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ABSTRACT  9 

Recent studies have demonstrated that task success signals can modulate learning during 10 

sensorimotor adaptation tasks, primarily through engaging explicit processes. Here we examine the 11 

influence of task outcome on implicit adaptation, using a reaching task in which adaptation is induced 12 

by feedback that is not contingent on actual performance. We imposed an invariant perturbation 13 

(rotation) on the feedback cursor while varying the target size. In this way, the cursor either hit or 14 

missed the target, with the former producing a marked attenuation of implicit motor learning. We 15 

explored different computational architectures that might account for how task outcome information 16 

interacts with implicit adaptation. The results fail to support an architecture in which adaptation operates 17 

in parallel with a model-free operant reinforcement process. Rather, task outcome may serve as a gain 18 

on implicit adaptation or provide a distinct error signal for a second model-based process, in addition to 19 

implicit adaptation.  20 
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INTRODUCTION  21 

Multiple learning processes contribute to successful goal-directed actions in the face of changing 22 

physiological states, body structures, and environments (Taylor et al., 2014; Huberdeau et al., 2015; 23 

McDougle et al., 2016). Among these processes, implicit sensorimotor adaptation is of primary 24 

importance for maintaining appropriate calibration of sensorimotor maps over both short and long 25 

timescales. A large body of work has focused on how sensory prediction error (SPE), the difference 26 

between predicted and actual sensory feedback, drives sensorimotor adaptation (Shadmehr et al., 27 

2010). In addition, there is growing appreciation of the contribution of other processes to sensorimotor 28 

learning, including strategic aiming and reward-based learning (Taylor et al., 2014; Wu et al., 2014; 29 

Bond and Taylor, 2015; Galea et al., 2015; Nikooyan and Ahmed, 2015; Summerside et al., 2018). In 30 

terms of the latter, several recent studies have shown that rewarding successful actions alone is 31 

sufficient to learn a new sensorimotor mapping (Izawa and Shadmehr, 2011; Therrien et al., 2016, 32 

2018).  33 

 34 

Little is known about how feedback about task outcome impacts adaptation from SPE; indeed, the 35 

literature presents an inconsistent picture of how reward impacts performance in sensorimotor 36 

adaptation tasks. For example, two recent visuomotor rotation studies using similar tasks and reward 37 

structures led to divergent conclusions: One reported that reward enhanced retention of the adapted 38 

state, but had no effect on the rate of adaptation (Galea et al., 2015), whereas the other reported a 39 

beneficial effect of rewards specifically on adaptation rate (Nikooyan and Ahmed, 2015). More recently, 40 

Leow and colleagues (Leow et al., 2018) created a situation in which task outcome was experimentally 41 

manipulated by shifting the target on-line to either intersect a rotated cursor or move away from the 42 

cursor. Task success, artificially imposed by allowing the displaced cursor to intersect the target, led to 43 

attenuated adaptation.  44 

 45 
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One factor that may contribute to these inconsistencies is highlighted by studies showing that, even in 46 

relatively simple sensorimotor adaptation tasks, overall behavior reflects a combination of explicit and 47 

implicit processes (Taylor and Ivry, 2011; Taylor et al., 2014). That is, while SPE is thought to drive 48 

adaptation (Tseng et al., 2007), participants are often consciously aware of the perturbation and 49 

strategically aim as one means to counteract the perturbation. It may be that reward promotes the 50 

activation of such explicit processes (Bond and Taylor, 2015). Consistent with this hypothesis, Codol 51 

and colleagues (Codol et al., 2017), showed that at least one of the putative effects of reward, the 52 

strengthening of motor memories (Shmuelof et al., 2012), is primarily the result of re-instantiating an 53 

explicit aiming strategy rather than via the direct modulation of adaptation. As explicit processes are 54 

more flexible than implicit processes (Bond and Taylor, 2015), differential demands on strategies may 55 

contribute toward the inconsistent effects reported across previous studies manipulating reward 56 

(Holland et al., 2018).  57 

  58 

We recently introduced a new method, referred to as clamped visual feedback, designed to isolate 59 

learning from implicit adaptation (Morehead, Taylor, Parvin, & Ivry, 2017; Kim, Morehead, Parvin, 60 

Moazzezi, & Ivry, 2018). During the clamp, the angular trajectory of the feedback cursor is invariant with 61 

respect to the target location and thus spatially independent of hand position (Shmuelof et al., 2012; 62 

Vaswani et al., 2015; Morehead et al., 2017; Kim et al., 2018; Vandevoorde and Orban de Xivry, 2018). 63 

Participants are informed of the invariant nature of the visual feedback and instructed to ignore it. In this 64 

way, explicit aiming should be eliminated and, thus, allow for a clean probe of implicit learning 65 

(Morehead et al., 2017).  66 

 67 

Here, we employ the clamp method to revisit how task outcome, even when divorced from actual 68 

performance, influences implicit adaptation. In a series of three experiments, the clamp angle was held 69 

constant and only the target size was manipulated. We assume that the clamp angle, defined with 70 

respect to the centers of the target and feedback cursor, specifies the SPE. In contrast, by varying the 71 
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target size, we independently manipulate the information regarding task outcome, comparing conditions 72 

in which the feedback cursor signals the presence or absence of a target error (TE), defined by whether 73 

the cursor misses or hits the target. Given that the participants have no control over the feedback 74 

cursor, the effect of this task outcome information would presumably operate in an implicit, automatic 75 

manner, similar to how we assume the clamped feedback provides an invariant SPE signal.  76 

 77 

Our experiments show that hitting the target has a strong effect on performance, attenuating the rate 78 

and magnitude of learning. Through computational modeling, we explore a series of hypotheses that 79 

might account for this effect. In particular, we consider models in which implicit learning is driven by 80 

both SPE and TE, or where hitting the target serves as an intrinsic reward signal, one that can reinforce 81 

associated movements or modulate adaptation. 82 

 83 

RESULTS 84 

In all experiments we used clamped visual feedback, in which the angular trajectory of a feedback 85 

cursor is invariant with respect to the target location and thus spatially independent of hand position 86 

(Morehead et al., 2017). The instructions (see Supplement) emphasized that the participant’s behavior 87 

would not influence the cursor trajectory: They were to ignore this stimulus and always aim directly for 88 

the target. This method allows us to isolate implicit learning from an invariant error, eliminating potential 89 

contributions from explicit aiming that might be used to reduce task performance error. 90 

 91 

In Experiment 1, we asked if the task outcome, defined in terms of whether or not the cursor hit the 92 

target, would modulate learning under conditions in which the feedback is not contingent on behavior. 93 

We tested three groups of participants (n=16/group) with a 3.5 clamp for 80 cycles (8 targets per 94 

cycle). The purpose of this experiment was to examine the effects of three different relationships 95 

between the clamp and target while holding the visual error (defined as the center-to-center distance 96 

between the cursor and target) constant (Fig. 1b): Hit Target (when the terminal position of the clamped 97 
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cursor is fully embedded within a 16 mm diameter target), Straddle Target (when roughly half of the 98 

cursor falls within a 9.8 mm target, with the remaining part outside the target), Miss Target (when the 99 

cursor is fully outside a 6 mm target).  100 

 101 

Hitting the target reduced the overall change in behavior (Fig. 1d). Statistically, there was a marginal 102 

difference on the rate of initial adaptation (one-way ANOVA: F(2,45)=2.67, p=.08, 2=.11; permutation 103 

test: p=.08; Fig. 1e) and a significant effect on late learning (F(2,45)=4.44, p=.016, 2=.17; Fig. 1f). For 104 

the latter measure, the value for the Hit Target group was approximately 35% lower than for the 105 

Straddle and Miss Target groups, with post-hoc comparisons confirming the substantial differences in 106 

late learning between the Hit Target and both the Straddle Target (95% CI [-16.13, -2.34], t(30)=-2.73, 107 

p=.010, d=.97) and Miss Target (95% CI [-16.76, -2.79], t(30)=-2.86, p=.008, d=1.01) groups. These 108 

differences were also evident in the aftereffect measure, taken from the first cycle of the no feedback 109 

block (see Methods). The learning functions for the Straddle and Miss Target groups were remarkably 110 

similar throughout the entire clamp block and reached similar magnitudes of late learning (95% CI [-111 

7.90, 8.97], t(30)=.13, p=.898, d=.05).  112 

 113 

As seen in Fig. 1d, the change in hand angle from the final cycle of the clamp block to the final cycle of 114 

the no feedback block was less for the Hit than the Straddle and Miss groups (one-way ANOVA: 115 

F(2,45)=4.42, p=.018, 2=.16; Hit vs Miss: 95% CI [1.47, 8.00], t(30)=2.96, p=.006, d=1.05; Hit vs 116 

Straddle: 95% CI [1.06, 8.74], t(30)=2.61, p=.014, d=.92). This result indicates that retention was 117 

strongest in the Hit group. However, retention is generally analyzed as a relative, rather than absolute 118 

measure, especially when the amount of learning differs between groups. We thus re-analyzed the 119 

change in hand angle across the no feedback block, but now as the ratio of the last no-feedback cycle 120 

relative to the last clamp cycle. In this analysis, there was no difference between the three groups (Fig. 121 

1g; F(2,45)=2.06, p=.139, 2=.08; permutation test: p=.138).  122 
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 123 

Interestingly, the results from this experiment are qualitatively different to those observed when 124 

manipulating the angular deviation of the clamp. Our previous study using clamped visual feedback 125 

demonstrated that adaptation in response to errors of varying size, which was assessed by 126 

manipulating the clamp angle, results in different early learning rates, but produces the same 127 

magnitude of late learning (Kim et al., 2018). In contrast, the results in Experiment 1 show that the 128 

hitting the target attenuates learning, with the effect becoming pronounced after prolonged exposure to 129 

the perturbation. Furthermore, the effect of task outcome appears to be categorical, as it was only 130 

observed for the condition in which the cursor was fully embedded within the target (Hit Target), and not 131 

when the terminal position of the cursor fell partially outside the target (Straddle Target).  132 

 133 
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 134 

Figure 1 Hitting the target attenuates the behavioral change from clamped feedback. (a) During 135 
clamped visual feedback, the angular deviation of the cursor feedback is held constant throughout the 136 
perturbation block, and participants are fully informed of the manipulation. (b) The clamp angle was 137 
equal across all three conditions tested in Experiment 1, with only the target size varying between 138 
conditions. (c) Block design for experiment. (d) As in previous studies with clamped feedback, the 139 
manipulation elicits robust changes in hand angle. However, the effect was attenuated in the Hit Target 140 
condition, observed in the (e) rate of early adaptation, and, more dramatically, in (f) late learning. (g) 141 
The percentage of learning retained over the no feedback block following the clamp did not differ 142 
between groups. Dots represent individuals; shading and error bars denote SEM. 143 
 144 
Source data 1 This file contains hand angle data for each trial and participant in Experiment 1, and 145 
was used to generate Figure 1d-g. Reaction times (RTs) and movement times (MTs) are also included. 146 
Note that hand angles were flipped for participants who experienced a counter-clockwise clamp.  147 
 148 

 149 
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Experiment 2  150 

Experiment 2 was designed to extend the results of Experiment 1 in two ways: First, to verify that the 151 

effect of hitting a target generalized to other contexts, we changed the size of the clamp angle. We 152 

tested two groups of participants (n=16/group) with a small 1.75 clamp. For the Hit Target group (Fig. 153 

2a), we used the large 16 mm target, and thus, the cursor was fully embedded. For the Straddle Target 154 

group, we used the small 6 mm diameter target, resulting in an endpoint configuration in which the 155 

cursor was approximately half within the target and half outside the target. We did not test a Miss 156 

Target condition because having the clamped cursor land fully outside the target would have 157 

necessitated an impractically small target (~1.4 mm). Moreover, the results of Experiment 1 indicate 158 

that this condition is functionally equivalent to the Straddle Target group. The second methodological 159 

change was made to better assess asymptotic learning. We increased the number of clamped reaches 160 

to each location to 220 (reducing the number of target locations to four to keep the experiment within a 161 

1.5-hour session). This resulted in a nearly three-fold increase in the number of clamped reaches per 162 

location. 163 

 164 

Consistent with the results of Experiment 1, the Hit Target group showed an attenuated learning 165 

function compared to the Straddle Target group (Fig. 2b). Statistically, there was again only a marginal 166 

difference in the rate of early adaptation (95% CI [-.52/cycle, .01/cycle], t(30)=-1.96, p=.06, d=.69; Fig. 167 

2c), whereas the difference in late learning was more pronounced (95% CI [-11.38, -1.25], t(30)=-168 

2.54, p=.016, d=.90; permutation test: p=.007; Fig. 2d). Indeed, the 35% attenuation in asymptote for 169 

the Hit Target group compared to the Straddle Target group is approximately equal to that observed in 170 

Experiment 1.  171 

 172 

We used a different approach to examine retention in Experiment 2, having participants complete 10 173 

cycles with a 0 clamp following the extended 1.75 clamp block (Shmuelof et al., 2012). We opted to 174 
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 9 

use this alternative method since the presence of the 0 clamp would create less contextual change 175 

when switching from the clamp to the retention block, compared to the no feedback block of Experiment 176 

1. In terms of absolute change across the 0 clamp block, there was a trend for greater retention in the 177 

Hit group compared to the Straddle group (95% CI [-.27, 3.53], t(30)=1.75, p=.090, d=.62). However, 178 

when analyzed as a proportional change, the difference was not reliable (95% CI [-.06, .27], t(30)=1.27, 179 

p=.21, d=.45).  180 

  181 

 182 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/363606doi: bioRxiv preprint 

https://doi.org/10.1101/363606
http://creativecommons.org/licenses/by/4.0/


 10 

Figure 2 The attenuation of adaptation caused by hitting the target (a) generalizes to a different clamp 183 
angle and is stable over an extended clamp block (b). As in Experiment 1, there was (c) a marginal 184 
difference in early adaptation rate that became (d) a more dramatic difference in late learning. (e) 185 

Again, there was no difference in the percentage of retention, this time during a 0 clamp block. Dots 186 
represent individuals; shading and error bars denote SEM. 187 
 188 
Source data 2 This file contains hand angle data for each trial and participant in Experiment 2, and 189 
was used to generate Figure 2b-e. Reaction times (RTs) and movement times (MTs) are also included. 190 
Note that hand angles were flipped for participants who experienced a counter-clockwise clamp. 191 
 192 

 193 

The results of these first two experiments converge in showing that learning from an invariant error is 194 

attenuated when the cursor hits the target, relative to conditions in which at least part of the cursor falls 195 

outside the target. This effect replicated across two experiments that used different clamp sizes.  196 

 197 

Attenuated behavioral changes are not due to differences in motor planning 198 

Although we hypothesized that manipulating target size in Experiments 1 and 2 would influence 199 

learning mechanisms that respond to the differential task outcomes (i.e., hit or miss), it is also important 200 

to consider alternative explanations for the effect of target size on learning. Figure 3 provides a 201 

schematic of the core components of sensorimotor adaptation. The figure highlights that changes in 202 

adaptation might arise because target size alters the inputs on which learning operates, rather than 203 

from a change in the operation of the learning process itself. For example, increasing the target size 204 

may increase perceptual uncertainty, creating a weaker error signal. We test this hypothesis in a control 205 

condition in Experiment 3. 206 

 207 

Another hypothesis centers on how variation in target size might alter motor planning. Assuming target 208 

size influences response preparation, participants in the Hit Target groups had reduced accuracy 209 

demands relative to the other groups, given that they were reaching to a larger target (Soechting, 210 

1984). If the accuracy demands were reduced for these large targets, then the motor command could 211 

be more variable, resulting in more variable sensory predictions from a forward model, and thus a 212 
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weaker SPE (Körding and Wolpert, 2004). While we do not have direct measures of planning noise, a 213 

reasonable proxy can be obtained by examining movement variability during the unperturbed baseline 214 

trials (data from clamped trials would be problematic given the induced change in behavior). If there is 215 

substantially more noise in the plan for the larger target, then the variability of hand angles should be 216 

higher in this group (Churchland et al., 2006). In addition, one may expect faster movement times (or 217 

peak velocities) and/or reaction times for reaches to the larger target, assuming a speed-accuracy 218 

tradeoff (Fitts, 1992).  219 

 220 

Figure 3 Target size could affect adaptation due to increased perceptual uncertainty or greater 221 
variability in motor planning. In the case of perceptual uncertainty, the feedback signal is weakened, 222 
thus leading to a weaker SPE signal. In the case of noisy motor planning, the forward model prediction 223 
would also be more variable and effectively weaken the SPE.  224 
 225 

Examination of kinematic and temporal variables (see Supplement) did not support the noisy motor 226 

plan hypothesis. In Experiment 1, average movement variability across the eight targets during cycles 227 

2-10 of the veridical feedback baseline block were not reliably different between groups (variability: 228 

F(2,45)=2.32, p=.110, 2=.093). Movement times across groups were not different (F(2,45)=2.19, 229 

p=.123, 2=.089). However, we did observe a difference in baseline RTs (F(2,45)=4.48, p=.017, 230 

2=.166), with post hoc t-tests confirming that the large target (Hit) group had faster RTs than the small 231 

target (Miss) group (95%CI [-108ms, -16ms], t(30)=-2.74, p=.010, d=.97) and medium target (Straddle) 232 

group (95%CI [-66ms, -10ms], t(30)=-2.76, p=.010, d=.97). The medium target (Straddle) and small 233 

target groups’ RTs were not reliably different (95% CI [-74ms, 26ms], t(30)=-.984, p=.333, d=.348). This 234 

baseline difference in RTs was only observed in this experiment (see Supplement), and there was no 235 
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correlation between baseline RT and late learning for the large target group (r = .09, p = .73), 236 

suggesting that RTs are not associated with the magnitude of learning.  237 

 238 

During baseline trials with veridical feedback in Experiment 2, mean spatial variability, measured in 239 

terms of hand angle, was actually lower for the group reaching to the larger target (Hit Target group: 240 

3.09  .18; Straddle Target group: 3.56  .16; t(30)=-1.99 p=.056, d=0.70). Further supporting the 241 

argument that planning was no different across conditions, neither reaction times (Hit Target: 378  22 242 

ms; Straddle Target: 373  12 ms) nor movement times (Hit Target: 149  8 ms; Straddle Target: 157  243 

8 ms) differed between the groups (t(30)=-0.183, p=.856, d=.06 and t(30)=0.71, p=.484, d=.25, 244 

respectively).  245 

 246 

One reason for not observing consistent effects of target size on accuracy or temporal measures could 247 

be due to the constraints of the task. Studies showing an effect of target size on motor planning 248 

typically utilize point-to-point movements (Soechting, 1984; Knill et al., 2011) in which accuracy 249 

requires planning of both movement direction and extent. In our experiments, we utilized shooting 250 

movements, thus minimizing demands on the control of movement extent. Endpoint variability is 251 

generally larger for movement extent compared to movement direction (Gordon et al., 1994). It is also 252 

possible that participants are near ceiling-level performance in terms of hand angle variability.  253 

 254 

Theoretical analysis of the effect of task outcome on implicit learning. 255 

Having ruled out a motor planning account of the differences in performance in Experiments 1 and 2, 256 

we next considered different ways in which target error could affect the rate and asymptotic level of 257 

learning. Adaptation from SPE can be thought of as recalibrating an internal model that learns to predict 258 

the sensory outcome of a motor command (Figure 3). Here, we model adaptation with a single rate 259 

state-space equation of the of the following form:   260 
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x(n+1) = A*x(n) + U(e)  [Equation 1] 261 

where x represents the motor output on trial n, A is a retention factor, and U represents the 262 

update/correction size (or, learning rate) as a function of the error (clamp) size, e. This model is 263 

mathematically equivalent to a standard single rate state-space model (Thoroughman and Shadmehr, 264 

2000), with the only modification being the replacement of the error sensitivity term, B, with a correction 265 

size function, U (Kim et al. 2018). Unlike standard adaptation studies where error size changes over the 266 

course of learning, e is a constant with clamped visual feedback and thus, U(e) can be estimated as a 267 

single parameter. We refer to this model as the motor correction variant of the standard state space 268 

model. The first two experiments make clear that a successful model must account for the differences 269 

between hitting and missing the target, even while holding the error term in Eqn. 1 (clamp angle) 270 

constant.  271 

 272 

We consider three variants to the basic model that might account for how task outcome influences 273 

learning. The first model is motivated by previous studies that have considered how reinforcement 274 

processes might operate in sensorimotor adaptation tasks, and in particular, the idea that task outcome 275 

information impacts a model-free operant reinforcement process (Huang et al., 2011; Shmuelof et al., 276 

2012). We can extend this idea to the clamp paradigm, considering how the manipulation of target size 277 

affects reward signals: When the clamp hits the target, the feedback generates a positive reinforcement 278 

signal; when the clamp misses (or straddles) the target, this reinforcement signal is absent. We refer to 279 

the positive outcome as an intrinsic reward given that it is not contingent on the participant’s behavior. 280 

This signal could strengthen the representation of its associated movement (Castro et al., 2011; 281 

Shmuelof et al., 2012).  282 

 283 

We combine this idea with the state space model to create a Movement Reinforcement model (Fig. 4a). 284 

Intuitively, this model accounts for the attenuated learning functions for the Hit conditions in 285 

Experiments 1 and 2 because the effect of movement reinforcement resists the directional change in 286 
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hand angle induced by SPEs. In this model, intrinsic reward has no direct effect on SPE-driven 287 

adaptation. That is, reward and error-based learning are assumed to operate independently of each 288 

other, with the final movement being a composite of these two processes.  289 

 290 

To formalize the Movement Reinforcement model, the motor output, y, is a weighted sum of a model-291 

free reinforcement process and an adaptation process, x:  292 

y(n) = (1-Vl(n))*x(n) + Vl(n)*Vd(n) [Equation 2]  293 

where a population vector (Georgopoulos et al., 1986), V, indicates the current bias of motor 294 

representations within the reinforcement system (see Methods). The direction of this vector (Vd) 295 

corresponds to the mean preferred direction resulting from the reinforcement history, with the length 296 

(Vl) corresponding to the strength of this biasing signal. This vector can be viewed as a weight on the 297 

movement reinforcement process (0=no weight, 1=full weight), relative to the adaptation process.  298 

 299 

In this framework, the vector is composed of directionally-tuned units, with the strength of each unit 300 

reflective of its reward history. The vector representing the weights on every unit, r, is updated on each 301 

trial based on the task outcome:  302 

r(n+1) = A’*r(n) + s [Equation 3] 303 

r~(n+1) = A’*r~(n) [Equation 4] 304 

where  indexes the unit corresponding to the direction of the movement, y(n), on hit trials, and ~ 305 

indexes all of the other units on hit trials and all units on miss trials. In this simplified reward scheme, 306 

the weight to the unit corresponding to the rewarded movement direction is increased by magnitude s 307 

on a trial-by-trial basis, and all weights are decremented due to a retention factor, A’, on every trial. The 308 

latter ensures that these reward-dependent weights revert back to zero in the absence of reward.  309 

 310 
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In sum, the Movement Reinforcement model entails four parameters, composed of separate update 311 

and retention parameters for the reinforcement learning process and the adaptation process. The 312 

former is model-free, dependent on an operant conditioning process by which a task outcome signal 313 

modifies movement biases, whereas the latter is model-based, using SPE to recalibrate an internal 314 

model of the sensorimotor map. 315 

 316 

The second model entails a single process whereby the task outcome directly modulates the adaptation 317 

process. For example, an intrinsic reward signal associated with hitting the target could modulate 318 

adaptation, attenuating the trial-to-trial change induced by the SPE (Fig. 4b). In this Adaptation 319 

Modulation model, the reward signal can be interpreted as a gain controller, similar to previous efforts 320 

to model the effect of explicit rewards and punishments on adaptation (Galea et al., 2015). In 321 

Experiments 1 and 2, hitting the target presumably reduces the gain on adaptation, thus leading to 322 

attenuated learning. 323 

 324 

We formalize the Adaptation Modulation model as follows:  325 

x(n+1) = A*A*x(n) + u*U(e) [Equation 5]  326 

where A and u are gains on the retention and update parameters, respectively. In the current 327 

implementation, we set A and u to 1 on miss trials and estimate the values of A and u for the hit trials. 328 

Although this could be reversed (e.g., set gains to 1 on hit trials and estimate values on miss trials), our 329 

convention seems more consistent with previous modeling studies of adaption where the movements 330 

generally miss the target. We impose no additional constraint on the gain parameters; the effect of 331 

retention or updating can be larger or smaller on hit trials compared to miss trials. As with the 332 

Movement Reinforcement model, the Adaptation Modulation model has four free parameters.  333 

 334 
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The third model we consider here, the Dual Error model, postulates that learning is the composite of 335 

two model-based learning processes that operate on different error signals. The first is an adaptation 336 

process driven by SPE (as in Eqn. 1). The second process operates in the same manner as adaptation, 337 

but here the error signal is sensitive to the task outcome. This idea of a TE-sensitive process stems 338 

from previous studies in which an error is produced, not by perturbing the visual feedback of hand 339 

position, but rather by displacing the visual feedback of the target position (Magescas and Prablanc, 340 

2006; Cameron et al., 2010, 2010; Schmitz et al., 2010). The resulting mismatch between the hand 341 

position and displaced target position can be viewed as a TE rather than SPE, under the assumption 342 

that the veridical feedback of hand position roughly matches the predicted hand position (see 343 

Discussion). When this error signal is consistent (e.g., target is displaced in the same direction on every 344 

trial), a gradual change in heading angle is observed, similar to that seen in studies of visuomotor 345 

adaptation. Moreover, this form of learning is implicit: By shifting the target position during a saccade, 346 

just prior to the reach, the participants are unaware of the target displacement.  347 

 348 

In the Dual Error model, the motor output is the sum of two processes:  349 

xtotal(n) = xspe(n) + xte(n), [Equation 6] 350 

where 351 

xspe(n+1) = Aspe*xspe(n) + Uspe*(SPE) [Equation 7] 352 

xte(n+1) = Ate*xte(n) + Ute*(TE), [Equation 8]  353 

Equation 7 is the same as in the other two models, describing adaptation from a sensory prediction 354 

error, but with the notation modified here to explicitly contrast with the second process. Eqn. 8 355 

describes a second model-based process, but one that is driven by the target error.  356 

 357 

The SPE-sensitive process updates from the error term on every trial given that the SPE is always 358 

present, even on hit trials. In contrast, the TE-sensitive process only updates from the error term on 359 

miss trials. The error component of Eqn. 8 is absent on hit trials. This would account for the attenuated 360 
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learning observed in the large target (Hit) conditions in Experiments 1 and 2. In the context of our clamp 361 

experiments, TE is modeled as a step function (Fig. 4c), set to 0 when the cursor hits the target and 1 362 

when the cursor misses or straddles the target. However, if the cursor position varied (as in studies with 363 

contingent feedback), TE might take on continuous, signed values, similar to SPE.  364 

 365 

We note that the Dual Error model is similar to the influential two-process state space model of 366 

adaption introduced by Smith and colleagues (Smith et al., 2006). In their model, dual-adaptation 367 

processes have different learning rates and retention factors, resulting in changes that occur over 368 

different time scales. Here the different learning rates and retention factors are related to the different 369 

error signals, TE and SPE. Whereas the dual-rate model imposes a constraint on the parameters (i.e., 370 

process with faster learning must also have faster forgetting), the four parameters in the Dual Error 371 

model are unconstrained relative to each other.  372 

 373 
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 374 

Figure 4 Three models of how intrinsic reward or target error could affect learning. (a) In the 375 
Movement Reinforcement model, reward signals cause reinforcement learning processes to bias future 376 
movements towards previously rewarded movements. The adaptation process is sensitive only to SPE 377 
and not reward. The overall movement reflects a composite of the two processes. (b) In the Adaptation 378 
Modulation model, reward directly attenuates adaptation to SPE. (c) In the Dual Error model, a second, 379 
independent model-based process, one driven by TE, combines with SPE-based adaptation to modify 380 
performance.  381 
 382 

Experiment 3 383 

The experimental design employed in Experiments 1 and 2 cannot distinguish between these three 384 

models because all make qualitatively similar predictions. In the Movement Reinforcement model, the 385 

attenuated asymptote in response to Hit conditions arises because movements are rewarded 386 

throughout, including during early learning, biasing future movements towards baseline. The Adaptation 387 
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Modulation model predicts a lower asymptote during the Hit condition because the adaptation system is 388 

directly attenuated by reward. The Dual Error model similarly predicts a lower asymptote because only 389 

one of two learning processes is active when there is no target error.  390 

 391 

In contrast to the single perturbation blocks used in Experiments 1 and 2, a transfer design in which the 392 

target size changes after an initial adaptation phase affords an opportunity to contrast the three models. 393 

In Experiment 3, we tested two groups of participants (n=12/group) with a 1.75 clamp, varying the 394 

target size between the first and second halves of the experiment (Fig. 5a). The key manipulation 395 

centered on the order of when the target was large (hit condition) or small (straddle condition).  396 

 397 

For the Straddle-to-Hit group, a small target was used in an initial acquisition phase (first 120 clamp 398 

cycles). Based on the results of Experiments 1 and 2, we expect to observe a relatively large change in 399 

hand angle at the end of this phase since the outcome is always an effective “miss”. The key test 400 

comes during the transfer phase (final 80 clamp cycles), in which the target size is increased such that 401 

the invariant clamp now results in a target hit. For the Movement Reinforcement model, hitting the 402 

target will produce an intrinsic reward signal, reinforcing the associated movement. Therefore, there 403 

should be no change in performance (hand angle) following transfer since the SPE remains the same 404 

and the current movements are now reinforced (Fig. 5b). In contrast, both the Adaptation Modulation 405 

and Dual Error models predict that, following transfer to the large target, there will be a drop in hand 406 

angle, relative to the initial asymptote. For the former, hitting the target will attenuate the adaptation 407 

system; for the latter, hitting the target will shut down learning from the process that is sensitive to 408 

target error.  409 

 410 

We also tested a second group in which the large target (hit) was used in the acquisition phase and the 411 

small target (effective “miss”) in the transfer phase (Hit-to-Straddle group). All three models make the 412 

same qualitative predictions for this group. At the end of the acquisition phase, there should be a 413 
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smaller change in hand angle compared to the Straddle-to-Hit group, due to the persistent target hits. 414 

Following transfer, all three models predict an increase in hand angle, relative to the initial asymptote. 415 

For the Movement Reinforcement model, the reduction in target size removes the intrinsic reward 416 

signal, which over time, lessens the contribution of the reinforcement process as the learned movement 417 

biases decay in strength. The Adaptation Modulation model predicts that hand angle will increase due 418 

to the removal of the attenuating effect on adaptation following transfer. The Dual Error model also 419 

predicts an increase in hand angle, but here the effect occurs because the introduction of a target error 420 

activates the second implicit learning process. Although the Hit-to-Straddle group does not provide a 421 

discriminative test between the three models, the inclusion of this group does provide a second test of 422 

each model, as well as an opportunity to rule out alternative hypotheses for the behavioral effects at 423 

transfer. For example, the absence of a change at transfer might be due to reduced sensitivity to the 424 

clamp following a long initial acquisition phase.  425 

 426 

Experiment 3 – Behavioral Analyses 427 

For our analyses, we first examined performance during the acquisition phase. Consistent with the 428 

results from Experiments 1 and 2, the Hit-to-Straddle Target group adapted slower than the Straddle-to-429 

Hit group (95% CI [-.17/cycle, -.83/cycle], t(22)=-3.15, p=.005, d=1.29; Fig. 5c) and reached a lower 430 

asymptote (95% CI [-5.25, -15.29], t(22)=-4.24, p=.0003, d=1.73; permutation test: p=.0003; Fig. 5d). 431 

The reduction at asymptote was approximately 45%.  432 

 433 

We next examined performance during the transfer phase where the target size reversed for the two 434 

groups. Our primary measure of behavioral change for each subject was the difference in late learning 435 

(average hand angle over last 10 cycles) between the end of the acquisition phase and the end of the 436 

transfer phase. As seen in Fig. 5d, the two groups showed opposite changes in behavior in the transfer 437 

phase, evident by the strong (group x phase) interaction (F(2,33)=43.1, p<10-7, partial 2=.72). The 438 
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results of a within-subjects t-test showed that the Hit-to-Straddle group showed a marked increase in 439 

hand angle following the decrease in target size (95% CI [4.9, 9.1], t(11)=7.42, p<.0001, dz=2.14; Fig. 440 

5e), consistent with the predictions for all three models.  441 

 442 

The Straddle-to-Hit group’s transfer performance provides an opportunity to compare differential 443 

predictions, and in particular, to pit the Movement reinforcement model against the other two models. 444 

Following the switch to the large target, there was a decrease in hand angle. Applying the same 445 

statistical test, the mean decrement in hand angle was 5.7 from the final cycles of the training phase to 446 

the final cycles of the transfer phase (95% CI [-3.1, -8.2], t(11)=-4.84, p=.0005, dz=1.40; Fig. 5e). This 447 

result is consistent with the prediction of the Adaptation Modulation and Dual Error models. In contrast, 448 

the reduction in hand angle cannot be accounted for by the Movement Reinforcement model.  449 
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 450 

Figure 5 Within-subject transfer design to evaluate models of the impact of task outcome on 451 
implicit motor learning. (a) Using a transfer design, (b) the models diverge in their behavioral 452 
predictions for the Straddle-to-Hit group following transfer. The Movement Reinforcement model 453 
predicts a persistent asymptote following transfer, whereas the Adaptation Modulation and Dual Error 454 
models predict a decay in hand angle. During the acquisition phase, we again observed differences 455 
between the Hit and Straddle groups in the (c) early adaptation rate as well as (d) late learning. All 456 
participants in both groups demonstrated changes in reach angle consistent with the Adaptation 457 
Modulation and Dual Error models. (e) The learning functions were inconsistent with the Movement 458 
Reinforcement model. Note that the rise in hand angle for the Hit-to-Straddle group is consistent with all 459 
three models. Dots represent individuals; shading and error bars denote SEM. 460 
 461 
Source data 3 This file contains hand angle data for each trial and participant in Experiment 3, and 462 
was used to generate Figure 5c-e and Figure 5-figure supplement 1. Reaction times (RTs) and 463 
movement times (MTs) are also included. Note that hand angles were flipped for participants who 464 
experienced a counter-clockwise clamp. 465 
 466 

 467 

 468 
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Experiment 3 -- Modeling Results 469 

We evaluated the three models by simultaneously fitting group-averaged data for both groups. As 470 

depicted in Fig. 6, all three models capture the initial plateau followed by increased learning of the Hit-471 

to-Straddle group. However, the quality of the fits diverges for the Straddle-to-Hit group, where the 472 

Movement Reinforcement model cannot produce a decrease in hand angle once the large target is 473 

introduced. Instead, the best-fit parameters for this model result in an asymptote that falls between the 474 

hand angle values observed during the latter part of each phase. In contrast, the Adaptation Modulation 475 

and Dual Error models both predict the drop in hand angle during the second phase of the experiment 476 

for the Straddle-to-Hit group. 477 

 478 

Consistent with the preceding qualitative observations, the Movement Reinforcement model yielded a 479 

lower R2 value and higher Akaike Information Criterion (AIC) score (higher AIC indicates relatively 480 

worse fit) than the Adaptation Modulation and Dual Error models (Table 1). A comparison of the latter 481 

two shows that the Dual Error model provides the best account of the results. This model yielded a 482 

lower AIC score and accounted for 90% of the variance in the group-averaged data compared to 86% 483 

for the Adaptation Modulation model. 484 
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Figure 6 Model fits of the learning functions from Experiment 3. The failure of the (a) Movement 486 
Reinforcement model to qualitatively capture the decay in hand angle following transfer in the Straddle-487 
to-Hit condition argues against the idea that the effect of task outcome arises solely from a model-free 488 
learning process that operates independent of model-based adaptation. In contrast, both the (b) 489 
Adaptation Modulation and (c) Dual Error models accurately predict the changes in hand angle 490 
following transfer in both the Hit-to-Straddle and Straddle-to-Hit conditions.  491 
 492 

To understand whether the effects of target size were due to changes in learning or retention, we 493 

examined the parameter estimates for the Adaptation Modulation and Dual Error models. We first 494 

generated 1000 bootstrapped samples of group-averaged behavior by resampling with replacement 495 

from each group. We then fit each of the bootstrapped samples simultaneously and report the results 496 

here in terms of 95% confidence intervals. The parameter estimates indicate that the learning rate 497 

parameter was very sensitive to the two task outcome conditions. For the Adaptation Modulation model, 498 

the estimates of u*U were larger during miss than hit conditions, with no overlap of the confidence 499 

intervals ([.693, 1.302] vs [.182, .573], respectively); thus, the error-driven adjustment in the state of the 500 

internal model was much larger after a miss than a hit. For the Dual Error model, the estimates of Uspe 501 

were larger than for Ute, again with no overlap of the confidence intervals [(.414, 1.08), vs [.157, .398]), 502 

indicating that the state change was more strongly driven by SPE than TE. For each model, the 503 

process that produced a larger error-based update in the internal model also had the lower retention 504 

factor, although here there was overlap in the 95% confidence intervals for the latter (r*A for Miss: 505 

[.939,.969] vs Hit: [ .961,.989]; Aspe: [.900,.972] vs Ate: [.938,.993]). In sum, the impact of task outcome 506 

(hit or miss) was primarily manifest in the estimates of the learning rate parameters.  507 

 508 

The behavioral pattern observed in Experiment 3, complemented by the modeling results, are 509 

problematic for the Movement Reinforcement model, challenging the idea that the effect of task 510 

outcome arises solely from a model-free learning process that operates independent of model-based 511 

adaptation. However, this does not exclude the possibility that task outcome information influences both 512 

model-free and model-based processes. For example, hitting the target might not only reinforce an 513 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/363606doi: bioRxiv preprint 

https://doi.org/10.1101/363606
http://creativecommons.org/licenses/by/4.0/


 26 

executed movement, but might also modulate adaptation. Formally, this hypothesis would correspond 514 

to a hybrid model that combines the Adaptation Modulation and Movement Reinforcement models. 515 

Indeed, hybrids that combine the Movement Reinforcement model with either the Adaptation 516 

Modulation or Dual Error models (see Methods) yield improved model fits and lower AIC values, with 517 

the two hybrids producing comparable values (see Table 1).  518 

 519 

Table 1: Model evaluations. 520 

Basic Models # of free 
parameters 

R-squared AIC 

Movement Reinforcement 4 .824 363 

Adaptation Modulation 4 .861 269 

Dual Error 4 .895 156 

Hybrid Models    

Movement Reinforcement + 
Adaptation Modulation 

6 .945 -100 

Movement Reinforcement + 
Dual Error 

6 .945 -97 

 521 

 522 

Control group for testing perceptual uncertainty hypothesis 523 

Across the three experiments, the amount of learning induced by clamped visual feedback was 524 

attenuated when participants reached to the large target. We considered if this effect could be due, in 525 

part, to the differences between the Hit and Straddle/Miss conditions in terms of perceptual uncertainty. 526 

For example, the reliability of the visual error signal might be weaker if the cursor is fully embedded 527 

within the target; in the extreme, failure to detect the angular offset might lead to the absence of an 528 

error signal on some percentage of the trials. 529 

 530 

To evaluate this perceptual uncertainty hypothesis, we tested an additional group in Experiment 3 with 531 

a large target, but modified the display such that a bright line, aligned with the target direction, bisected 532 

the target (Figure 5-figure supplement 1). With this display, the feedback cursor remained fully 533 

embedded in the target, but was clearly off-center. If the attenuation associated with the large target is 534 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/363606doi: bioRxiv preprint 

https://doi.org/10.1101/363606
http://creativecommons.org/licenses/by/4.0/


 27 

due to perceptual uncertainty, then the inclusion of the bisecting line should produce an adaptation 535 

effect similar to that observed with small targets. Alternatively, if perceptual uncertainty does not play a 536 

prominent role in the target size effect, then the adaptation effects would be similar to that observed 537 

with large targets.  538 

 539 

Consistent with the second hypothesis, performance during the acquisition phase for the group 540 

reaching to a bisected target was similar to that of the group reaching to the standard large target (Hit-541 

to-Straddle, see Supplement). To provide support for this observation, we first performed an omnibus 542 

one-way ANOVA on the late learning data at the end of the acquisition phase, given our analysis plan 543 

entailed multiple planned pair-wise comparisons. There was a significant effect of group (F(2,33)=9.33, 544 

p=.0006, 2=.36). Subsequent planned pair-wise comparisons showed no significant differences 545 

between the bisected target and standard large target (Hit-to-Straddle) groups (early adapt: 95% CI [-546 

.34/cycle, .22/cycle], t(22)=-.47; p=.64,; d=.19; late learning: 95% CI [-7.80 1.19], t(22)=-1.52; p=.14; 547 

d=.62). In contrast, the group reaching to bisected targets showed slower early adaptation rates (95% 548 

CI [-.81/cycle, -.07/cycle], t(22)=-2.49, p=.02, d=1.02) and lower magnitudes of late learning (95% CI 549 

[-12.58, -1.35], t=-2.57, p=0.017, d=1.05) when compared with the group reaching to small targets 550 

(Straddle-to-Hit).  551 

 552 

During the transfer phase, the target size for the perceptual uncertainty group remained large, but the 553 

bisection line was removed. If perceptual uncertainty underlies the effect we have attributed to hitting 554 

the target, we would expect to observe a decrease in hand angle following transfer, since uncertainty 555 

would increase. However, following transfer to the non-bisected large target, there was no change in 556 

asymptote (95% CI [-.87, 2.32], t(11)=1.0, p=.341, dz=.29). In sum, the results from this control group 557 

indicate that the attenuated adaptation observed when the cursor is fully embedded within the target is 558 

not due to perceptual uncertainty, 559 
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   560 

DISCUSSION 561 

Models of sensorimotor adaptation have emphasized that this form of learning is driven by sensory 562 

prediction errors, the difference between the observed and predicted sensory consequences of a 563 

movement. In this formulation, task outcome, defined as hitting or missing the target, is not part of the 564 

equation (although in most adaptation tasks, the sensory prediction is at the target, thus conflating SPE 565 

and task outcome). While a number of recent studies have demonstrated that task outcome signals can 566 

influence overall performance in these tasks (Galea et al., 2015; Reichenthal et al., 2016; Leow et al., 567 

2018), it is unclear whether these reinforcement signals impact sensorimotor adaptation (Shmuelof et 568 

al., 2012; Galea et al., 2015), or whether they are exploited by other learning systems, distinct from 569 

SPE-driven implicit adaptation (Codol et al., 2018; Holland et al., 2018). 570 

 571 

The interpretation of the results from these studies is complicated by the fact that the experimental 572 

tasks may conflate different learning processes. In the present study, we sought to avoid this 573 

complication by employing a new method to study implicit learning, one in which participants are 574 

specifically instructed to ignore an invariant visual error signal, thus eliminating explicit processes 575 

(Morehead et al., 2017). Using this clamp method, we observed a striking difference between 576 

conditions in which the final position of the cursor was fully embedded in the target compared to 577 

conditions in which the cursor either terminated outside or straddled the target: When the cursor was 578 

fully embedded, the rate of learning was reduced and the asymptotic level of learning was markedly 579 

attenuated.  580 

 581 

Characterizing the Information Associated with Task Outcome  582 

We manipulated task outcome by varying the size of the target, and, across experiments, manipulated 583 

SPE by varying the clamp size. Although the experimental instructions remained unchanged, these 584 

stimulus changes might be expected to also influence the perception of the error or motor planning 585 
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processes. However, the behavioral differences arising from the manipulation of task outcome did not 586 

appear to arise from these factors. Movement kinematics were essentially the same when reaching to 587 

the different sized targets, and the perceptual control condition showed that reducing perceptual 588 

uncertainty did not influence performance. Moreover, the finding in Experiment 1 that the Straddle 589 

group performed similar to the Miss group, suggests that the effect of target size is, to some degree, 590 

categorical rather than continuous.  591 

 592 

With clamped visual feedback, participants have no control over the invariant task outcome. In our 593 

earlier work with this method, we hypothesized that the cursor feedback is interpreted by the adaptation 594 

system as an error signal. We assume the adaptation system is “fooled” by the temporal correlation 595 

between the motion of the hand and feedback signal, even though the participants are fully aware that 596 

the angular position of the cursor is causally unrelated to their behavior (Morehead et al., 2017). This 597 

hypothesis is consistent with earlier work showing that SPEs will drive implicit adaptation, even at the 598 

cost of reduced task success (Mazzoni and Krakauer, 2006; Taylor and Ivry, 2011).  599 

 600 

One interpretation of the effect of task outcome is that an automatic signal is generated when the 601 

cursor hits the target; that is, this outcome is intrinsically rewarding (Huang et al., 2011; Leow et al., 602 

2018), even though the participant is aware that the outcome does not depend on the accuracy of their 603 

movements. In two of our proposed models, we assume that hitting the target leads to the automatic 604 

generation of a positive reinforcement signal. In the Movement Reinforcement model, this signal 605 

strengthens associated movement representations, producing a bias on behavior. In the Adaptation 606 

Modulation model, this signal directly attenuates adaptation. Alternatively, one could emphasize the 607 

other side of the coin, namely, that the absence of reward (i.e., missing the target) results in a negative 608 

reinforcement signal, or what we refer to here as target error. Consideration of two types of error 609 

signals is, of course, central to the Dual Error model. We could also reframe the Adaptation Modulation 610 
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model: Rather than view adaptation as being attenuated following a positive task outcome, it may be 611 

that adaptation is enhanced following a negative task outcome.  612 

 613 

With the current procedure, we do not have evidence, independent of the behavior, that the task 614 

outcome with non-contingent feedback results in a reinforcement signal (either positive or negative). 615 

Methods such as fMRI (Daw et al., 2011) or pupillometry (Manohar et al., 2017) could provide an 616 

independent means to assess the presence of well-established signatures of reward. Nonetheless, our 617 

results indicate, more generally, that task outcome is an important factor mediating the rate and 618 

magnitude of implicit motor learning. 619 

 620 

Modeling the Influence of Task Outcome on Implicit Changes in Performance 621 

Our modeling analysis makes clear that parallel, independent activity of purely SPE-driven adaptation 622 

and task outcome-driven operant reinforcement processes cannot account for the behavioral changes 623 

observed in the present set of experiments. In particular, the Movement Reinforcement Model fails to 624 

predict the change in reach direction observed when the target size was decreased in the Straddle-to-625 

Hit condition of Experiment 3. In this model, the Straddle-to-Hit group’s asymptotic learning during the 626 

acquisition phase is due to the isolated operation of the adaptation system, given that none of the 627 

reaches are rewarded. The SPE signal would be expected to persist following transfer, maintaining this 628 

asymptote. Moreover, movements in this direction would be further strengthened given that, with the 629 

introduction of the large target, they would be reinforced by an intrinsic reward signal. Importantly, the 630 

predicted absence of behavioral change following transfer should hold for all models in which a model-631 

free reinforcement-based process is combined with a task outcome-insensitive model-based adaptation 632 

process. For example, the prediction is independent of whether the reinforcement process follows a 633 

different time course than adaptation (e.g., faster or slower), or if we model the effect of reinforcement 634 

as basis functions (Donchin et al., 2003; Tanaka et al., 2012; Taylor et al., 2013) rather than discrete 635 

units. Thus, we propose that any model in which adaptation and reinforcement processes act 636 
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independently will fail to show the observed decrease in hand angle following transfer from a miss 637 

condition to a hit condition.  638 

 639 

The failure of the Movement Reinforcement model requires that we consider alternatives in which 640 

information about the task outcome interacts with model-based processes. The Adaptation Modulation 641 

model postulates that a signal associated with the task outcome directly modulates the adaptation 642 

process. In the current instantiation, we propose that hitting the target results in an intrinsic reward 643 

signal that reduces the gain on adaptation (Leow et al., 2018), although an alternative interpretation 644 

would be that missing the target results in an error signal that amplifies the gain. This model was able 645 

to account for the reduced asymptote observed in the Hit-to-Straddle condition of Experiment 3, 646 

outperforming the Movement Reinforcement model. 647 

 648 

The Adaptation Modulation model makes explicit assumptions of previous work in which reward was 649 

proposed to act as a gain controller on the adaptation process (Galea et al., 2015; Nikooyan and 650 

Ahmed, 2015). In terms of the standard state space model, the results indicate that the main effect of 651 

task outcome was on the learning rate parameter. Hitting the target reduced the learning rate by 652 

approximately 40%, consistent with other studies showing reduced behavioral changes when hitting the 653 

target (Reichenthal et al., 2016; Leow et al., 2018).  654 

 655 

Galea et al. (2015) also used a model-based approach to examine the influence of reinforcement on 656 

adaptation, comparing conditions in which participants received or lost money during a standard 657 

visuomotor rotation task. Their results indicated that reward had a selective effect on the retention 658 

parameter in the state space model, suggesting the effect was on memory rather than learning. We 659 

also observed higher retention parameters when the cursor hit the target, although the effect size here 660 

was a relatively smaller ~3% increase and not reliably different from the miss/straddle condition, based 661 

on bootstrapped parameter estimates. We suspect that the effect on retention in Galea et al. (2015) 662 
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was, in large part, not due to a change in the adaptation process itself, but rather the residual effects of 663 

an aiming strategy induced by the reward. That is, the monetary rewards might have reinforced a 664 

strategy during the rotation block, and this carried over into the washout block. Indeed, the idea that 665 

reward impacts strategic processes has been advanced in studies comparing conditions in which the 666 

performance could be enhanced by re-aiming (Codol et al., 2018; Holland et al., 2018). By using non-667 

contingent clamped feedback, we eliminate strategy use and thus provide a purer assessment of how 668 

reward influences adaptation.  669 

  670 

We recognize that the hypothesized modulation of sensorimotor adaptation by task outcome is, at least 671 

superficially, contrary to previous conjectures concerning the independent effects of SPE and TE 672 

(Mazzoni and Krakauer, 2006; Taylor and Ivry, 2011; Taylor et al., 2014; Morehead et al., 2017; Kim et 673 

al., 2018). One argument for independence comes from a visuomotor adaptation task in which 674 

participants are instructed to use an aiming strategy to compensate for a large visuomotor rotation 675 

(Mazzoni and Krakauer, 2006; Taylor and Ivry, 2011). By using the instructed strategy, the cursor 676 

immediately intersects the target, eliminating the target error. However, over the course of subsequent 677 

reaches, the participants’ performance deteriorates, an effect attributed to the persistence of an SPE, 678 

the difference between the aiming location and cursor position. Taylor and Ivry (2011) modeled this 679 

behavior by assuming the operation of two independent learning processes, adaptation driven by SPE 680 

and strategy adjustment driven by TE. In light of the present results, it is important to note that there 681 

were actually very few trials in which target hits actually occurred, given that the large SPE on the initial 682 

reaches resulted in target misses on almost all trials. In addition, the strength of a task success signal 683 

may fall off with larger SPEs (Cashaback et al., 2017). As such, the current study, in which SPE and 684 

task outcome are held constant throughout learning, provides a much stronger assessment on the 685 

effect of task outcome on sensorimotor adaptation. 686 

 687 
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The Dual Error model suggests an alternative, model-based account of the effect of task outcome on 688 

performance. This model assumes that performance is the composite of two independent error-based 689 

processes, an adaptation system that is sensitive to SPE, and a second implicit process that is 690 

sensitive to target error. Of the three models tested here, the Dual Error model provided the best 691 

account of the behavior in Experiment 3, accounting for 90% of the variance when the group-averaged 692 

data from both the Straddle-to-Hit and Hit-to-Straddle conditions of Experiment 3 were fit 693 

simultaneously.  694 

 695 

Interestingly, in previous work, TE was thought to be a driving signal for explicit learning, and in 696 

particular, for adjusting a strategic aiming process that can lead to rapid improvements in performance 697 

(Taylor and Ivry, 2011; Taylor et al., 2014; McDougle et al., 2015; Day et al., 2016). Conceptualizing 698 

TE-based learning as supporting an explicit process does not appear warranted here. We have no 699 

evidence, either based on performance or verbal reports obtained during post-experiment debriefing 700 

sessions (Kim et al., 2018), that participants employ a strategy to counteract the clamp. Rather, all of 701 

the observed changes in behavior are implicit.  702 

 703 

Alternatively, we can consider whether the TE-based process constitutes a form of implicit aiming. The 704 

notion of implicit aiming has previously been suggested in work showing that, with extended practice, 705 

strategic aiming may become automatized (Huberdeau et al., 2017). One interpretation of this effect is 706 

that aiming strategies eventually become “cached” and are automatically retrieved during response 707 

preparation (Haith and Krakauer, 2018). While the idea of a cached strategy may be reasonable in the 708 

context of traditional sensorimotor perturbation studies, it does not seem to offer a reasonable 709 

psychological account of the effect of task outcome in the current context. Given that participants do not 710 

employ a strategy to counteract the clamp, there is no strategy to cache. Furthermore, parameter 711 

estimates for the Dual Error model indicate that the TE-sensitive process learned at a slower rate and 712 

retained more than the SPE-sensitive process. Were implicit aiming to share core features of explicit 713 
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aiming, the modeling results would be inconsistent with previous work indicating that explicit aiming 714 

from TE is faster (McDougle et al., 2015) and more flexible (Bond and Taylor, 2015; Hutter and Taylor, 715 

2018) than adaptation from SPE.  716 

 717 

Although the Dual Error model provided a better fit of the behavioral results compared to the Adaptation 718 

Modulation model, the challenge for future research is to design experiments that can evaluate their 719 

unique predictions. The current experiments, by manipulating the size of the target to vary TE while 720 

holding SPE constant, highlights the distinctive roles of these two outcome signals. We can envision 721 

experiments in which SPE is eliminated (by using a 0 clamp), but the target jumps by a small amount, 722 

with the size of the displaced target manipulated such that the cursor either misses or hits the target. 723 

The Dual Error model, as presently formulated would predict learning in the former, but not in the latter. 724 

The Adaptation Modulation model, on the other hand, would predict no learning in either case since 725 

there is no SPE. 726 

 727 

In terms of neural mechanisms, converging evidence points to a critical role for the cerebellum in SPE-728 

driven sensorimotor adaptation (Tseng et al., 2007; Taylor et al., 2010; Izawa et al., 2012; Schlerf et al., 729 

2012; Butcher et al., 2017), including the observation that patients with cerebellar degeneration show a 730 

reduced response to visual error clamps (Morehead et al., 2017). An important question for future 731 

research is whether the cerebellum is also essential for learning driven by information concerning task 732 

outcome. A recent behavioral study showed that individuals with cerebellar degeneration were 733 

unimpaired in learning from binary, reward-based feedback, once the motor variability associated with 734 

their ataxia was taken into consideration (Therrien et al., 2016). This finding provides one instance in 735 

which the cerebellum is not essential for learning from task outcome. However, the complete retention 736 

observed in that study would indicate that learning was of a different form than adaptation, perhaps 737 

related to the use of an explicit strategy (Holland et al., 2018). Evidence that the cerebellum may be 738 

integral to processing task outcome signals that could support implicit processes comes from research 739 
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with animal models indicating that both simple (Wagner et al., 2017) and complex (Ohmae and Medina, 740 

2015) spike activity in the cerebellum may signal information about task outcome and reward prediction 741 

errors. By testing individuals with cerebellar impairment on a clamp design in which SPE is held 742 

constant and TE is manipulated, one can simultaneously assess the role of the cerebellum in learning 743 

from these two error signals.  744 

 745 

Conclusions 746 

By using non-contingent feedback, we were able to re-examine the effect of task outcome on 747 

sensorimotor learning. The results clearly show that 1) implicit learning processes are influenced by 748 

information concerning task outcome, either through the generation of an intrinsic reward or task error 749 

signal and 2) that the effect cannot be accounted for by the engagement of a model-based SPE-driven 750 

adaptation process operating in tandem with an independent model-free operant reinforcement 751 

process. The behavioral results and our modeling work indicate the need for a more nuanced view of 752 

sensorimotor adaptation. We outline two directions to consider. In the Adaptation Modulation model, 753 

task outcome signals are proposed to serve as a gain on adaptation, contrary to previous views of a 754 

modular system that is immune to information about task success. The Dual Error model suggests the 755 

need for a more expansive definition of adaptation in which multiple model-based processes operate to 756 

keep the sensorimotor system well-calibrated. These models can serve as a springboard for future 757 

research designed to further delineate how information about motor execution and task outcome 758 

influence implicit sensorimotor learning. 759 

 760 

 761 

 762 

 763 

 764 

  765 
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METHODS 921 

Participants: Healthy, young adults (N=116, 69 females; average age = 20.9 years old, range: 18.2 – 922 

27.8) were recruited from the University of California, Berkeley, community. Each participant was tested 923 

in only one experiment and was right-handed, as verified with the Edinburgh Handedness Inventory 924 

(Oldfield, 1971). All participants provided written informed consent to participate in the study and to 925 

allow publication of their data, and received financial compensation for their participation. The 926 

Institutional Review Board at UC Berkeley approved all experimental procedures under ID number 927 

2016-02-8439.  928 

 929 

Experimental Apparatus: The participant was seated at a custom-made tabletop housing an LCD 930 

screen (53.2 cm by 30 cm, ASUS), mounted 27 cm above a digitizing tablet (49.3 cm by 32.7 cm, 931 

Intuos 4XL; Wacom, Vancouver, WA). The participant made reaching movements by sliding a modified 932 

air hockey "paddle" containing an embedded stylus. The position of the stylus was recorded by the 933 

tablet at 200 Hz. The experimental software was custom written in Matlab, using the Psychtoolbox 934 

extensions (Pelli, 1997). 935 

 936 

Reaching Task: Center-out planar reaching movements were performed from the center of the 937 

workspace to targets positioned at a radial distance of 8 cm. Direct vision of the hand was occluded by 938 

the monitor, and the lights were extinguished in the room to minimize peripheral vision of the arm. The 939 

starting and target locations were indicated by white and blue circles, respectively (start circle: 6 mm in 940 

diameter; target: either 6, 9.8 or 16 mm depending on condition).  941 

 942 

To initiate each trial, the participant moved the digitizing stylus into the start location. The position of the 943 

stylus was indicated by a white feedback cursor (3.5 mm diameter). Once the start location was 944 

maintained for 500 ms, the target appeared. For Experiments 1 and 3, the target could appear at one of 945 

8 locations, placed in 45° increments around a virtual circle (0°, 45°, 95°, 135°, 180°, 225°, 270°, 315°). 946 
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For Experiment 2, the target could appear at one of four locations placed in 90° increments around a 947 

virtual circle (45°, 135°, 225°, 315°). We reduced the number of targets from 8 to 4 in Experiment 2 in 948 

order to increase the overall number of training cycles with the clamp to ensure that participants reach 949 

a stable asymptote, while keeping the experiment under 1.5 hours. Participants were instructed to 950 

accurately and rapidly "slice" through the target, without needing to stop at the target location. Visual 951 

feedback, when presented, was provided during the reach until the movement amplitude exceeded 8 952 

cm. As described below, the feedback either matched the position of the stylus (veridical) or followed a 953 

fixed path (clamped). If the movement duration (excluding RT) was not completed within 300 ms, the 954 

words “too slow” were generated by the sound system of the computer.  955 

 956 

After the hand crossed the target ring, endpoint cursor feedback was provided for 50 ms either at the 957 

position in which the hand crossed the virtual target ring (veridical feedback) or at a fixed distance 958 

determined by the size of the clamp. During the return movement, the feedback cursor reappeared 959 

when the participant’s hand was within 1 cm of the start position.  960 

 961 

Experimental Feedback Conditions: Across the experimental session, there were three types of visual 962 

feedback. On no-feedback trials, the cursor disappeared when the participant‘s hand left the start circle 963 

and only reappeared at the end of the return movement. On veridical feedback trials, the cursor 964 

matched the position of the stylus during the 8 cm outbound segment of the reach. On clamped 965 

feedback trials, the feedback followed a path that was fixed along a specific hand angle. The radial 966 

distance of the cursor from the start location was still based on the radial extent of the participant's 967 

hand during the 8 cm outbound segment, but the angular position was fixed relative to the target (i.e., 968 

independent of the angular position of the hand).  969 

 970 
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The primary instructions to the participant (experiment script included) remained the same across the 971 

experimental session: Specifically, that they were to reach directly towards the visual target. Prior to the 972 

introduction of the clamped feedback trials, participants were briefed about the feedback manipulation. 973 

They were informed that the position of the cursor would now follow a fixed trajectory and that the 974 

angular position would be independent of their movement. They were explicitly instructed to ignore the 975 

cursor and continue to reach directly to the target. Participants also performed three instructed trials 976 

with the clamp perturbation on. During these practice trials, a target appeared at the 90 location 977 

(straight ahead), and the experimenter instructed the participant to first “reach straight to the left” (ie, 978 

180). For the second practice trial, the participant was instructed to “reach straight to the right” (0). 979 

For the last trial, the participant was instructed to “reach straight down (towards your torso)” (ie, 270). 980 

The purpose of these trials was to familiarize the participant with the exact clamp condition they were 981 

about to experience. Following these three practice trials, the experimenter confirmed with the 982 

participant they understood now what was meant by clamped visual feedback. These practice trials 983 

were removed from future analyses.  984 

 985 

The same instructions in abbreviated form (“Ignore the cursor and move your hand directly to the target 986 

location”) were repeated verbally and with onscreen text at every block break during the clamp 987 

perturbation. Participants were debriefed at the end of the experiment and asked whether they ever 988 

intentionally tried to reach to locations other than the target. All subjects reported aiming to the target 989 

throughout the experiment.  990 

 991 

We counterbalanced clockwise and counterclockwise clamps within each group for all three 992 

experiments.  993 

 994 

Experiment 1 995 
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Participants (n=48, 16/group) were randomly assigned to one of three groups, each training with a 3.5° 996 

clamp but differing only in terms of the size of the target: 6mm, 9.8, or 16 mm diameter. These sizes 997 

were chosen so that at an 8 cm radial distance the clamped cursor would be adjacent to the target 998 

without making any contact (Target Miss group), straddling the target by being roughly half inside and 999 

half outside the target (Straddle Target group), or fully embedded within the target (Hit Target group). 1000 

The Euclidean distance for this clamp size, measured from the centers of cursor and target, was 4.9 1001 

mm.  1002 

 1003 

The session began with two baseline blocks, the first comprised of 5 movement cycles (40 total 1004 

reaches to 8 targets) without visual feedback and the second comprised of 10 cycles with a veridical 1005 

cursor displaying hand position. The experimenter then informed the participant that the visual 1006 

feedback would no longer be veridical and would now be clamped at a fixed angle from the target 1007 

location. Immediately following these general instructions, the experimenter continued providing 1008 

instructions for the three practice trials which immediately followed (see Experimental Feedback 1009 

Conditions). After the practice trials and confirming the participant’s understanding of the task, the 1010 

clamp block ensued for a total of 80 cycles. A short break (<1 min), as well as a reminder of the task 1011 

instructions, was provided after 40 cycles (i.e., at the halfway point of this block). Immediately following 1012 

the perturbation block, there were two washout blocks, first a 5 cycle block in which there was no visual 1013 

feedback, followed by 10 cycles with veridical visual feedback. These blocks were preceded by 1014 

instructions regarding the change in experimental condition and participants were reminded to always 1015 

aim for the target and to attempt to slice through it with their hand.  1016 

 1017 

Experiment 2 1018 

In Experiment 2 we assessed adaptation over an extended number of clamped visual feedback trials. 1019 

The purpose of extending the perturbation block was to ensure that participants reached asymptotic 1020 
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levels of learning. In order to achieve a greater number of training cycles, we reduced the number of 1021 

target locations within the set from 8 to 4.  1022 

 1023 

Participants (n=32, 16/group) trained with a 1.75° clamp (2.4 mm distance between target and cursor 1024 

centers) and were assigned to either a small (Straddle) or large (Hit) target condition. The session 1025 

started with two baseline blocks, 10 cycles (40 reaches) without visual feedback and then 10 cycles 1026 

with veridical feedback. Following 3 practice trials with the clamp, the number of cycles in the clamped 1027 

visual feedback block was nearly tripled from that of Experiment 1 to 220 cycles, with breaks provided 1028 

after every 70 cycles. Following 220 cycles of training with a 1.75° clamp, there were two washout 1029 

blocks, first a 10 cycle block in which there was a 0° clamp, followed by 10 cycles with veridical visual 1030 

feedback. Prior to washout, participants were again instructed to always aim directly to the target.  1031 

 1032 

Experiment 3 1033 

Experiment 3 used a transfer design to evaluate different hypotheses concerning the role of task 1034 

outcome on implicit sensorimotor learning. Our main predictions focused on the transfer phase, 1035 

comparing the participants’ behavior to the predictions of three models (see section, Theoretical 1036 

analysis of the effect of task outcome on implicit learning). We tested two main groups (n=12/group) in 1037 

Experiment 3, using a 1.75 clamp in both the acquisition and transfer phases. The session started with 1038 

two baseline blocks, 5 cycles (40 reaches) without visual feedback and then 5 cycles with veridical 1039 

feedback. After the baseline blocks, clamp instructions and three practice trials were provided to all 1040 

participants. The first clamp block (acquisition phase) lasted 120 cycles, with participants training with 1041 

either a small or large target. Following the first 120 cycles, the target sizes were reversed for the next 1042 

80 cycles (transfer phase: Straddle-to-Hit or Hit-to-Straddle conditions). Breaks of < 1 min were 1043 

provided after every 35 cycles of training. On the break preceding the transfer (15 cycles before target 1044 

switch), participants were told that everything would continue on as before, except that the target size 1045 

would change at some point during the block. The purpose of staggering the break with the transfer 1046 
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was to mitigate any change in adaptation due to temporal decay that could result from a break in 1047 

training (Hadjiosif and Smith, 2013).  1048 

 1049 

Control group 1050 

A third group (n=12) was added to test whether the attenuation of adaptation in the large target 1051 

condition was due to perceptual uncertainty. Here, the block structure was identical to the first two 1052 

groups. We used a modified large target (16mm), one which had a bright green bisecting line through 1053 

the middle, aligned with the target direction. The clamped cursor always fell within one half of the target 1054 

(either clockwise or counter-clockwise depending on the condition), thus providing a clear indication 1055 

that the cursor was off center. At the transfer, the bisecting line was removed and participants trained 1056 

for 80 cycles with the standard large target. 1057 

 1058 

Data Analysis  1059 

All statistical analyses and modeling were performed using Matlab 2015b and the Statistics Toolbox. 1060 

Data and code are available on GitHub at: https://github.com/hyosubkim/Influence-of-task-outcome-on-1061 

implicit-motor-learning (Kim, 2019). The primary dependent variable in all experiments was hand angle 1062 

at peak radial velocity, defined by the angle of the hand relative to the target at the time of peak radial 1063 

velocity (i.e., angle between lines connecting start position to target and start position to hand). 1064 

Throughout the text, we refer to this variable as hand angle. Additional analyses were performed using 1065 

hand angle at “endpoint” (angle of the hand as it crossed the invisible target ring) rather than peak 1066 

radial velocity. The results were essentially identical for the two dependent variables; as such, we only 1067 

report the results of the analyses using peak radial velocity.  1068 

 1069 

Data used in statistical analyses were tested for normality and homogeneity of variance using Shapiro-1070 

Wilks and Levene’s tests, respectively. When normality or homogeneity of variance was violated, we 1071 

performed non-parametric permutation tests in addition to standard parametric tests (i.e., t-tests and 1072 
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ANOVAs) and report results from both. For comparisons between two groups, we used the difference 1073 

between group means as our test statistic. This value was compared to a null distribution, created by 1074 

random shuffling of group assignment in 10,000 Monte Carlo simulations (resampling with 1075 

replacement), to obtain an exact p-value. When a comparison involved more than two groups, we used 1076 

a similar approach, but used the F-value obtained from a one-way ANOVA as our test statistic. 1077 

 1078 

Outlier responses were removed from the analyses. For the sole purpose of identifying outliers, the 1079 

Matlab “smooth” function was used to calculate a moving average (using a 5-trial window) of the hand 1080 

angle data for each target location. Outliers were trials in which the observed hand angle was greater 1081 

than 90 or deviated by more than 3 standard deviations from the moving average. In total, less than 1082 

0.8% of trials overall were removed, and the most trials removed for any individual across all three 1083 

experiments was 2%. 1084 

 1085 

Individual baseline biases for each target location were subtracted from all data. Biases were defined 1086 

as the average hand angles across cycles 2-10 (Experiments 1 and 2) or 2-5 (Experiment 3) of the 1087 

feedback baseline block. These same cycles were used to calculate mean baseline RTs, MTs, and 1088 

movement variability (SD). To calculate each participant’s baseline RT or MT, we took the average of 1089 

median values at each target location. To calculate each participant’s movement variability, we took the 1090 

average of the standard deviations of hand angles at each target location.  1091 

 1092 

In order to pool all of the data and to aid visualization, we flipped the hand angles for all participants 1093 

clamped in the counterclockwise direction. 1094 

 1095 

For Experiments 1 and 3, movement cycles consisted of 8 consecutive reaches (1 reach/target); for 1096 

Experiment 2, we only used four targets, thus a movement cycle consisted of 4 consecutive reaches (1 1097 

reach/target). To estimate the rate of early adaptation, we calculated the mean change in hand angle 1098 
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per cycle over the first five cycles. To provide a more stable estimate of hand angle at cycle 5, we 1099 

averaged over cycles 3-7 of the clamp block. We opted to use this measure of early adaptation rather 1100 

than obtain parameter estimates from exponential fits since the latter approach gives considerable 1101 

weight to the asymptotic phase of performance, and, therefore, would be less sensitive to early 1102 

differences in rate. This would be especially problematic in Experiment 2, which utilized 220 clamp 1103 

cycles. We also performed a secondary analysis of early adaptation rates using a larger window, cycles 1104 

2-11 (Krakauer et al., 2005). Results from using this alternate metric were consistent with the reported 1105 

analyses (i.e., slower rates for Hit Target groups), only they resulted in larger effect sizes due to the 1106 

gradually increasing divergence of learning functions. Asymptotic adaptation (i.e., late learning) was 1107 

defined as the average hand angle over the last 10 cycles within a clamp block. In Experiment 1, the 1108 

aftereffect was quantified by using the data from the first no-feedback cycle following the last clamp 1109 

cycle. This measure yielded similar statistical results as that based on the analysis of asymptotic 1110 

adaptation.  1111 

 1112 

All t-tests were two-tailed. Posthoc pairwise comparisons following significant ANOVAs were performed 1113 

using two-tailed t-tests, with a corrected  of .017 due to multiple comparisons. Cohen’s d, eta squared 1114 

(2), partial eta squared (for mixed model ANOVA), and dz (for within-subjects design) values are 1115 

provided as standardized measures of effect size (Lakens, 2013). Values in main text are reported as 1116 

95% CIs in brackets and mean  SEM. 1117 

 1118 

No statistical methods were used to predetermine sample sizes. The chosen sample sizes were based 1119 

on our previous studies using the clamp method (Morehead et al., 2017; Kim et al., 2018), as well as 1120 

prior psychophysical studies of human sensorimotor learning (Huang et al., 2011; Galea et al., 2015; 1121 

Vaswani et al., 2015; Gallivan et al., 2016). 1122 

 1123 

 1124 
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 1125 

Modeling 1126 

For the Movement Reinforcement model, a population vector (Georgopoulos et al., 1986), V, indicates 1127 

the current bias of motor representations within the reinforcement system. The direction of this vector 1128 

(Vd) was calculated for each trial in the following manner:  1129 

Vx(n) = r(n) ux 1130 

Vy(n) = r(n)  uy 1131 

Vd(n) = tan-1(Vy(n) / Vx(n)) 1132 

Here, r represents the weights on every unit (36,000 total units representing a resolution of .01); u is a 1133 

vector filled with unit vectors pointing in all 36,000 directions; and x and y subscripts represent the x- 1134 

and y-components for both V and u, respectively. The mean preferred direction, Vd, was converted 1135 

from radians into degrees. The strength of the biasing signal, Vl, is equal to the population vector 1136 

length: √𝑉𝑥
2 + 𝑉𝑦

2, with the constraint that 0 ≤ Vl ≤ 1. 1137 

 1138 

In order to calculate confidence intervals for the parameter estimates, we applied standard 1139 

bootstrapping techniques, constructing group-averaged hand angle data 1000 times by randomly 1140 

resampling with replacement from the pool of participants within each group. Using Matlab’s fmincon 1141 

function, we started with ten different initial sets of parameter values and estimated the retention and 1142 

learning parameters that minimized the least squared error between the bootstrapped data and model 1143 

output (xn). Parameter estimates were bounded such that 0 < A < 1 and 0 < U(e) < e, where e is equal 1144 

to the clamp size in degrees. 1145 

 1146 

The hybrid models combined the Movement Reinforcement with either the Adaptation Modulation or 1147 

Dual Error model. Each hybrid incorporated the equations for the Movement Reinforcement model 1148 
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(Eqns. 2-4). However, when movement reinforcement was combined with the Adaptation Modulation 1149 

model, the contribution of the adaptation system, x, to the motor output, y, was derived from the gain 1150 

modulation equation (Eqn. 5). When movement reinforcement was combined with the Dual Error 1151 

model, equations 6-8 were used, with xtotal now substituting for x in Eqn. 2.  1152 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/363606doi: bioRxiv preprint 

https://doi.org/10.1101/363606
http://creativecommons.org/licenses/by/4.0/


 51 

SUPPLEMENTAL INFORMATION 1153 

Experiment 3: Kinematic variables 1154 

Baseline movement variability was not different across all three groups, including the control group 1155 

trained with the bisected target (F(2,33)=1.38, p=.267, 2=.077). Similarly, no differences across groups 1156 

were observed for either RTs (F(2,33)=1.51, p=.236, 2=.0084) or MTs (F(2,33)=.46, p=.634, 2=.027). 1157 

 1158 
 1159 

Table 2: Average Reaction Times (RTs). Values represent mean  SEM. 1160 

Experiment 1 Baseline Early clamp Late clamp No feedback 

Hit 325  7 327  7 347  11 344  12 

Straddle 362  12 359  14 397  32 407  33 

Miss 386  22 383  19 378  15 385  15 

Experiment 2    0 clamp 

Hit 378  22 376  27 354  9 351  9 

Straddle 373  12 366  13 368  15 373  16 

Experiment 3     

Hit-to-Straddle 356  19 350  15 326  9 N/A 

Straddle-to-Hit 360  8 360  7 355  7 N/A 

Bisected-to-
Normal 

400  28 395  27 400  25 N/A 

 1161 
 1162 

Table 3: Average Movement Times (MTs). Values represent mean  SEM. 1163 

Experiment 1 Baseline Early clamp Late clamp No feedback 

Hit 153  11  150  10  137  8 133  9 

Straddle 162  8 149  8 139  7 131  7 

Miss 137  7 134  7 124  6 118  6 

Experiment 2    0 clamp 

Hit 149  8 159  20 155  11 127  7 

Straddle 157  8 161  15 170  18 130  8 

Experiment3     

Hit-to-Straddle 158  7 189  12 168  12 N/A 

Straddle-to-Hit 164  11 207  28 169  13 N/A 

Bisected-to-
Normal 

151  11 165  14 166  15 N/A 

 1164 
 1165 
 1166 
 1167 
 1168 
 1169 
 1170 
 1171 
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Table 4: Movement variability during baseline block. Values represent mean  SEM. 1172 

Experiment 1 Baseline SD 

Hit 4.19  .26 

Straddle 3.61  .16 

Miss 3.80  .15 

Experiment 2  

Hit 3.09  .18 

Straddle 3.57  .16 

Experiment 3  

Hit-to-Straddle 3.30  .22 

Straddle-to-Hit 3.85  .37 

Bisected-to-Normal 3.97  .31 

 1173 
 1174 
 1175 
 1176 
 1177 
  1178 
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 1179 

 1180 
 1181 
Figure 5-figure supplement 1 Control group from Experiment 3. (a) Using a transfer design, (b) the 1182 
behavior of the control group reaching to a large target bisected by a line (aligned with the target 1183 
direction) during the acquisition phase is shown in magenta. The change in hand angle was not 1184 
significantly different than that observed for the group that was tested with the large target in the 1185 
acquisition phase of Experiment 3 (re-plotted here in green), suggesting that perceptual uncertainty did 1186 
not make a substantive contribution to the effects of hitting the target. We omitted the transfer behavior 1187 
of the large target group as this was when the large target was replaced with the small target. (c) There 1188 
was no change in asymptote when going from the bisected target to the standard large target. 1189 
 1190 

  1191 
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Target Size Experiment Instructions 1192 

 1193 

 1194 
Pre-Experiment Instructions (verbal): 1195 

● “The point of this experiment is to better understand how the brain controls reaching 1196 
movements. We are especially interested in how motor control is impacted by various 1197 
neurological disorders, like Parkinson’s disease and cerebellar degeneration. As a healthy 1198 
student, your data will be used as a normative baseline for future comparisons with these 1199 
neurological patients. The information we gain from this experiment could help improve 1200 
rehabilitation for these patients, so please try your best to pay attention and follow all 1201 
instructions.” 1202 

●  “You will be holding this ‘pen’ at the red base and should maintain the same grip throughout 1203 
the experiment. (Demonstrate how to hold pen) You will be making fast center-out reaching 1204 
movements towards a blue target that will appear in one of several different locations.” 1205 
(Physically demonstrate the reaching movements) 1206 

● “Try your best to reach quickly and accurately in a straight line, and try to slice through the 1207 
blue targets rather than stopping at the target. So, slice and come back to the home 1208 
position.” 1209 

● “These are center-out reaches, which means that every trial starts from the exact same 1210 
home location.” 1211 

● “During the experiment, you will see three different scenarios: you either won’t be able to 1212 
see the cursor, your cursor will reflect your hand position, or you won’t be controlling the 1213 
cursor at all. Regardless of what phase of the experiment you are in, your goal should 1214 
always be to bring your hand directly to the blue target. And, of course, I will always tell you 1215 
ahead of time which condition you are in.” 1216 

● “You will go through several different blocks of trials, some lasting longer than others, but 1217 
there will be several breaks at different points of the experiment.” 1218 

● “I will give you time to adjust the seat height and scoot in close to the work station; you will 1219 
be making many reaches towards the end of the tablet, and I want you to be able to do that 1220 
without moving any parts of your body other than your arm.” (demonstrate) 1221 

● “Try to keep the same posture throughout the experiment.” 1222 
● “Rest your left hand in your lap.”  1223 
● “I will talk you through the first several trials.” 1224 
● “Do you have any questions?” (Run game code and switch seats.) 1225 
● “I’ll give you a minute to get comfortable before turning out the lights.” 1226 
 1227 

**Start program, move mouse and keypad 1228 
**Participant gets situated before turn off the light 1229 
**Turn off lights and close door 1230 
 1231 
No feedback baseline block: 1232 
“In the center of the screen you can see a white circle that indicates the start position for each trial. 1233 
When your hand is close to the start position, a cursor will appear indicating your actual hand position. 1234 
For this first block of trials you won’t get to see the cursor when you reach to the target, but remember 1235 
to still move your hand quickly to the target.” 1236 
 1237 
(Explain “too slow” message after it happens. Remind them to make slicing movements.) 1238 
 1239 
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(After several trials): “That knocking sound you hear means it was a valid trial and that you moved far 1240 
enough and fast enough. It does not mean you hit the target. There is no special sound for hitting the 1241 
target.” 1242 
 1243 
Veridical feedback: After first pause (screen: “Good job!”) 1244 
“Great! The only difference for the next block of trials is that now you can see your cursor as you move 1245 
to the target. Continue to move your hand directly towards the target.” 1246 
 1247 
Hit space bar. 1248 
 1249 
Error clamp block: 1250 
 1251 
Practice trials 1252 
 (screen: “You will now get to familiarize yourself with the next condition.”) 1253 

 “Great! During the next long block of trials you will continue to see the cursor, but its movement 1254 
direction will not be under your control. We will want you to ignore the cursor as you continue 1255 
to focus on slicing through the targets with your hand.” 1256 

 “Before we start the next block, though, we’ll do three practice trials, just so that you will be 1257 
familiar with exactly what will happen in the next part of the experiment.” 1258 

 “As a demonstration of what we mean by the cursor not being under your control, in the very 1259 
next trial, after the blue target appears, move your hand quickly to the left.” (hit space bar) 1260 

 “Did you see how the cursor moved when you did, but it followed a fixed path independent of 1261 
where your hand moved?” 1262 

 “I want you to now move quickly to the right after you find home and the target appears.” (hit 1263 
space bar) 1264 

 “For the last practice trial, move in the opposite direction of the target.” 1265 
 1266 
Perturbation 1267 
(screen: “Ignore the cursor and move your hand directly to the target location.”) 1268 

 “Is it clear now that the cursor’s direction will not be under your control?” 1269 

 “Those practice trials were so that you could see and experience what’s going to happen in the 1270 
next block. The cursor will move like that towards all the targets now. You’ll be controlling the 1271 
distance the cursor travels, but not its direction. We want to see how well you can reach to the 1272 
target while ignoring the cursor.” 1273 

 “Your job is again to always reach directly for the target. But, remember, for the next block of 1274 
trials you do not have control over the cursor’s direction, so try to ignore the cursor and always 1275 
aim directly for the targets.” 1276 

 “Is this clear?” 1277 
 1278 
After first couple of trials “Remember that you are controlling how far that cursor moves, but not its 1279 
direction, even though it may look like it. No matter where you move your hand, the cursor will still 1280 
travel along the same path relative to the target. Continue to ignore the cursor and move your hand 1281 
directly to the target.” 1282 
 1283 
If slow, and trying to gauge cursor direction: “Please make quick, straight reaches to the target.” 1284 
 1285 
Short break – occurs after X trials (screen: “Ignore the cursor and move your hand directly to 1286 
the target location.”)  1287 
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  “Feel free to take a quick break if you’d like, but please return back to the same grip and 1288 
posture when you’re ready. If you’re okay, we can just keep going. Like before, you still won’t be 1289 
controlling the cursor, but we still want you to move your hand directly to the blue target.” 1290 

 1291 
 1292 
 1293 
No feedback washout:  1294 

  “Great. Keep bringing your hand directly to the target. The only change is you won’t see the 1295 
cursor.” 1296 
 1297 

 1298 
Veridical feedback washout: 1299 

 “Nice job. You are back in control of the cursor now. Keep bringing your hand to the target. 1300 
Remember to make quick, straight reaches. Once you begin your reach, follow through with it.” 1301 
(You are making sure they are not trying to make online feedback corrections) 1302 

 1303 
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