 + Zθ̂0

ME all ŷ = X0β̂0 +Xaβ̂a ŷ = Z0θ̂0 + Zdθ̂d ŷ = X0β̂0 +Xaβ̂a + Z0θ̂0 + Zdθ̂d
where: i is the individual and j is the environment. is the genomic expected genetic values (GEBVs); X or
X0, and Xij or Xa are design matrices for the common and specific additive effects, respectively; Z or Z0, and

Zij or Zd are design matrices for the common and specific dominance effects, respectively; β̂0, θ̂0, β̂ij or β̂a, θ̂ij
or θ̂d are the common and specific marker effects estimated for the additive and dominance parametrization,
respectively.
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Figure 2: Phenotypic variation of grain moisture (%) and grain yield (Kg/ha) by environment (2015, 2016
and 2017). Average (av) and standard deviations (sd) are presented on the top of each plot.

Table 3: Sample correlation between grain production (below the diagonal) and grain moisture traits (above
the diagonal) evaluated among the environments considering the genotype checks (commercial hybrids).

Environment 2015 2016 2017
2015 - 0.37 0.44
2016 0.1 - 0.31
2017 0.46 0.33 -

lies in the possibility to accurately predict hybrids that were not phenotyped - represented in Figure 3a
by white spots. The genomic data indicated the presence of 3 clusters/subpopulations that may represent
the number of heterotic groups in the current germplasm collection (Figure 3b and 3c). PCA and k-means
analysis estimated three main groups and low overlap between them. Definition of the number of clusters
was based on the dramatically reduction observed in the SSE values.

3.3 Goodness-of-fit statistic, Variance Components and Predictive Ability

For both traits, the lowest DIC values were obtained for additive+dominance and multi-environment models,
which evidence the importance to simultaneously account for dominance gene action and G×E interaction
(Table 4).A summary of predictive performance for grain yield and grain moisture are presented in Figure
4, 4 and 6. Results can be described under two different perspectives: i) importance to include dominance
effects in GS models; and ii) assessment of predictive performance considering different CV schemes.

In view of gene action, the results are better illustrated in Figure 4. Predictions performed within-
environment and accounting for dominance effects were more accurate for grain yield. Conversely, additive
models were slightly better than dominance models and equivalent to additive+dominance for grain moisture
(Fig 4a). Prediction accuracies ranged from 0.34 to 0.67 for grain yield and 0.67 to 0.82 for grain moisture.
The difference in performance between additive and dominance models was smaller for grain moisture than
for grain yield (average difference of 0.02 vs. 0.16). In almost all scenarios, modelling simultaneously both
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Figure 3: a) Schematic representation of tested hybrids obtained by crossing parental with maternal lines.
Hybrids tested in the field are represented by black circles, while the white spots are representing hybrids
not phenotyped. b) Plot of the two eigenvectors of the genomic relationship matrix for the lines. c) Sum of
squared error (SSE) for a number of cluster solutions.

gene actions did not impact the predictive performance. Based on the goodness-of-fit values, we considered
the most parsimonious models to quantify the role of each genetic component on the phenotypic variation
(Fig 4b). The residual variance estimates varied across environments (Fig 4b) suggesting that homogeneous
residual variance assumed in the AE model may not be optimum in this context. Finally, the proportion of
variance explained for each term was estimated for the ME additive+dominance GBLUP. Observed results
were in line with the predictive abilities, where the variance explained by the dominance effects in grain yield
was greater than additive effects; whereas for grain moisture the result was the opposite

In terms of breeding schemes, for grain yield, the highest performances were observed in confined predic-
tions (Fig 5a). Under this circumstance, models trained and validated in 2015 showed the highest predictive
performance (0.67, for the additive+dominance version). Confined prediction performed in 2016 showed the
lowest values (0.35, for the additive model), while confined predictions in 2017 yielded intermediate values,

Table 4: Goodness-of-fit value for grain yield and grain moisture traits for across-environments (AE) and
multiple-environments (ME) models in their additive, dominance and Additive + Dominance versions.

Grain Yield Grain Moisture
Model AE ME AE ME

Additive 6233.6 6032.3 4565.4 4315.6
Dominance 5735.8 5329.3 4641.6 4256.5

Additive + Dominance 5731.7 5292.9 4512.8 4083.5
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Figure 4: a) Predictive accuracy of within-environment models using single-environment (SE) models for
grain yield and grain moisture traits evaluated in 2015, 2016 and 2017. All models were considered in their
additive (add), dominance (dom) and additive+dominance (add+dom) versions. Refer to Section 2.3 for an
overview of the methods compared. b) Estimates of variance components considering the additive+dominant
version of the multiple-environment (ME) model grain yield and grain moisture traits evaluated in different
2015, 2016 and 2017.

closer to those observed in 2015 (0.60, for the additive+dominance version). Despite differences in popula-
tion size, this feature was not the primary reason to affect the prediction accuracy (e.g., 2016 yielded lower
performance than 2015, even with a larger population size). Predictions performed in new environments
were investigated considering cross-prediction schemes. In this scenario, we observed variable performance
over the strategies tested. Single environment analysis (SE models) proved to be highly dependent on the
TRN-TST setting. For example, assuming the additive+dominance model for predictions in 2017, predictive
ability ranged from 0.56 to 0.16 when the models were trained on either 2015 or 2016, respectively (Fig 5a).
In contrast, considering the AE and ME models to predict 2017, the values ranged from 0.29 to 0.57 (Fig
5b). Compared to the worst scenario observed in the stratified analysis, this value represents an increase of
55% in predictive performance.

In contrast, for grain moisture, on average, higher values of predictive performance were observed. Simi-
larly, the highest predictive value was observed in confined predictions (Fig 6); where the environment 2015
showed the best performance (0.82, for the additive+dominant model), followed by 2017 (0.73, for the ad-
ditive+dominance model) and 2016 (0.70, for the additive+dominance model). Cross predictions over the
environments also showed variable performance. Unlike grain production, models trained in 2016 did not
result in low predictive performance when validated in 2015 and 2017. Accordingly, the use of combined
environments and ME models showed more consistent results irrespective of the environments used in the
TST set.

As previously cited a potential benefit to explicit modelling M×E interactions is to decompose marker
effects into components that are stable and specific across environments. Naturally, this approach could be
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Figure 5: Correlation between phenotypes and predictions for the grain yield trait in maize. a) Predictive
performance assessed within the same validation scheme (average over 30 TRN-TST partitions) and consid-
ering stratified analysis (models training in an environment and tested in other). b) Predictive performance
considering combined environments assuming the across-environment (AE) and multi-environment (ME)
modelling. For the ME modelling, predictions were performed considering only the main effect (B0, equiva-

lent to β̂0 and θ̂0) and the sum of the main with a specific effect (B1 and B2, β̂a and θ̂d, that represent the
environments considered in the TRN partition in the same order presented in the figure). Refer to Section
2.3 for an overview of the methods compared.

used to identify genomic regions that have constant effects across groups and ones that exhibit substantial
interaction on the phenotypic variation. To illustrate this, Figure 7a shows how the common marker effects
(β̂0 and θ̂0) estimated under the additive and dominance ME models are ranging along the genome. Differ-
ences in the magnitude values are evidencing the role of gene action conditional to the traits. In Figure 7b,
we illustrate the range of additive (β̂1 and β̂2) and dominance ( θ̂1 and θ̂2 ) marker effects estimated in 2015
and 2016 for grain yield and grain moisture, respectively. The results suggest differential effects across the
years.

4 Discussion

Progress in hybrid breeding can be greatly accelerated by the incorporation of genomic predictions into
breeding schemes [Technow et al., 2014, Acosta-Pech et al., 2017, Dias et al., 2018, Werner et al., 2018].
To this end, breeders have to face important issues regarding its implementation, including the impact of
accounting for non-additive effects and dealing with G×E interaction. In this work, we report the effects of
these issues in the predictive performance, definition of training population and allocation of resources in a
breeding program.

From classical quantitative genetics theory, dominance effects are defined as intra-locus interactions
resulting from differences between the genotypic value and the breeding value [Falconer and Mackay, 1996,
Lynch and Walsh, 1998]. In GS modelling, a common practice has been to ignore it under the argument that
the additive component is larger and therefore more important than dominance effects [Huang and Mackay,
2016]. Although some results have been supporting this evidence [Hill, 2010], renouncing the importance of

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/362608doi: bioRxiv preprint 

https://doi.org/10.1101/362608
http://creativecommons.org/licenses/by/4.0/


Figure 6: Correlation between phenotypes and predictions for the grain moisture trait in maize. a) Pre-
dictive performance assessed within the same validation scheme (average over 30 TRN-TST partitions) and
considering stratified analysis (models training in an environment and tested in other). b) Predictive perfor-
mance considering combined environments assuming the across-environment (AE) and multi-environment
(ME) modelling. For the ME modelling, predictions were performed considering only the main effect (B0,

equivalent to β̂0 and θ̂0) and the sum of the main with a specific effect (B1 and B2, β̂a and θ̂d, that represent
the environments considered in the TRN partition in the same order presented in the figure). All models were
considered in their additive (a), dominance (d) and additive+dominance (a+d) versions. Refer to Section
2.3 for an overview of the methods compared.

dominance effects may be at least controversial if we consider that “dominance” and “overdominance” are
two of the most accepted theories on the genetic basis of heterosis.

In this study we have demonstrated that the inclusion of dominance effects increases the predictive ability,
in particular, for grain yield. Notoriously, in some cross-validation scenarios the predictive capacity increased
by 30% when compared to additive models. Our findings are also supported by goodness-of-fit values since
dominance models are more parsimonious than the additive model. Accordingly, other studies have shown
similar empirical results [Resende et al., 2017, Dias et al., 2018]. Despite the importance of dominance effect
in grain yield, additivity explained a large portion of variance in grain moisture, suggesting that both traits
have different genetic architectures. Nonetheless, the inclusion of dominance into additive+dominance models
resulted in equivalent and sometimes better predictive abilities compared to additive models. Therefore, one
important contribution of this study is to demonstrate that, regardless of the underlying genetic architecture
of a trait, considering both gene action in GS models is a valid alternative to achieve high prediction
performance.

Considering the gene action modelling, another related issue is the difficulty to properly separate additive
and dominance effects in genetic analysis [Huang and Mackay, 2016]. At least as conventionally applied,
orthogonal partitions are achieved only assuming theoretical conditions. For example, in the classical model
proposed by Fisher [1918] and developed by Cockerham [1954] and by Kempthorne [1954], orthogonality
assumptions were derived assuming Hardy-Weinberg equilibrium. Although it provides an elegant formal-
ization of the genetic variance partition, it is well-known that many precepts assumed are not applied to
artificial populations [Hill, 2010]. Herein, we have reported a simple parametrization of dominance, which
may be biased by non-orthogonality of genetic effects. Despite the apparent severity to induce erroneous
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Figure 7: Correlation between phenotypes and predictions for the grain moisture traia) Manhattan plot
for grain yield trait and grain moisture evaluated in maize hybrids. Black and gray dots are representing,
respectively, additive (β̂0) and dominance (θ̂0) common effects estimated using the multiple-environment

(ME) model across three years of evaluation (2015, 2016 and 2017). b) Profile of dominance (θ̂1 and θ̂2)

and additive (β̂1 and β̂2) marker effects estimated for grain yield and grain moisture traits considering the
specific marker effects estimated under the ME model in 2015 and 2016. Refer to Section 2.3 for an overview
of the methods compared.

interpretations, our conclusions on the importance to account for dominance effect are primarily supported
by the improvement of the predictive results.

A second contribution of this investigation is to discuss the GS implementation, with a particular focus on
G×E modeling. Many studies have been shown the high performance of GS in single environments. Herein,
we defined this strategy as confined predictions and, for both traits, high values of predictive ability were
observed. Accordingly, Technow et al. [2014], Acosta-Pech et al. [2017] and Zhao et al. [2012] reported similar
results in maize. Biologically, it is reasonable to expect higher predictive values when CV schemes are setting
using within-sample data, since training and validation data set are exposed to the same environmental
inputs. Despite the high performance, this scenario does not attempt to answer an important question
in a breeding program that involve predictions in a new set of environments. If feasible, marker effects
estimated in one set of environments would be considered to predict the genotype performance in a different
environment, without the necessity of retraining the models. This immediately suggests a reduction of time
and resources spent in field evaluations [Resende et al., 2012, Ferrão et al., 2018].

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2018. ; https://doi.org/10.1101/362608doi: bioRxiv preprint 

https://doi.org/10.1101/362608
http://creativecommons.org/licenses/by/4.0/


To assess predictive performance of new environments, we tested three approaches: single-environment
(SE), across-environment (AE) and multiple-environment analyses (ME). SE and AE models are based in
opposed assumptions. Precisely, SE modelling assumes a regression model for each single environment,
where none of the information from different environments is combined. In contrast, AE model considers
a common marker effect and hence a regression model is fitted for the combined data set, unaware that
the data came from different environments. The relative performance of these models would therefore be
expected to vary depending on the G×E magnitude. This is evident when SE model is trained in 2015
and validated in 2017, for grain production. Based on the phenotypic correlations, both environments are
considered similar, which suggests less noise caused by the G×E interaction. As result, high predictive ability
was observed under the SE model. However, this same model is not the most efficient to predict 2016. As
evidenced by the phenotypic correlations, 2016 is an atypical environmental condition and thus a contrasting
environment. Consequently, SE models did not yield high predictive values and, predictions performed in
2016 are benefited by the combination of 2015 and 2017 considering the AE model.

Differences in predictive performance across the methods are demonstrating that focusing on one approach
may adversely affect the final result. In practice, one does not know the properties of a new environment and
how related that new environment is any testing set. Thus, it is unclear which of the two models (SE or AE)
should be considered. Assuming that ME is a hybrid between SE and AE models, it naturally has a wide
range of potential uses. As a consequence, we noted that ME is either as accurate, or more accurate, than the
two competing models presented in this work. Predictions performed in 2017 for grain yield provides a good
example. The highest values in this year are achieved using the ME model, when specific effects estimated
in 2015 are accounted with the common effect. On the other hand, poor results are observed when specific
effects from 2016 are considered. In situations, which many environments are considered and the G×E is
unknown, defining which specific effect should be weighted with the common effect may be complicated. A
conservative alternative would be to consider only the common effect estimated by the ME model. Similarly,
results reported in wheat and maize are supporting the importance of ME models [Lopez-Cruz et al., 2015,
Crossa et al., 2016, Cuevas et al., 2016a,b, Crossa et al., 2017].

Despite our focus in genomic prediction results, the use of molecular markers in maize breeding has
promising applications. We briefly consider its potential to define heterotic group in our current germplasm.
Historically, our heterotic group classification has been based on pedigree records and visual characterization,
which commonly result in errors. According to breeders, the groups suggested in this research are in accor-
dance to historical records, which point out the importance to use molecular markers to access the genetic
diversity. Considering the ME modelling, our results suggest its potential to genome-wide association stud-
ies (GWAS), since marker effects on grain yield were individually estimated. We emphasize that identified
regions harboring SNPs that affect some phenotype or outcome of interest is a goal that can naturally be
cast using this approach. More recently, many GWAS investigations described similar procedures that fit
all SNPs simultaneously as random effects, which approximate GWAS and GS models [Guan and Stephens,
2011, Karkkainen and Sillanpaa, 2012, Goddard et al., 2016].

Finally, we hope that our work also helps highlight some general guidance for practical GS implementa-
tion. Based on our results we proposed: i) compute GEBVs considering additive and dominance effects for
different traits; ii) use of multi-environment models to predict genotypic performance in a new environment;
iii) refine our heterotic group classification based on molecular information; and iv) use SNP data to, in
silico, extrapolate maize hybrid composition and, based on genome predictions, select the best genotypes
for breeding. All proposed approaches are computationally tractable for moderately large datasets and are
flexible to perform well in a wide range of conditions. Furthermore, results interpretation and computational
implementation are straightforward. We also emphasize that our study is a first stage of what could be done
considering dominance and multiple environment models in GS studies. In particular, we believe that our
results are sufficiently promising to justify further research, including the test of different parameterizations
for dominance effects and incorporation of multiple environmental covariates for G×E modelling.
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de los Campos, Juan Burgueño, Juan M Camacho-González, Sergio Pérez-Elizalde, Yoseph Beyene, et al.
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