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Abstract

For many disease-causing virus species, global diversity is clustered into a taxonomy of subtypes
with clinical significance. In particular, the classification of infections among the subtypes of human
immunodeficiency virus type 1 (HIV-1) is a routine component of clinical management, and there are
now many classification algorithms available for this purpose. Although several of these algorithms
are similar in accuracy and speed, the majority are proprietary and require laboratories to transmit
HIV-1 sequence data over the network to remote servers. This potentially exposes sensitive patient
data to unauthorized access, and makes it impossible to determine how classifications are made and
to maintain the data provenance of clinical bioinformatic workflows. We propose an open-source
supervised and alignment-free subtyping method (Kameris) that operates on k-mer frequencies
in HIV-1 sequences. We performed a detailed study of the accuracy and performance of subtype
classification in comparison to four state-of-the-art programs. Based on our testing data set of
manually curated real-world HIV-1 sequences (n = 2, 784), Kameris obtained an overall accuracy
of 97%, which matches or exceeds all other tested software, with a processing rate of over 1,500
sequences per second. Furthermore, our fully standalone general-purpose software provides key
advantages in terms of data security and privacy, transparency and reproducibility. Finally, we show
that our method is readily adaptable to subtype classification of other viruses including dengue,
influenza A, and hepatitis B and C virus.

Introduction 1

Subtype classification is an important and challenging problem in the field of virology. Subtypes 2

(also termed clades or genotypes) are a fundamental unit of virus nomenclature (taxonomy) within a 3

defined species, where each subtype corresponds to a cluster of genetic similarity among isolates from 4

the global population. Defined subtype references for hepatitis C virus, for example, can diverge 5

by as much as 30% of the nucleotide genome sequence [1], but there is no consistent threshold 6

among virus species. Many virus subtypes are clinically significant because of their associations 7

with variation in pathogenesis, rates of disease progression, and susceptibility to drug treatments 8

and vaccines [2]. For example, the HIV-1 subtypes originated early in the history of the global 9

pandemic [3] and have diverged by about 15% of the nucleotide genome sequence [4]. Rates of disease 10

progression vary significantly among HIV-1 subtypes and classifying newly diagnosed infections 11

by their genetic similarity to curated reference subtypes [5] is a recommended component for the 12

clinical management of HIV-1 infection [6, 7]. Consequently, a number of algorithms have been 13

developed for the automated determination of HIV-1 subtypes from genetic sequence data [8–10]. 14
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Today, there are important practical considerations that HIV-1 subtyping algorithms should 15

meet. These include: 16

1. High Accuracy and Performance: The cost of sequencing is rapidly decreasing and the 17

amount of sequence data increasing due to next-generation sequencing (NGS) technologies. 18

Thus, in addition to being accurate, software must be computationally fast and scalable in 19

order to handle rapidly growing datasets. 20

2. Data Security and Privacy: Policy, legal, and regulatory issues can prohibit patient 21

sequence data from being transmitted to an external server on the Internet. In addition, 22

concerns around privacy policies and the possibility of data breaches can cause issues for 23

researchers and clinicians. For these reasons, software should be made available in an offline, 24

standalone version. 25

3. Transparency: With closed-source or proprietary software, it can be impossible to determine 26

precisely how classification determinations are made. An open-source implementation gives 27

full visibility into all aspects of the classification process. 28

4. Reproducibility: Relying on an externally-hosted service can make it impossible to determine 29

which version of the software has been used to generate subtype classifications. This makes 30

it difficult to guarantee that classification results can be reproduced, and reproducibility is 31

generally recognized as a necessary component of clinical practice. 32

In our effort to develop a general sequence classification method satisfying the above considerations, 33

we propose a simple, intuitive, general-purpose, highly-efficient technique based on k-mer frequency 34

vectors for supervised nucleotide sequence classification, and we release an open-source software 35

implementation of this method (designated Kameris) under a permissive open-source license. 36

Alignment-free subtyping 37

Most subtype classification methods for HIV-1 require the alignment of the input sequence against 38

a set of predefined subtype reference sequences [11], which enables the algorithm to compare 39

homologous sequence features [12–14]. For example, the NCBI genotyping tool [15] computes 40

BLAST similarity scores against the reference set for sliding windows along the query sequence. 41

Other methods such as REGA [9] and SCUEAL [10] reconstruct maximum likelihood phylogenies 42

from the aligned sequences: REGA (version 3.0) reconstructs trees from sliding windows of 400bp 43

from the sequence alignment and quantifies the confidence in placement of the query sequence 44

within subtypes by bootstrap sampling (bootscanning) [16]. Alignment-based methods are relatively 45

computationally expensive, especially for long sequences; the heuristic methods require a number 46

of ad hoc settings, such as the penalty for opening a gap; and alignment method may not perform 47

well on highly-divergent regions of the genome. To address these limitations, various alignment-free 48

classification methods have been proposed. Some of them make use of nucleotide correlations [17], or 49

sequence composition (e.g. COMET [8] and [18]). Other methods include those based on restriction 50

enzyme site distributions, applied to the subtyping of human papillomavirus (HPV), hepatitis B 51

virus (HBV) and HIV-1 (CASTOR [19]); based on the “natural vector” which contains information 52

on the number and distribution of nucleotides in the sequence, applied to the classification of 53

single-segmented [18] and multi-segmented [20] whole viral genomes, as well as viral proteomes [21]; 54

based on neural networks using digital signal processing techniques to yield “genomic cepstral 55

coefficient” features, applied to distinguishing four different pathogenic viruses [22]; and based on 56

different genomic materials (namely DNA sequences, protein sequences, and functional domains), 57

applied to the classification of some viral species at the order, family, and genus levels [23]. 58

k-mer-based classifiers 59

The use of k-mer (substrings of length k) frequencies for phylogenetic applications started with 60

Blaisdell, who reported success in constructing accurate phylogenetic trees from several coding 61
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and non-coding nDNA sequences [24] and some mammalian alpha and beta-globin genes [25]. 62

Other authors [26–30] have observed that the excess and scarcity of specific k-mers, across a 63

variety of different DNA sequence types (including viral DNA in [26]), can be explained by factors 64

such as physical DNA/RNA structure, mutational events, and some prokaryotic and eukaryotic 65

repair and correction systems. Typically, k-mer frequency vectors are paired together with a 66

distance function in order to measure the quantitative similarity between any pair of sequences. 67

Studies measuring quantitative similarity between DNA sequences from different sources have 68

been performed, for instance using the Manhattan distance [31,32], the weighted or standardized 69

Euclidean distance [33,34], and the Jensen-Shannon distance [35,36]. Applications of these distances 70

and others have been compared and benchmarked in [37–40], and detailed reviews of the literature 71

can be found in [41–44]. 72

In the context of viral phylogenetics, k-mer frequency vectors paired with a distance metric 73

have been used to construct pairwise distance matrices and derive phylogenetic trees, e.g., dsDNA 74

eukaryotic viruses [45], or fragments from Flaviviridae genomes [46]. Other studies have investigated 75

the multifractal properties of k-mer frequency patterns in HIV-1 genomes [47], and the changes in 76

dinucleotide frequencies in the HIV genome across different years [48]. We used k-mer frequency 77

vectors to train supervised classification algorithms. Similar approaches have previously been 78

explored (with different classifiers than those used here), for example to subtype Influenza and 79

classify Polyoma and Rhinovirus fragments [49], to predict HPV genotypes [50,51], to classify whole 80

bacterial genomes to their corresponding taxonomic groups at different levels [52], and to classify 81

whole eukaryotic mitochondrial genomes [53–56]. 82

To evaluate our method, we curated manually-validated testing sets of ‘real-world’ HIV-1 data 83

sets. We assessed fifteen classification algorithms and conclude that for these data the SVM-based 84

classifiers, multilayer perceptron, and logistic regression achieved the highest accuracy, with the 85

SVM-based classifiers also achieving the lowest running time out of those. We measured classification 86

accuracy and running time for k-mers of length k = 1 . . . 10 and found that k = 6 provides the 87

optimal balance of accuracy and speed. Overall, our open-source method obtains a classification 88

accuracy average of 97%, with individual accuracies equal or exceeding other subtyping methods for 89

most datasets, and processes over 1,500 sequences per second. Our method is also applicable to 90

other virus datasets without modification: we demonstrate classification accuracies of over 90% in 91

all cases for full-length genome data sets of dengue, hepatitis B, hepatitis C, and influenza A viruses. 92

Methods 93

Supervised classification 94

First, we needed to determine which supervised classification method would be the most effective 95

for classifying virus sequences, using their respective k-mer frequencies as feature vectors (numerical 96

representations). We trained each of 15 classifiers (Table 2) on a set S = {s1, s2, . . . sn} of nucleotide 97

sequences partitioned into groups g1, g2, . . . , gp. Given as input any new, previously unseen, sequence 98

(i.e., not in the dataset S), the method outputs a prediction of the group gi that the sequence belongs 99

to, having ‘learned’ from the training set S the correspondence between the k-mer frequencies of 100

training sequences and their groups. The feature vector Fk(s) for an input sequence s was constructed 101

from the number of occurrences of all 4k possible k-mers (given the nucleotide alphabet {A,C,G, T}), 102

divided by the total length of s. Any ambiguous nucleotide codes (e.g., ‘N’ for completely ambiguous 103

nucleotides) were removed from s before computing Fk(s). 104

Next, we processed the feature vectors for more efficient use by classifiers. We rescaled the k-mer 105

frequencies in Fk(s) to have a standard deviation of 1, which satisfies some statistical assumptions 106

invoked by several classification methods. In addition, we performed dimensionality reduction using 107

truncated singular value decomposition [57] to reduce the vectors to 10% of the average number of 108

non-zero entries of the feature vectors. This greatly reduces running time for most classifiers while 109
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having a negligible effect on classification accuracy. 110

Finally, we trained a supervised classifier on the vectors Fk(s). Supervised classifiers, in general, 111

can be intuitively thought of as constructing a mapping from the input feature space to another space 112

which in some sense effectively separates each training class. As a concrete example, the support vec- 113

tor machine (SVM) classifier maps the input space to another space of equal or higher dimensionality 114

using a kernel function, and then selects hyperplanes that represent the largest separation between ev- 115

ery pair of classes. Those hyperplanes induce a partition on the transformed space which is then used 116

for the classification of new items. We tested fifteen different specific classifier algorithms: 10-nearest- 117

neighbors [58] with Euclidean metric (10-nearest-neighbors); nearest centroid, to class mean 118

(nearest-centroid-mean) and to class median (nearest-centroid-median) [59]; logistic regression 119

with L2 regularization and one-vs-rest as the multiclass generalization (logistic-regression) [60]; 120

SVM with the linear (linear-svm), quadratic (quadratic-svm), and cubic (cubic-svm) kernel 121

functions [61]; SVM with stochastic gradient descent learning and linear kernel function (sgd) [62]; 122

decision tree with Gini impurity metric (decision-tree) [63]; random forest using decision trees with 123

Gini impurity metric as sub-estimators (random-forest) [64]; AdaBoost with decision trees as the 124

weak learners and the SAMME.R real boosting algorithm (adaboost) [65,66]; Gaussian näıve Bayes 125

(gaussian-naive-bayes) [67]; linear (lda) and quadratic (qda) discriminant analysis [68]; and 126

multi-layer perceptron with a 100-neuron hidden layer, rectified linear unit (ReLU) activation func- 127

tion, and the Adam stochastic gradient-based weight optimizer (multilayer-perceptron) [69,70]. 128

We used the implementations of these classifiers in the Python library scikit-learn [71] with the 129

default settings. 130

For some of the results that follow, we required a method for measuring classification accuracy 131

without the need for a separate testing dataset. To do so, we used 10-fold cross-validation, a technique 132

widely used for assessing the performance of supervised classifiers [72]. N -fold cross-validation is 133

performed by taking the given dataset and randomly partitioning it into N groups of equal size. 134

Taking each group in turn, we trained a classifier on the sequences outside of the selected group, 135

and then computed its accuracy from predicting the classes of the sequences in the selected group. 136

The outcome of the cross-validation are N accuracy values for the N distinct, independent training 137

and testing runs. We report the arithmetic mean of those accuracies as the final accuracy measure. 138

Unsupervised visualization 139

Supervised classification requires, by definition, a training set consisting of examples of classes 140

determined a priori. However, one may wish to explore a dataset where the groups are not necessarily 141

all known. For the problem of virus subtyping for example, one may suspect the existence of a novel 142

subtype or recombinant. To this end, unsupervised data exploration techniques are useful, and herein 143

we also explore the use of Molecular Distance Maps (MoDMaps), previously described in [40, 73, 74], 144

for this purpose. After computing the vectors Fk(s), this method proceeds by first constructing a 145

pairwise distance matrix. In this paper, we use the well-known Manhattan distance [75], defined 146

between two vectors A = (a1, . . . an) and B = (b1, . . . bn) as being: 147

dM (A,B) =
n∑

i=1

|ai − bi| .

Next, the distance matrix is visualized by classical MultiDimensional Scaling (MDS) [76]. MDS takes 148

as input a pairwise distance matrix and produces as output a 2D or 3D plot, called a MoDMap [77], 149

wherein each point represents a different sequence, and the distances between points approximate the 150

distances from the input distance matrix. As MoDMaps are constrained to two or three dimensions, 151

it is in general not possible for the distances in the 2D or 3D plot to match exactly the distances in 152

the distance matrix, but MDS attempts to make the difference as small as possible. 153

4/21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2018. ; https://doi.org/10.1101/362780doi: bioRxiv preprint 

https://doi.org/10.1101/362780
http://creativecommons.org/licenses/by/4.0/


Implementation 154

We have developed a software package called Kameris which implements our method. It can 155

be obtained from https://github.com/stephensolis/kameris, and may be used on Windows, 156

macOS, and Linux. Kameris is implemented in Python, with the feature vector computation parts 157

implemented in C++ for performance. It is packaged so as to have no external dependencies, and 158

thus is easy to run. The package has three different modes: first, it can train one or more classifiers 159

on a dataset and evaluate cross-validation performance; second, it can summarize training jobs, 160

computing summary statistics and generating MDS plots; and third, it can classify new sequences 161

on already-trained models. Detailed documentation, including usage and setup instructions, can 162

be found at https://github.com/stephensolis/kameris. All running time benchmarks of our 163

software were performed on an Amazon Web Services (AWS) r4.8xlarge instance with 16 physical 164

cores (32 threads) of a 2.3GHz Intel Xeon E5-2686 v4 processor. We also note that many of the 165

implementations of the classifier algorithms we use are single-threaded and that performance can 166

almost certainly be substantially improved by using parallelized implementations. 167

Datasets 168

In this paper, a variety of different datasets were used to validate the performance of the method. 169

Straightforward reproducibility of results was a priority in the design of this study, and to that end, 170

every sequence and its metadata from every dataset referenced here can be easily retrieved from our 171

GitHub repository at https://github.com/stephensolis/kameris-experiments. 172

In some cases, these datasets had few examples for some classes. Training on classes with very 173

few examples would unfairly lower accuracy since the classifier does not have enough information 174

to learn, so we wish to omit such classes from our analysis. However, the minimum number of 175

examples per class to achieve proper training of a classifier is difficult to estimate; this number is 176

known to be dependent on both the complexity of the feature vectors and characteristics of the 177

classifier algorithm being used [78,79]. Since we vary both k and the classifier algorithms in this 178

study, this makes it especially challenging to determine an adequate minimum class size. Here, we 179

arbitrarily selected 18 as our minimum, so we omitted from analysis any subtype with fewer than 18 180

sequences. It may be that specific values of k and some classifier algorithms work well in scenarios 181

with very small datasets, and we leave this as an open question. 182

Primary dataset 183

The primary dataset used was the full set of HIV-1 genomes available from the Los Alamos (LANL) 184

sequence database, accessible at https://www.hiv.lanl.gov/components/sequence/HIV/search/ 185

search.html. In this database, the option exists of using full or partial sequences – in our analysis, 186

we consider both full genomes and just the coding sequences of the pol gene. For the set of 187

whole genomes, the query parameters “virus: HIV-1, genomic region: complete genome, excluding 188

problematic” were used; this gave a total of 6625 sequences with an average length of 8970 bp. 189

For the set of pol genes, the query parameters “virus: HIV-1, genomic region: Pol CDS, excluding 190

problematic” were used; this gave a total of 9270 sequences with an average length of 3006 bp. 191

In both cases, the query was performed on May 18, 2017, and at the time, the LANL database 192

reported a last update on May 6, 2017. After removing small classes (see preceding section), this 193

dataset contained 26 subtypes and circulating recombinant forms (CRFs). This dataset was used to 194

determine the best value of k, the best classifier algorithm, to compare the performance of whole 195

genomes with pol gene sequences only, and to produce the MoDMaps of HIV-1. In those experiments, 196

cross-validation was used to randomly draw training and testing sets from the dataset. 197

Evaluation datasets 198

To evaluate classifiers trained on HIV-1 sequences and subtype annotations curated by the LANL 199

database, we needed testing sets but wanted to avoid selecting them from the same database. 200
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We manually searched the GenBank database for large datasets comprising HIV-1 pol sequences 201

collected from a region with known history of a predominant subtype, and evaluated the associated 202

publications to verify the characteristics of the study population (Table 1). After selection of the 203

datasets, we wished to obtain labels without relying on another subtyping method. To do so, first 204

we made use of the known geographic distribution of HIV-1 subtypes, where specific regions are 205

predominantly affected by one or two particular subtypes or circulating recombinant forms due 206

to historical ‘founding’ events [80]. Next, we screened each dataset using a manual phylogenetic 207

subtyping process to verify subtype assignments against the standard reference sequences. This 208

was done, essentially, by reconstructing phylogenetic trees to identify possible subtype clusters. 209

A cluster was identified as a certain subtype if it included a specific subtype reference sequence 210

we had initially provided in our datasets. Thus, the first step was to download the most recent 211

set of subtypes reference sequences for the HIV-1 pol gene at the LANL database, accessible at 212

https://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html [81]. 213

Table 1. Statistics for the manually curated testing datasets. The first author, year, and
reference number for the publication associated with each data set is listed under the ‘Source’
column heading. The historically most prevalent HIV-1 subtype(s) is indicated under the ‘Subtype’
column heading.

Source Country Subtype Count Sequence length (nt)
Average Min. Max.

Nadai (2009) [82] Haiti B 66 1024.0 1024 1025
Niculescu (2015) [83] Romania F 97 1301.2 1257 1302
Paraschiv (2017) [84] Romania F 86 1295.9 1164 1299
Rhee (2017) [85] Thailand CRF01 AE 282 703.8 633 756
Sukasem (2007) [86] Thailand CRF01 AE 221 286.4 270 288
Eshleman (2001) [87] Uganda A/D 102 1261.2 1260 1302
Ssemwanga (2012) [88] Uganda A/D 72 1025.0 1025 1025
Wolf (2017) [89] USA B 1653 1020.8 868 1080
TenoRes Study Group
(2016) [90]

South Africa C 102 1001.4 921 1209

van Zyl (2017) [91] South Africa C 59 1056.7 1002 1070
Huang (2003) [92] Reference panel n/a 44 1189.9 1187 1190

Overall 2784 960.4 270 1302

We loaded the resulting FASTA file in the eleven datasets from Table 1. We then aligned the 214

datasets with MUSCLE v3.8.425 [93], implemented in AliView 1.19-beta-3 [94], where we also visually 215

inspected the alignments. To avoid overfitting, we searched for the nucleotide model of substitution 216

that was best supported by each dataset using the Akaike Information Criterion (AIC) in jModeltest 217

v2.1.10 [95]. For the dataset US.Wolf2017, the large number of sequences precluded this model 218

selection process, so we chose a General Time Reversible model incorporating an invariant sites 219

category and a gamma distribution to model rate variation among the remaining sites (GTR+I+G); 220

this parameter-rich model is often supported by large HIV-1 data sets, and was similar to the model 221

selected by the authors in the original study [89]. Phylogenetic trees were reconstructed by maximum 222

likelihood using PHYML v20160207 [96] with a related bootstrap support analysis. The resulting 223

trees were visualized and their relative sequences were manually annotated in FigTree v1.4.3 [97]. 224

In order to benchmark performance on this manually curated testing dataset, we required a 225

separate training dataset. Since the subtype annotations from the full set of HIV-1 genomes in the 226

LANL database are typically given by individual authors using unknown methods, they may be 227

incorrect at times, potentially negatively impacting classification performance. Thus, we trained our 228

classifier on the subset of HIV-1 pol sequences from the 2010 Web alignment from the LANL database, 229

accessible at https://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html. This Web 230

alignment dataset is a more curated set of pol sequences, and is more likely to be correctly annotated. 231
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Specifically, we selected ‘Web’ as the alignment type, ‘HIV1/SIVcpz’ as organism, ‘POL’ as ‘Pre- 232

defined region of the genome’ under ‘Region’, ‘All’ as subtype, ‘DNA’, and ‘2010’ as the year. Any 233

Simian Immunodeficiency Virus (SIV) sequences were manually removed from the query results. 234

This gave a total of 1979 sequences, containing 16 subtypes or CRFs after removal of small classes. 235

Other datasets 236

For another experiment, we generated a set of synthetic HIV-1 sequences by simulating the molecular 237

evolution of sequences derived from the curated HIV-1 subtype references. To do so, we used a 238

modified version of the program INDELible [98], assigning one of the subtype reference sequences to 239

the root of a ‘star’ phylogeny with unit branch lengths and 100 tips. The codon substitution model 240

parameters, including the transition-transversion bias parameter and the two-parameter gamma 241

distribution for rate variation among sites, were calibrated by fitting the same type of model to 242

actual HIV-1 sequence data [99]. We adjusted the ‘treelength’ simulation parameter to control the 243

average divergence between sequences at the tips. 244

Finally, we performed experiments with dengue, influenza A, hepatitis B, and hepatitis C virus 245

sequences. The dengue and influenza sequences were retrieved from the National Center for Biotech- 246

nology Information (NCBI) Virus Variation sequence database on August 10, 2017. The dengue 247

virus sequences were accessed from https://www.ncbi.nlm.nih.gov/genomes/VirusVariation/ 248

Database/nph-select.cgi?taxid=12637 with the query options “Nucleotide”, “Full-length se- 249

quences only”, and “Collapse identical sequences” for a total of 4893 sequences with an average length 250

of 10585 bp. Influenza sequences were accessed from https://www.ncbi.nlm.nih.gov/genomes/ 251

FLU/Database/nph-select.cgi?go=genomeset with the query options “Genome sets: Complete 252

only”, and “Type: A” for a total of 38215 sequences with an average length of 13455 bp. Hepatitis B 253

sequences were retrieved from the Hepatitis B Virus Database operated by the Institut de Biologie 254

et Chimie des Proteines (IBCP), accessible at https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset? 255

seqtype=0, on August 10, 2017 for a total of 5841 sequences with an average length of 3201 bp. 256

Finally, hepatitis C sequences were retrieved from the Los Alamos (LANL) sequence database, accessi- 257

ble at https://hcv.lanl.gov/components/sequence/HCV/search/searchi.html, on August 10, 258

2017, using the query options “Excluding recombinants”, “Excluding ‘no genotype”’, “Genomic 259

region: complete genome”, and “Excluding problematic” for a total of 1923 sequences with an 260

average length of 9140 bp. After removal of small classes, our data comprised 4 subtypes of dengue 261

virus, 6 subtypes of hepatitis B, 12 subtypes of hepatitis C, and 56 subtypes of influenza type A. 262

Results 263

Our subtype classification method has two main parameters that may be varied: namely, the specific 264

classifier to be used, and the value k of the length of the k-mers to count when producing feature 265

vectors. We begin with the full set of full-length HIV-1 genomes from the LANL database, and we 266

perform a separate 10-fold cross-validation experiment for each of the fifteen classifiers listed in the 267

Methods section, and all values of k from 1 to 10, that is, 160 independent experiments in total. 268

For each value of k, we plot the highest accuracy obtained by any classifier as well as the average 269

running time over the classifiers, see Figure 1. We observe that k = 6 achieves a good balance 270

between classifier performance and accuracy, so at k = 6, we list the accuracy obtained by each 271

classifier and its corresponding running time, see Table 2. As can be seen, the SVM-based classifiers, 272

multilayer perceptron, and logistic regression achieve the highest accuracy, with the SVM-based 273

classifiers achieving also the lowest running time out of those. 274

Since it is typical to have only partial genome sequences available, we repeat the same 10-fold 275

cross-validation at k = 6, with the linear SVM classifier, this time with the set of all pol genes 276

from the LANL database. We find that the accuracy changes from 96.49% (full-length genomes) to 277

95.68% (pol gene sequences), indicating that the use of partial genomes does not substantially reduce 278

classification performance. Further, we expect that the inclusion of recombinant forms should lower 279
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Fig 1. Highest accuracy score and average running time across all fifteen classifiers,
at different values of k, for the full set of 6625 whole HIV-1 genomes from the LANL
database.
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Table 2. Accuracy scores and running times for each of the fifteen classifiers at k = 6,
for the full set of 6625 whole HIV-1 genomes from the LANL database.

Classifier Accuracy Running time

cubic-svm 96.66% 44.44s
quadratic-svm 96.59% 44.52s
linear-svm 96.49% 44.23s
multilayer-perceptron 95.49% 53.92s
logistic-regression 95.32% 88.18s
10-nearest-neighbors 93.97% 31.92s
nearest-centroid-median 93.95% 22.21s
nearest-centroid-mean 93.84% 21.90s
decision-tree 93.53% 49.99s
random-forest 93.07% 31.35s
sgd 91.10% 24.24s
gaussian-naive-bayes 87.75% 22.39s
lda 77.76% 24.46s
qda 75.13% 26.57s
adaboost 64.85% 147.24s

accuracy, since it requires the classifier to accurately distinguish them from their constituent ‘pure’ 280

subtypes. To test this, we repeat the same 10-fold cross-validation at k = 6 and with the linear 281

SVM classifier, with the set of all full-length genomes from the LANL database, this time omitting 282

the 17 classes of recombinant forms and leaving only the 9 classes of pure subtypes. We find that 283

the accuracy increases from 96.49% (including recombinants) to 99.64% (omitting recombiants), 284

and in fact only 3 sequences are misclassified in the latter case. 285

The sequences present in the LANL database are curated to be representative of global HIV-1 286

diversity, and therefore high classification accuracies on that dataset are, to some extent, to be 287

expected. In order to perform a more challenging benchmark on our algorithm, we compute its 288

accuracy on the eleven selected testing datasets of pol gene fragments from Table 1, after training 289

with the set of whole pol genes from the LANL 2010 web alignment. Based on the previous 290
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performance measurements, we use the linear SVM classifier and k = 6. We also perform the same 291

accuracy measurement with four other state-of-the-art HIV subtyping tools: CASTOR, COMET, 292

SCUEAL, and REGA, and show the results in Table 3. In sum, our method (Kameris) comes 293

within a few percent of the best tools in all cases, and has the highest average accuracy (both 294

unweighted, and weighted by the number of sequences in each set). 295

Running time is another important performance indicator, so we also compare the performance of 296

these five tools for the dataset of van Zyl et al. [91], and the four fastest tools for all datasets together 297

(see Table 4). We observe that our tool matches or outperforms the competing state-of-the-art. 298

Note that, for these comparison experiments, CASTOR, COMET, SCUEAL, and REGA were run 299

from their web-based interfaces, and therefore the exact specifications of the machines running each 300

programs could not be determined. For this reason, the running times presented here should be 301

taken as rough order-of-magnitude estimates only. 302

Overall, these experiments demonstrate our method is nearly identical in both accuracy and 303

running time to the top third-party tool, COMET. Our tool differs from COMET in that it is 304

open-source and freely available for commercial use, and is available in a standalone application which 305

can be run on any computer, while COMET is closed-source and freely available for non-commercial 306

research use only, and is publicly available only in a web-based system. 307

Table 3. Classification accuracies for all tested HIV-1 subtyping tools, for each
testing dataset; average accuracy both with and without weighting datasets by the
number of sequences they contain.

Source Kameris COMET CASTOR SCUEAL REGA

Nadai (2009) [82] 100.0% 100.0% 81.8% 92.4% 86.4%
Niculescu (2015) [83] 95.9% 96.9% 75.3% 94.8% 100.0%
Paraschiv (2017) [84] 91.9% 73.3%1 46.5% 68.6% 87.2%
Rhee (2017) [85] 94.0% 95.4% 0.4% 75.9% 12.8%2

Sukasem (2007) [86] 90.0% 91.0% 0.9% 64.3% 8.1%2

Eshleman (2001) [87] 88.5% 90.6% 4.2% 84.4% 90.6%
Ssemwanga (2012) [88] 88.3% 90.0% 0.0% 73.3% 95.0%
Wolf (2017) [89] 99.8% 99.8% 61.1% 99.3% 98.2%
TenoRes Study Group (2016) [90] 99.0% 99.0% 28.4% 99.0% 100.0%
van Zyl (2017) [91] 94.9% 93.2% 57.6% 93.2% 94.9%
Huang (2003) [92] 95.2% 97.6% 19.0% 81.0% 95.2%

Average (unweighted) 94.3% 93.3% 34.1% 84.2% 78.9%2

Average (weighted) 97.1% 96.9% 45.1% 91.2% 81.4%2

1 In this case, a substantial number of sequences that were classified as subtype A by REGA and our method
were labeled unclassified subtypes (U) by COMET. In an HIV-1 phylogeny, subtype U sequences tend to be
assigned a basal position (near the root) within the subtype A clade, suggesting that these sequences may be
unrecognized variants or complex recombinants of subtype A.

2 These low accuracies are primarily caused by REGA misclassifying many CRF01 sequences as subtype A, and
subtype A is mostly equivalent to CRF01 in the pol region. If CRF01 and A were treated as equivalent, these
accuracies would be 97.9% and 86.4% for the Rhee and Sukasem datasets, respectively, and unweighted and
weighted averages of 93.8% and 96.2%, respectively.

So far, we have only discussed supervised classification, and we have presented promising results 308

for our approach. However, supervised classification requires data with known labels, which can be 309

problematic considering that the rapid rates of mutation and recombination of viruses (particularly 310

HIV-1) can lead to novel strains and recombinant forms emerging quickly. Unsupervised data 311

exploration tools can help address this problem. To demonstrate, we take the set of all whole 312

genomes from the LANL database and produce a MoDMap, visualizing their interrelationships, 313

based on the Manhattan distance matrix obtained by computing all pairs of k-mer frequency vectors 314

(see Methods section), for 9 different pure subtypes or groups (Figure 2), and just subtypes A, B, 315

and C (Figure 3). As can be seen, based on these distances, the points in the plots are grouped 316
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Table 4. Approximate running times for all tested subtyping tools, for
the dataset of van Zyl et al. [91] and all datasets listed in Table 3. The
van Zyl dataset was chosen at random for this purpose.

Tool Running time for the van Zyl
dataset

Running time for datasets
from Table 3

Kameris less than 2 seconds 16 seconds
COMET less than 2 seconds 14 seconds
CASTOR 3 seconds 46 seconds
SCUEAL3 18 minutes 8 hours
REGA3 31 minutes 19 hours
1 The REGA and SCUEAL web servers have limits of 1000 and 500 sequences per run, respectively.
Thus, 3 batches of sequences were needed for REGA, and 6 batches for SCUEAL to classify all
sequences. COMET, CASTOR, and our tool have no such limits.

according to known subtypes, and indeed it can be seen that subtypes A1 and A6 group together, 317

and as well B and D group together, as could be expected. 318

Fig 2. MoDMap of 5686 full-length HIV-1 genomes of 9 different pure subtypes or
groups, at k = 6.

Synthetic data has been useful in the study of viral species such as HIV-1, because a ground-truth 319

classification is known for synthetic sequences without ambiguity. However, one may wonder how 320

well such synthetic sequences model natural ones. We attempt to measure this by training a classifier 321

on natural and synthetic HIV-1 sequence data – if natural and synthetic sequences cannot be 322

distinguished, one may conclude that the simulation is realistic. For the ‘natural’ class we use the 323

set of all pol genes from the LANL database, and for the ‘synthetic’ class we use 1500 synthetic pol 324

genes produced as detailed previously, and we perform a 10-fold cross-validation at k = 6 and with 325

the linear SVM classifier. We obtain an accuracy of 100%, meaning that the classifier can distinguish 326
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Fig 3. MoDMap of 5451 full-length HIV-1 genomes of subtypes A, B, and C, at k = 6.

natural from synthetic sequences with perfect accuracy. This suggests that synthetic sequence data 327

should be used with caution, since this result indicates it may not be perfectly representative of 328

natural sequence data – specifically, our result suggests there is some characteristic of the synthetic 329

sequences which differs from the natural sequences, which our method is able to recognize and use. 330

We explore this further by generating a MoDMap, as seen in Figure 4. Interestingly, even though 331

our supervised classifiers succeeded to discriminate between real and synthetic sequences with an 332

accuracy of 100%, the approach using distances between k-mer frequency vectors results in the 333

natural and synthetic sequences of specific subtypes grouping together, indicating that the synthetic 334

sequences have some features that relate them to the corresponding natural sequences of the same 335

subtype. 336

Discussion 337

The k-mer based supervised classification method we propose in this paper has several advantages 338

compared to other popular software packages for the classification of virus subtypes. First, we 339

have shown on several manually-curated data sets that k-mer classification can be highly successful 340

for rapid and accurate HIV-1 subtyping relative to the current state-of-the-art. Furthermore, 341

releasing our method as an open-source software project confers significant advantages with respect 342

to data privacy, transparency and reproducibility. Other subtyping algorithms such as REGA [100] 343

and COMET [8] are usually accessed through a web application, where HIV-1 sequence data is 344

transmitted over the Internet to be processed on a remote server. This arrangement is convenient for 345

end-users because there is no requirement for installing software other than a web browser. However, 346

the act of transmitting HIV-1 sequence data over a network may present a risk to data privacy and 347

patient confidentiality – concerns include web applications neglecting to use encryption protocols 348

such as TLS, or servers becoming compromised by malicious actors. As a concrete example, the 349
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Fig 4. MoDMap of 9024 natural HIV-1 pol genes vs. 1500 synthetically generated
HIV-1 pol genes of various subtypes. The same plot is colored on the left by type
(natural and synthetic) and on the right by HIV-1 subtype.

webserver hosting the first two major releases of the REGA subtyping algorithm [100] was recently 350

compromised by an unauthorized user (last access attempt on November 27, 2017). In contrast, our 351

implementation is available as a standalone program, without any need to transmit sequence data 352

to an external server, eliminating those issues. In addition, our implementation is released under 353

a permissive open-source license (MIT). In contrast, REGA [9] and COMET [8] are proprietary 354

‘closed-source’ software, making it impossible to determine exactly how subtype predictions are 355

being generated from the input sequences. 356

Relying on a remote web server to process HIV-1 sequence data makes it difficult to determine 357

which version of the software has been used to generate subtype classifications, and by extension 358

difficult to guarantee that classification results can be reproduced. There is growing recognition 359

that tracking the provenance (origin) of bioinformatic analytical outputs is a necessary component 360

of clinical practice. For example, the College of American Pathologists recently amended laboratory 361

guidelines on next-generation sequence (NGS) data processing to require that: “the specific version(s) 362

of the bioinformatics pipeline for clinical testing using NGS data files are traceable for each patient 363

report” [101]. In contrast to other tools, our standalone package makes it easy to use exactly the 364

desired version of the software and thus enables precise reproducibility. 365

We now discuss some limitations of our approach. Like many machine learning approaches, our 366

method does not provide an accessible explanation as to why a DNA sequence is classified a certain 367

way, compared to a more traditional alignment-based method. In some sense, the classifiers act more 368

as a black box, without providing a rationale for their results. Another issue is our requirement for 369

a sizable, clean set of training data. As opposed to an alignment-based method that could function 370

with even a single curated reference genome per class, machine learning requires several examples 371

per training class, as discussed previously, to properly train. Finally, one issue common to any HIV-1 372

subtyping tool is the fact that recombination and rapid sequence divergence can make subtyping 373

difficult, especially in cases where the recombinant form was not known at the time of training. 374

Other tools are capable of giving a result of ‘no match’ to handle ambiguous cases, but our method 375

always reports results from the classes used for training. 376

To more clearly demonstrate this last issue, we generate a random sequence of length 10,000 with 377

equal occurrence probabilities for A, C, G, and T, and we ask the five subtyping tools evaluated in our 378

study to predict its HIV-1 subtype. As expected, REGA gives a result of ‘unassigned’ and SCUEAL 379

reports a failure to align with the reference. Our tool reports subtype ‘U’ with 100% confidence, 380

CASTOR predicts HIV-1 group ‘O’ with 100% confidence, and COMET reports SIVCPZ (simian 381

immunodeficiency virus from chimpanzee) with 100% confidence. These outcomes are consistent 382

with the disproportionately large genetic distances that separate HIV-1 group O and SIVCPZ from 383
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HIV-1 group M – a line drawn from a random point in sequence space is more likely to intersect 384

the branch relating either of these distant taxa to group M. Similarly, branches leading to subtype 385

U sequences tend to be longer and to intersect the HIV-1 group M tree at a basal location4. This 386

artificial example implies that real HIV-1 sequences that do not readily fit into any of the defined 387

subtypes or circulating recombinant forms may result in incorrect predictions with misleadingly 388

high confidence scores. 389

In spite of these limitations, our method not only matches or improves upon current HIV-1 390

subtyping algorithms, but it should also be broadly applicable to any DNA sequence classification 391

problem, including other virus subtyping problems. To demonstrate this, we use the same method 392

(with k set to 6 and a linear SVM classifier) and 10-fold cross-validation to measure the accuracies for 393

classifying dengue, hepatitis B, hepatitis C, and influenza type A virus full-length genomes (described 394

in the Datasets section) to their respective reference subtypes. Overall, we obtain accuracies of 395

100% for dengue virus, 95.81% for hepatitis B virus, 100% for hepatitis C virus, and 96.68% for 396

influenza A virus. We also provide a MoDMap visualization of the subtypes of hepatitis B, as seen 397

in Figure 5. This plot displays not only clear separation between subtypes but also structure within 398

subtypes A and B, which would be an interesting target for future study. 399

Fig 5. MoDMap of 5104 whole hepatitis B genomes of 6 different pure subtypes.

In all the experiments presented above, we use whole assembled genomes or gene sequences. 400

However, next-generation sequencing (NGS) technologies produce as output short reads, often of 401

length 150 to 300 base pairs, and computationally-intensive assembly is required to produce contigu- 402

ous sequences. Usefully, our method works equally well on short reads, without any requirement 403

for assembly. To validate this, we begin with the full set of whole HIV-1 genomes from the LANL 404

database, and we assume a read length of 150 bp. Recall that the average genome length for this 405

dataset is 8970 bp, so each sequence contains about 60 reads’ worth of data, on average. For each 406

sequence, we select 60 random positions, take the subsequence of length 150 bp starting at each 407

4HIV-1 subtype U does not comprise a distinct clade. Rather, the LANL database labels sequences as ‘U’ when
they belong to a lineage not meeting the criteria required for a designation as a subtype [5]. However, practical but
anecdotal experience suggests subtype U sequences are typically basal.
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position, and concatenate these 60 subsequences to form a new sequence – in this way, we simulate 408

the process of a DNA sequencer. Then, we repeat the same 10-fold cross-validation at k = 6 and 409

with the linear SVM classifier as before, but with this new set of “stitched-together” sequences. We 410

obtain an accuracy of 96.46% (compared to an accuracy of 96.49% with the original sequences), 411

demonstrating the applicability of our method to unassembled read data. We also rerun the same 412

experiment but using fewer samples, with the results shown in Figure 6. As can be seen, fewer 413

samples give lower accuracy but good performance is still achieved even with a low degree of coverage 414

of the original sequence. 415

Fig 6. Classification accuracy scores for the HIV-1 simulated NGS read experiment,
with different numbers of samples (“reads” of length 150 bp).
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Because of the exponential growth of sequence databases, modern bioinformatics tools increasingly 416

must be capable of handling NGS sequence data and must be scalable enough to manage huge sets 417

of data. As well, researchers often demand the privacy, security, and reproducibility characteristics 418

an open-source, standalone, offline tool such as ours provides. However, there remain several areas 419

for future work. Although our tool matches or exceeds the classification speed of the competing 420

state-of-the-art, performance optimization was not a focus of this study and we believe there is room 421

to substantially improve running time even further. Similarly, although we match or exceed the 422

classification accuracy of the competing state-of-the-art, different modern machine learning methods 423

such as GeneVec [102] or deep neural networks may permit us to achieve even higher accuracy on 424

challenging datasets. As well, given the rapid rate of mutation of many viruses, it would be highly 425

useful for our tool to be capable of giving a result of ‘no match’ with its training data. Each of these 426

possibilities could make our method and software even more useful in the future. 427
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