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Abstract

Although convolutional neural networks (CNNs) have been applied to a variety of computational genomics
problems, there remains a large gap in our understanding of how they build representations of regulatory
genomic sequences. Here we perform systematic experiments on synthetic sequences to reveal how CNN
architecture, speci�cally convolutional �lter size and max-pooling, in�uences the extent that sequence motif
representations are learned by �rst layer �lters. We �nd that CNNs designed to foster hierarchical repre-
sentation learning of sequence motifs � assembling partial features into whole features in deeper layers �
tend to learn distributed representations, i.e. partial motifs. On the other hand, CNNs that are designed to
limit the ability of hierarchically building sequence motif representations in deeper layers tend to learn more
interpretable localist representations, i.e. whole motifs. We then validate that this representation learning
principle established from synthetic sequences generalizes to in vivo sequences.

Introduction

Deep convolutional neural networks (CNNs) have recently been applied to predict transcription factor (TF)
binding motifs from genomic sequences (Zhou and Troyanskaya, 2015; Quang and Xie, 2016; Kelley et al ,
2016; Hiranuma et al , 2017). Despite the promise that CNNs bring in replacing methods that rely on k -mers
and position weight matrices (PWMs) (Ghandi et al , 2016; Foat et al , 2006), there remains a large gap in
our understanding of why CNNs perform well.

A convolutional layer of a CNN is comprised of a set of �lters, each of which can be thought of as a PWM.
Each �lter scans across the inputs, and outputs a non-linear similarity score at each position, a so-called
feature map. The �lters are parameters of the CNN that are trained to detect relevant patterns in the
data. Deep CNNs are constructed by feeding the feature maps of a convolutional layer as input to another
convolutional layer. This can be repeated to create a network with any depth. CNNs typically employ
max-pooling after each convolutional layer, which down-sample the feature maps by setting non-overlapping
windows with a single maximum score, separately for each �lter. Max-pooling enables deeper layers to detect
features hierarchically across a larger spatial scale of the input. CNN predictions are then made by feeding
the feature map of the �nal convolutional layer through a fully-connected hidden layer followed by a linear
classi�er.

In genomics, it is unclear how CNN architecture in�uences the representations of sequence motifs learned
throughout the network. Previous studies have suggested that the �rst convolutional layer �lters learn
representations of sequence motifs, while deeper layers learn combinations of these motifs, so-called regulatory
grammars (Alipanahi et al , 2015; Angermueller et al , 2016; Zeng et al , 2016; Quang and Xie, 2016; Kelley
et al , 2016). Since �rst layer �lters can be directly visualized, demonstrating that a CNN learns relevant
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sequence motifs is a common strategy for validation. The few studies that perform a quantitative motif
comparison of the �rst layer �lters against a motif database �nd that less than 50% have a statistically
signi�cant match (Kelley et al , 2016; Quang and Xie, 2016). Unmatched �lters have been suggested to
be either partial representations of known motifs or novel motifs, i.e. motifs not included in the database.
Visualization of deeper layer �lters is challenging, because they represent patterns of feature maps in previous
layers, where the spatial positions of activations are obscured by pooling.

Learning whole-motif representations by �rst layer �lters is not indicative of a deep CNN's classi�cation
performance. For instance, a deep CNN that employs a small �rst layer �lter, i.e. 8 nts (Zhou and Troy-
anskaya, 2015), which is shorter than many common motifs found in vivo, has demonstrated comparable
performance as CNNs that employ larger �lters, i.e. ≥19 nts (Quang and Xie, 2016; Kelley et al , 2016).
In principle, smaller �lters that capture partial motif representations can be combined in deeper layers to
assemble whole-motif representations, thereby allowing the CNN to make accurate predictions. It remains
unclear to what extent we should expect �rst layer �lters to learn whole-motif representations in the �rst
convolutional layer and how a CNN's architecture in�uences this.

Here we demonstrate how architectural choice a�ects representation learning of genomic sequence motifs.
We perform systematic experiments to demonstrate that a CNN's design, speci�cally max-pooling and
�lter size, is indicative of the extent that motif representations are learned in �rst layer �lters. We then
demonstrate that the same representation learning principles generalize to in vivo sequences.

Results

Internal representations of motifs depend on architecture

We conjecture that motif representations learned in �rst layer �lters are largely in�uenced by a CNN's ability
to assemble whole-motif representations in deeper layers, which is determined by architectural constraints
set by: 1. the convolutional �lter size, 2. the stride of the �lter, which is the o�set between successive
applications of the �lter (usually set to 1), 3. the max-pool size, and 4. the max-pool stride, which is
the o�set for each max-pool application. Although these are hyperparameters that may vary on a case-by-
case basis, the max-pool stride is commonly set to the max-pool size in genomics, creating non-overlapping
max-pool windows.

Despite the complexity of in vivo TF binding (Siggers and Gordan, 2013), for the purposes of this paper
we make a simplifying assumption that TF binding sites can be represented by a single PWM-like motif
pattern. Of course, a PWM-based method would perform well in this over-simpli�ed scenario. However, the
scope of this paper is to demonstrate how representations of sequence patterns are learned by a CNN and
not a thorough demonstration of a CNN's ability to learn in vivo binding sites of TFs.

Assuming that accurate classi�cation can only be made if the correct motifs are detected, a CNN that
learns partial-motif representations in the �rst layer must assemble whole-motif representations at some point
in deeper layers. To help explain how architecture can in�uence representation learning in a given layer,
we use the concept of a receptive �eld, which is the sensory space of the data that a�ects a given neuron's
activity. For the �rst convolutional layer, each neuron's receptive �eld has a size that is equal to the �lter
size at a particular region of the data. Since there are typically many �lters in a convolutional layer, there
are many neurons which have a receptive �eld that share the same spatial region. However, each neuron's
activation is determined by a di�erent �lter. Max-pooling combines multiple neurons of a given �lter within
a speci�ed window size to a single max-pooled neuron, thereby augmenting the size of its receptive �eld. In
doing so, max-pooling obfuscates the exact positioning of the max-activation within each window. Thus the
location of the max-activation has spatial invariance within its receptive �eld with an amount equal to the
max-pool size.

Although max-pooling creates spatial uncertainty of the max-activation within a max-pooled neuron's
receptive �eld, we surmise that neighboring max-pooled neurons of di�erent �lters, which share signi�cantly
overlapping receptive �elds, can help to resolve spatial positioning of an activation. To illustrate, Figure 1A
shows a toy example of two convolutional �lters, each 7 nts long, which have learned partial-motifs: `GTG'
and `CAC'. An example sequence contains three embedded patterns (highlighted in green): `CACGTG',
`GTGCAC', and `CACNNNGTG', where `N' represents any nucleotide with equal probability. The resultant
max-pooled, activated convolutional scans for each �lter are shown above the sequence with a blue shaded
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region highlighting the receptive �eld of select max-pooled neurons. Even though the �rst convolutional
layer �lters have learned partial-motifs, the second convolutional layer �lters can still resolve each of the
three embedded patterns by employing �lters of length 3. Of course situations may arise where the three
second convolutional layer �lters are unable to fully resolve the embedded patterns with �delity. For instance,
`CACNGTG' could be activated by the same �lter for `CACGTG'. A CNN can circumvent these ambigu-
ous situations by either learning more information about each pattern within each �lter or by dedicating
additional �lters to help discriminate the ambiguous patterns.

It follows that by creating a situation where partial-motif representations cannot be assembled into
whole-motifs in deeper layers, learning whole-motifs by �rst layer �lters becomes obligatory for accurate
classi�cation. One method to limit the information �ow through a CNN is by employing large max-pool
sizes relative to the �lter size. The max-pooled neurons then have large receptive �elds with a large spatial
uncertainty and only a small overlap in receptive �elds with neighboring neurons of di�erent �lters. A deeper
layer would be unable to resolve the spatial ordering of partial motifs to assemble whole-motifs with �delity.
To exemplify, �gure 1B shows a toy example of a CNN that employs a larger pool size of 20. Importantly,
there are large spatial regions within a receptive �eld for which a neighboring neuron cannot help to resolve
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Figure 1: Toy model for representation learning of sequence motifs. (A,B) An example 60 nt one-hot encoded
sequence contains 3 patterns (shown in green): CACGTG, GTGCAC, and CACNNNGTG. Two �lters, each
of length 7 (7 columns and 4 rows, one for each nucleotide), are shown to the right. A partial-motif
representation has been captured by each �lter: GTG for �lter 1 (Top) and CAC for �lter 2 (Bottom). The
max-pooled feature maps are shown above the sequence. The feature maps have the same size as the sequence
by adding 3 zero-padding units to each end of the sequence prior to convolution (not shown in diagram). (A)
Shows the feature maps when employing a small max-pooling size of 3, which creates overlapping receptive
�elds, highlighted in blue. 3 second layer convolutional �lters, shown above, demonstrate a feature map
pattern that can resolve each embedded sequence pattern. (B) Shows the feature maps when employing
a larger pooling size of 20 using the same �lters as (A). The larger receptive �elds have a large spatial
uncertainty along with a small overlap in receptive �elds from neighboring neurons. Each of the 3 second
layer convolutional �lters, shown above, is unable to �nd a unique feature map pattern that can resolve any
embedded sequence pattern.
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due to a lack of overlap in receptive �elds. As a result, deeper convolutional layer �lters which are dedicated
to each pattern would yield the same signature, unable to resolve any of the three patterns.

More technically, the extent of motif information that each �lter learns is guided by the gradients of the
objective function, which serves as a measure of the classi�cation error. Assuming accurate classi�cation can
only be achieved upon discriminating the underlying motifs of each class, once whole-motifs for each class
are learned, then the objective function is minimized and the training gradients go to zero. If a CNN can
build whole-motifs from partial-motifs in deeper layers, then there is no more incentive to learn additional
information to build upon the partial-motif representations already learned. As a result, the �rst layer
�lters will maintain a distributed representations of motifs (Hinton et al , 1986). On the other hand, if
architectural constraints limit the ability to build whole-motifs from partial-motifs in deeper layers, then
accurate predictions cannot be made. Hence, gradients will persist because the objective function is not yet
minimized, encouraging �rst layer �lters to learn whole-motifs, also known as a localist representation of
motifs (Hinton et al , 1986). Once the �rst layer �lters have learned su�cient information of whole-motifs to
discriminate each class, then the objective function can be minimized, signaling the end of training.

Max-pooling in�uences ability to build hierarchical motif representations

To test this idea, we created a synthetic dataset that enforces our simplifying assumption that the only
important pattern for a given TF binding event is the presence of a PWM-like motif in a sequence. Brie�y,
synthetic sequences, each 200 nts long, were implanted with 1 to 5 known TF motifs, randomly selected
with replacement from a pool of 12 transcription factor motifs embedded in random DNA (see Methods
for details). The motifs were manually selected from the JASPAR database to represent a diverse, non-
redundant set. The goal of this computational task is to simultaneously make 12 binary predictions for the
presence or absence of each transcription factor motif in the sequence. Since we have ground truth for all
of the relevant TF motifs and where they are embedded in each sequence, we can test the e�cacy of the
representations learned by a trained CNN. We note that the ground truth is only from embedded motifs and
not from motifs that occasionally arise by chance; the latter e�ectively creates false negative labels in this
dataset.

A CNN that employs at least two convolutional layers is required to test our hypotheses of representation
learning. We constructed a CNN with 3 hidden layers: two convolutional layers, each followed by max-
pooling, and a fully-connected hidden layer. Speci�cally, our CNN takes as input one-hot encoded sequences,
processes them with the hidden layers, and outputs a prediction for the binding probability for each of the 12
classes. The number of �lters in each convolutional layer, the number of units in the fully-connected hidden
layer, and the dropout probabilities are �xed (see Methods). The �lter sizes, the max-pool window sizes, and
the max-pool strides are the hyperparameters that can be varied. For a given hyperparameter setting, we
trained the CNN as a multi-class logistic regression (see Methods for training details). All reported metrics
are strictly drawn from the held-out test set using model parameters that yielded the best performance on
the validation set.

To explore how spatial uncertainty within receptive �elds set by max-pooling in�uences the represen-
tations learned by �rst layer �lters, we systematically altered the max-pool sizes while keeping all other
hyperparameters �xed, including a �rst and second layer �lter size of 19 and 5, respectively. To minimize
the in�uence of architecture on classi�cation performance, we coupled the max-pool sizes between the �rst
and second layer, such that their products are equal, which makes the inputs into the fully-connected hidden
layer the same size across all CNNs. The max-pool sizes we employed are (�rst layer, second layer): (2, 50),
(4, 25), (10, 10), (25, 4), (50, 2), and (100,1). For brevity, we denote each CNN with only the �rst max-pool
window size, e.g. CNN-2 for (2, 50).

We �rst veri�ed that the performance of each model is similar as measured by the average area-under
the receiver-operator-characteristic (AU-ROC) curve across the 12 classes (Table 1), which is in the range
of previously reported values for a similar task using experimental ChIP-seq data (Zhou and Troyanskaya,
2015; Quang and Xie, 2016). Next, we converted each �lter to a sequence logo to visually compare the motif
represenations learned by the �rst layer �lters across the di�erent architectures (see Methods). As expected,
we found CNNs that employ large max-pool sizes (≥10) learn representations that qualitatively resemble
the ground truth motifs (Fig. 2). On the other hand, CNNs that employ a small max-pool size (≤4) do not
seem to qualitatively capture any ground truth motif in its entirety, perhaps learning, at best, parts of a

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/362756doi: bioRxiv preprint 

https://doi.org/10.1101/362756
http://creativecommons.org/licenses/by-nd/4.0/


Figure 2: Comparison of �rst layer �lters for CNNs with a di�erent max-pool size. Sequence logos for
normalized �rst convolutional layer �lters are shown for CNN-2 (Left), CNN-4 (Middle), and CNN-25 (Right).
The sequence logo of the ground truth motifs and its reverse complement for each transcription factor is
shown at the bottom. The y-axis label on select �lters represents a statistically signi�cant match to a ground
truth motif.

motif.
To quantify the number of �lters that have learned motifs, we employed the Tomtom motif comparison

search tool (Gupta et al , 2007) to compare the similarity of each �lter against all motifs in the JASPAR 2016
vertebrate database (Mathelier et al , 2016) using an E -value cuto� of 0.1. In agreement with our qualitative
observation, we found CNNs that employ a small max-pool size (≤ 4) have, at best, 57% of their �lters
match any known motifs. Of these, only 3 �lters in CNN-4 matches a ground truth motif. In contrast, CNNs
that employ a large max-pool size yield, at worst, a 97% match to ground truth motifs (Table 1).

Motif representations are not very sensitive to 1st layer �lter size

Because it has been widely thought that �rst convolutional layer �lters learn motifs, deep learning practition-
ers have traditionally employed CNN architectures with large �rst layer �lters to capture motif patterns in
their entirety. However, we have shown that employing a large �lter does not necessarily lead to whole-motif
representations. To test the sensitivity of �lter size to representation learning, we created two new CNNs
that employ a �rst layer �lter size of 9 (CNN9), in contrast to a �lter size of 19 which was previously used,
with max-pool combinations of 4 and 25, i.e. CNN9-4 and CNN9-25. Since the combination of a �lter size
of 9 with a max-pool size of 4 creates overlapping receptive �elds with a small spatial uncertainty, we expect
that this architecture setting will lead to partial-motif representations. On the other hand, the �lter size of
9 is insu�cient to resolve spatial positions when employing a max-pool size of 25. Hence, we predict that
this architecture setting will yield whole-motif representations. As expected, CNN9-25 learns representations
that qualitatively better re�ect the ground truth motifs compared to CNN9-4 (Fig. 3, A-B). Interestingly,
CNN9-25 also learns partial motif representations of larger motifs, i.e. MEF2A, SRF, STAT1, CEBPB,
but in a more visually identi�able way compared to CNN9-4. By quantifying the percentage of �lters that
statistically match ground truth motifs, CNN9-25 yields an 93% match compared to CNN9-4 which only
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Table 1: Performance on the synthetic dataset. The table shows the average area under the receiver-
operator-characteristic curve (AU-ROC) across the 12 TF classes, percentage of matches between the 30
�rst convolutional layer �lters and the entire JASPAR vertebrates database (JASPAR), and the percentage
of �lters that match to any ground truth TF motif (Relevant) for di�erent CNNs. Motif matches were
determined by the Tomtom motif comparison search tool using an E -value cuto� of 0.1. The Average
AU-ROC error represents the standard deviation of the AU-ROC across the 12 classes.

Average % Motif match % Motif match
Model AU-ROC (JASPAR) (Relevant)

CNN-2 0.968±0.028 30 0
CNN-4 0.952±0.056 57 13
CNN-10 0.970±0.038 100 97
CNN-25 0.954±0.094 100 100
CNN-50 0.965±0.040 100 97
CNN-100 0.961±0.042 97 97
CNN9-4 0.958±0.039 13 0
CNN9-25 0.961±0.038 93 93
CNN3-2 0.968±0.027 33 0
CNN3-50 0.652±0.060 17 0
CNN-50-2 0.917±0.136 97 90
CNN19-1-2 0.969 ±0.033 90 87

yield no matches (Table 1).
As a control, we created a new CNN with a �lter size of 3 with max-pool size combinations of 2 and 50,

i.e. CNN3-2 and CNN3-50. Even though the �lter size is smaller than many of the embedded motifs, we
expect that CNN3-2 will still be able to assemble whole motifs to some extent in deeper layers, because it
employs small max-pooling. On the other hand, since CNN3-50 has only one chance to learn whole motifs,
we expect that the small �lter size will be unable to discriminate the embedded motifs for each class, leading
to a poor classi�cation performance. Indeed, CNN3-50 yields a mean AU-ROC of 0.652±0.060 across the
12 classes, compared to CNN3-2 which yields 0.968±0.039 (error is the standard deviation across the 12
classes).

Representations of motifs are a�ected by the ability to assemble whole-motifs in

deeper layers

One aspect of max-pooling that we did not consider in our toy model is the max-pool stride, which is
typically set to the max-pool size. Employing a large max-pool size with a small max-pool stride can create
a situation where the receptive �eld of max-pooled neurons overlap signi�cantly, which should improve the
spatial resolution of partial-motifs. However, a deeper convolutional �lter would still be unable to assemble
whole motifs, because each receptive �eld has a large spatial uncertainty, which provides the same activation
pattern irrespective of whether partial motifs are close together or very distant. Hence, we expect this CNN
to learn whole-motif representations.

To test this, we created a new CNN which employs a large max-pool size of 50 with a max-pool stride
of 2 (CNN-50-2). Consequently, the length of the feature maps after the �rst convolutional layer are half
of the input sequence, which is the same shape as the feature maps of CNN-2, which employs a max-pool
size of 2 with a stride of 2. Similar to CNN-2, CNN-50-2 employs a max-pool size and stride of 50 after the
second convolutional layer. As expected, CNN-50-2 learns whole-motif representations with 90% of its �lters
matching ground truth motifs in the synthetic dataset (Table 1). Moreover, the motifs that are learned by
CNN-50-2 qualitatively better resemble whole-motif representations (Fig. 3) compared to CNN-2 (Fig. 2).
Together, this result further supports that architecture, speci�cally the ability to assemble whole-motifs in
deeper layers, plays a major role in how CNNs learn genomic representations in a given layer.

Another factor that can a�ect the ability to assemble whole-motifs in deeper layers is the size of second
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Figure 3: Representations learned by �rst layer �lters for alternative CNN architectures. Sequence logos
for normalized �rst convolutional layer �lters are shown for (from left to right): CNN9-4, CNN9-25, CNN-
50-2, and CNN19-1-2. The sequence logo of the ground truth motifs and its reverse complement for each
transcription factor is shown at the bottom. The y-axis label on select �lters represent a statistically
signi�cant match to a ground truth motif.

convolutional layer �lters. A small �lter size can make it challenging to assemble whole motifs, even if the
max-pool size and stride are small. To test this, we modi�ed the second convolutional �lter size of CNN-2
from a size of 5 to 1 (CNN19-1-2). As expected, the �rst layer �lters learn representations of whole-motifs
(87% match to ground truth motifs) even though CNN19-1-2 employs a small max-pool size of 2 (Fig. 3 and
Table 1).

Distributed representations build whole-motif representations in deeper layers

The high overall classi�cation performance of each CNN suggests that they must have learned whole-motif
representations at some point. Thus, CNN-2, whose �rst layer �lters do not match any relevant motifs, must
be assembling whole-motif representations in deeper layers. To verify that CNN-2 eventually learns whole-
motif representations, we visualize the learned representation with saliency analysis, speci�cally guided-
backpropagation (Springenberg et al , 2014) (see Methods). Saliency analysis provides the sensitivity that
each nucleotide variant in a given sequence towards the network's predictions. Importantly, saliency analysis
considers the entire network, integrating across distributed representations learned throughout the network.
Unlike standard backpropagation (Simonyan et al , 2013), guided-backpropagation does not provide class-
speci�c attribution scores (Kindermans et al , 2017; Shrikumar et al , 2017); instead, it has been shown to
provide edge detection when applied to images (Nie et al , 2018). Nevertheless, we have found that it provides
more human-interpretable representations of motifs. To limit false-positive representations of motifs from
di�erent classes, we only visualize guided-backprop saliency maps from test sequences that have a single
class label.

The representative sequence logo of a saliency map generated by guided-backpropagation applied to
CNN-2 and CNN-25 for sequences associated with di�erent TF classes con�rms that the underlying motif
representations are indeed learned irrespective of whether the �rst layer learns whole-motifs or partial-motifs
(Fig. 4). Interestingly, CNN3-2 is also able to largely learn representations of whole-motifs, despite employing
a very small �rst layer �lter size of 3 (Fig. 4).
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Figure 4: Representative sequence logos of the saliency maps generated by CNNs. Sequence logos of the
saliency maps generated by CNN-25, CNN-2, and CNN3-2 for a sequence that contains a label for (A) FOSL1,
(B) MAX, (C)CEBPB, and (D) SRF. The underlying sequence and the sequence logo of the sequence model
(ground truth) is shown below. A saliency map was generated by employing guided-backprop from the
pre-activated output neuron with respect to the input layer. The saliency map was then normalized to a
PWM and converted to a sequence logo. Each saliency map was further clipped about the embedded motif
for brevity. The unclipped saliency plots are shown in Supplemental Fig. S1.

Generalization to in vivo sequences

To test whether the same representation learning principles generalize to in vivo sequences, we modi�ed the
DeepSea dataset (Zhou and Troyanskaya, 2015) to include only in vivo sequences that have a peak called
for at least one of 12 ChIP-seq experiments, each of which correspond to a TF in the synthetic dataset (see
Supplemental Table S1). The truncated-DeepSea dataset is similar to the synthetic dataset, except that the
input sequences now have a size of 1,000 nt in contrast to the 200 nt sequences in the synthetic dataset.

We trained each CNN on the in vivo dataset following the same protocol as the synthetic dataset. Similar
to CNNs trained on the synthetic dataset, a qualitative comparison of the �rst layer �lters of di�erent CNNs
show that employing a larger pool size yield representations that better re�ect whole-motifs (Fig. 5). By
employing the Tomtom motif comparison search tool, we quanti�ed the percentage of statistically signi�cant
hits between the �rst layer �lters against the JASPAR database (see Table 2). Similar to the synthetic
dataset, CNNs that employ a smaller max-pool size (≤ 4) yield a percent match that is, at best, 57% (Table
2). In contrast, CNNs that employ a larger max-pool size (≥ 10) yield a percent match that is, at worst, 83%
(Table 2). Since in vivo sequences contain many additional signals compared to the synthetic sequences, we
were unable to reliably quantify the percentage of �lters that learn relevant motifs. Interestingly, we found
that each CNN consistently struggled to identify known motifs for ARID3A, SP1, and STAT1. However, it
is unclear whether this arises because of: experimental or post-processing errors which create label noise in
the sequences we assign as having a ChIP-seq peak, the large variance in numbers of sequences for di�erent
classes (class imbalance), and/or an inability of the CNNs to learn the correct motif, among the many other
possible explanations. Notwithstanding, the same trends in the amount of motif information learned by �rst
layer �lters in vivo suggests that we have identi�ed a general principle for representation learning by CNNs.

Discussion

Here, we reveal principles of how architecture design in�uences representation learning of sequence motifs
by exploring di�erent CNN architectures on a synthetic dataset with a known ground truth. Typical deep
CNN architectures in genomics employ large �lters and small max-pool sizes, which we would expect to
learn distributed representations of sequence motifs. Hence, visualization of �rst convolutional layer �lters is
not as meaningful for these CNNs. However, we showed that localist representations, i.e. whole motifs, can
be learned by constraining the architecture such that the ability of deeper layers cannot reliably assemble
hierarchical representations of motifs. Although this study focuses on �rst layer representations, we believe
that the same principles hold for deeper layers in the network. While we only explored the role of archi-
tecture in this study, we note that there may be other factors that contribute to the quality of the learned
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Figure 5: Comparison of the �rst layer �lters for CNNs trained on in vivo sequences. Sequence logos
for normalized �rst convolutional layer �lters are shown for CNN-2 (Left), CNN-4 (Middle), and CNN-25
(Right). The sequence logos of reference motifs and their reverse complements for each transcription factor
from the JASPAR database is shown at the bottom. The y-axis label on select �lters represents a Tomtom
match to a reference motif.

representations, including regularization and optimization algorithms.
There are many caveats to interpreting a CNN by just visualizing �rst layer �lters, even if it learns whole-

Table 2: Performance of deep learning models on the in vivo dataset. The table shows the average area
under the receiver-operator-characteristic curve (AU-ROC) and the average area under the precision recall
curve (AU-PR) across the 12 TF classes, percentage of matches between the 30 �rst convolutional layer
�lters and the entire JASPAR vertebrates database (JASPAR), and the percentage of �lters that match to
any ground truth TF motif (Relevant) for di�erent CNNs. Motif matches were determined by the Tomtom
motif comparison search tool using an E -value cuto� of 0.1. The average AU-ROC error and the average
AU-PR error represents the standard deviation across the 12 classes.

Average Average Motif match Motif match
Model AU-ROC AU-PR (JASPAR) (Relevant)

CNN-2 0.906±0.050 0.598±0.259 23 3
CNN-4 0.907±0.048 0.601±0.255 57 30
CNN-10 0.901±0.053 0.584±0.267 93 77
CNN-25 0.900±0.060 0.580±0.291 90 77
CNN-50 0.901±0.054 0.583±0.277 83 70
CNN-100 0.889±0.061 0.556±0.284 93 73
CNN9-4 0.900±0.052 0.565±0.281 56 30
CNN9-25 0.882±0.066 0.539±0.296 83 57
CNN-50-2 0.890±0.070 0.553±0.316 87 60

9

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/362756doi: bioRxiv preprint 

https://doi.org/10.1101/362756
http://creativecommons.org/licenses/by-nd/4.0/


motif representations. This approach only represents the sequence features that are learned across the entire
dataset. It does not inform how the CNN combines these features to make predictions. If the computational
task is multi-task classi�cation, there is no correspondence between features and their respective class. In
addition, not all �lters will learn motifs, and a motif comparison search does not necessarily identify whether
a CNN learns relevant motifs. Moreover, there are redundancies in the motifs by di�erent �lters. The
number of �lters dedicated to a motif may not be a reliable measure of the importance of the motif. The
variation in the number of �lters dedicated to a motif on the synthetic sequences, which do not have any
class imbalance, suggests that the observed di�erence is more likely due to the di�culty of �nding that motif
and random initialization, not the importance of the motif.

The similar performance across CNNs explored here suggests that motif discovery does not require com-
plicated architectures that learn distributed representations. Nevertheless, we posit that building distributed
representations may be more bene�cial in more complicated tasks, such as in vivo TF binding, because a
wider array of representations can be combinatorically constructed from partial representations. Moreover,
there becomes less dependence on convolutional �lter lengths and numbers of �lters as long as there ex-
ist deeper layers that can build representations hierarchically. In contrast, building localist representations
enforces harder constraints set by the numbers of �lters and the �lter lengths, limiting the amount of rep-
resentations and their sizes that can be learned. However, when the main features in the dataset is simple,
such as whether or not a motif is present, then CNN architectures that learn localist representations achieve
an easier to interpret model that still performs competitively.

Alternative approaches to visualize internal representations of a CNN can be achieved with attribution
methods (Simonyan et al , 2013; Shrikumar et al , 2017; Springenberg et al , 2014; Smilkov et al , 2017;
Lundberg and Lee, 2017). Attribution methods take into account distributed representations across the
entire network, but they only consider one sequence at a time. Their scores can be noisy, leading to signi�cant
importance of nucleotide variants that are not necessarily biologically relevant. While attribution scores can
be clustered to average down noise (Shrikumar et al , 2018), it is still unclear to what extent the attribution
scores faithfully recapitulate features learned by the network (Adebayo et al , 2018; Kindermans et al , 2017;
Nie et al , 2018), especially for genomic sequences. Further research is required to understand the factors
that a�ect the �delity of recovering biological signals from attribution scores.

Methods

Synthetic dataset

The synthetic dataset consists of sequences with known motifs embedded in random DNA sequences to mimic
a typical multi-class binary classi�cation task for ChIP-seq datasets. We acquired a pool of 24 PWMs from
12 unique transcription factors (forward and reverse complements) from the JASPAR database (Mathelier
et al , 2016): Arid a, CEBPB, FOSL1, Gabpa, MEF2A, MAFK, MAX, MEF2A, NFYB, SP1, SRF, STAT1,
and YY1. For each sequence, we generated a 200 nt random DNA sequence model with equal probability
for each nucleotide. 1 to 5 TF PWMs were randomly chosen with replacement and randomly embedded
along the sequence model such that each motif has a bu�er of at least 1 nucleotide from other motifs and
the ends of the sequence. We generated 25,000 sequence models and simulated a single synthetic sequence
from each model. A corresponding label vector of length 12, one for each unique transcription factor, was
generated for each sequence with a one representing the presence of a TF's motif or its reverse complement
along the sequence model and zero otherwise. The 25,000 synthetic sequences and their associated labels
were then randomly split into a training, validation, and test set according to the fractions 0.7, 0.1, and 0.2,
respectively.

In vivo dataset

Sequences which contain ENCODE ChIP-seq peaks were downloaded from the DeepSEA dataset via (Zhou
and Troyanskaya, 2015). The human reference genome (GRCh37/hg19) was segmented into non-overlapping
200 nt bins. A vector of binary labels for ChIP-seq peaks and DNase-seq peaks was created for each bin,
with a 1 if more than half of the 200 nt bin overlaps with a peak region, and 0 otherwise. Adjacent 200 nt
bins were then merged to 1,000 nt lengths and their corresponding labels were also merged. Chromosomes
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8 and 9 were excluded from training to test chromatin feature prediction performances, and the rest of the
autosomes were used for training and validation. We truncated the DeepSea dataset to include only the
sequences which contain at least one of 12 transcription factor labels: Arid3a, CEBPB, FOSL1, Gabpa,
MEF2A, MAFK, MAX, MEF2A, NFYB, SP1, SRF, STAT1, and YY1 (See Supplementary Table S1 for
ENCODE �lenames and class indices from the original DeepSea dataset). 270,382 (92%) sequences comprise
the training set and 23,768 (8%) sequences comprise the test set. Each 1000 nt DNA sequence is one-hot
encoded into a 4x1000 binary matrix, where rows correspond to A, C, G and T.

CNN Models

All CNNs take as input a 1-dimensional one-hot-encoded sequence with 4 channels (one for each nucleotide:
A, C, G, T), then processes the sequence with two convolutional layers, a fully-connected hidden layer, and
a fully-connected output layer with 12 output neurons that have sigmoid activations for binary predictions.
Each convolutional layer consists of a 1D cross-correlation operation, which calculates a running sum between
convolution �lters and the inputs to the layer, followed by batch normalization (Io�e and Szegedy, 2015),
which independently scales the features learned by each convolution �lter, and a non-linear activation with
a recti�ed linear unit (ReLU), which replaces negative values with zero.

The �rst convolutional layer employs 30 �lters each with a size of 19 and a stride of 1. The second
convolutional layer employs 128 �lters each with a size of 5 and a stride of 1. All convolutional layers
incorporate zero-padding to achieve the same output length as the inputs. Each convolutional layer is
followed by max-pooling with a window size and stride that are equal, unless otherwise stated. The product
of the two max-pooling window sizes is equal to 100. Thus, if the �rst max-pooling layer has a window size
of 2, then the second max-pooling window size is 50. This constraint ensures that the number of inputs to
the fully-connected hidden layer is the same across all models. The fully-connected hidden layer employs
512 units with ReLU activations.

Dropout (Srivastava et al , 2014), a common regularization technique for neural networks, is applied during
training after each convolutional layer, with a dropout probability set to 0.1 for convolutional layers and 0.5
for fully-connected hidden layers. During training, we also employed L2-regularization with a strength equal
to 1e-6. The parameters of each model were initialized according to (He et al , 2015), commonly known as
He initialization.

All models were trained with mini-batch stochastic gradient descent (mini-batch size of 100 sequences)
for 100 epochs, updating the parameters after each mini-batch with Adam updates (Kingma and Ba, 2014),
using recommended default parameters with a constant learning rate of 0.0003. Training was performed on
a NVIDIA GTX Titan X Pascal graphical processing unit with acceleration provided by cuDNN libraries
(Chetlur et al , 2014). All reported performance metrics and saliency logos are drawn strictly from the test
set using the model parameters which yielded the lowest binary cross-entropy loss on the validation set, a
technique known as early stopping.

Visualizing saliency analysis

Saliency analysis is performed by calculating the gradients of a neuron-of-interest with respect to the input
one-hot representation. We use a variant of saliency analysis, called guided-backpropagation (Springenberg
et al , 2014), which recti�es negative gradients through each ReLU activation. To generate a saliency logo,
we calculated the saliency map using guided-backpropagation from the logits of a given class to the inputs.
We then normalized the saliency map by dividing the maximum absolute value across the saliency map.

Next, we applied an exponential �lter according to: Ŝ = exp
[
λ S

max |S|

]
, where Ŝ is the normalized saliency

map, S is the saliency map generated by guided-backprop, λ is a scaling factor that we set to 3 for all of
saliency logos in this paper. We then separately normalized each position across by dividing the sum of the
�ltered saliency map across nucleotides, thereby providing a probability for each nucleotide at each position.
To generate a sequence logo,the normalized saliency values of each nucleotide a at each position i is scaled
according to: Ŝa,i × Ii, where Ii = 2 +

∑
a Ŝa,i log2 Ŝa,i.
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Visualizing saliency analysis and 1st layer �lters

A �rst layer �lter was visualized by scanning it across every sequence in the test set. Sequences whose max
activations was less than a cuto� of 70% of the maximum possible activation achievable for that �lter were
removed. A subsequence the size of the �lter is taken about the max activation for each remaining sequence
and assembled into an alignment. Subsequences that are shorter than the �lter size, because their max
activation is too close to the ends of the sequence, are also disregarded. A position probability matrix is
created from the alignment and converted to a sequence logo.

Availability

Python scripts to download and process the datasets and TensorFlow code to build, train, and evaluate the
CNNs can be found via https://github.com/p-koo/learning_sequence_motifs.
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