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Abstract 14 

Introduced species of mammals in New Zealand have had catastrophic effects on 15 

populations of diverse native species. Quantifying the diets of these omnivorous and 16 

predatory species is critical for understanding which native species are most impacted, 17 

and to prioritize which mammal species and locations should be targeted with control 18 

programmes. A variety of methods have been applied to quantify diet components in 19 

animals, including visual inspection of gut contents (Daniel 1973; Pierce and Boyle 20 

1991), stable isotope analysis (Major et al. 2007; Carreon-Martinez and Heath 2010), 21 

and time-lapse video (Brown and Brown 1997; Dunlap and Pawlik 1996). Increasingly, 22 

DNA-based metabarcoding methods are being used (King et al. 2008; Soininen et al. 23 

2009). These metabarcoding methods require a PCR step using primers that bind to 24 

highly conserved genomic regions (e.g. mitochondrial COI) to amplify specific regions 25 

for sequencing. This step introduces significant bias, primarily due to the lack of a 26 

universal primer set (King et al. 2008). Here we show that direct metagenomic 27 

sequencing using the Oxford Nanopore Minion allows rapid quantification of rat diets. 28 

Using a sample of rats collected from within 100km of Auckland, NZ, we show that 29 

these rats consume a wide variety of plant, invertebrate, vertebrate, and fungal taxa, 30 

with substantial differences in diet content between locales. We then show that, based 31 

on diet content alone, it is possible to pinpoint the sampling location of an individual rat 32 

within tens of kilometres. We expect that the rapidly increasing accuracy and 33 

throughput of nanopore-based sequencing, as well as increases in the species 34 

diversity of genomic databases, will soon allow rapid and unbiased assessments of 35 

animal diets in field settings.  36 
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Introduction 37 

The relatively recent introduction of mammalian species to New Zealand has had 38 

significant negative effects on many of the native animal populations, including insects 39 

(Gibbs 1998), reptiles (Towns, Daugherty, and Cree 2001), molluscs (Stringer et al. 40 

2003), and birds (Diamond and Veitch 1981; Dowding and Murphy 2001). These 41 

mammalian predators include possums, rats, stoats, and hedgehogs, as well as 42 

domestic pets such as cats (Gillies and Clout 2003). Currently, an ambitious plan is 43 

being put into place that aims for the eradication of all mammalian predators by 2050 44 

(http://www.doc.govt.nz/predator-free-2050; Russell et al. 2015). A useful step toward 45 

this goal would be to prioritise the management of predators and geographical areas in 46 

which native species are experiencing the highest levels of predation. To do so requires 47 

establishing the diet content of these predators. 48 

Unbiased and sensitive assessment of diet content is extremely difficult to achieve due 49 

to the limited accuracy of available methods. Identification of prey items using visual 50 

examination of stomach contents is strongly affected by which items are most easily 51 

degraded (for example, soft-bodied species). Stable isotope analysis is imprecise, 52 

yielding only broad information on diet such as relative consumption of protein and plant 53 

matter, as well as information on whether prey items are terrestrial or marine in origin 54 

(Hobson 1987; Basha et al. 2016). Time-lapse video (Brown et al. 2008) requires 55 

identification of the specific prey item, often difficult or impossible for small prey items or 56 

in low-light conditions.  57 

Perhaps the most widely applied current molecular method is DNA metabarcoding. This 58 

approach relies on the PCR amplification and DNA sequencing of conserved regions 59 

from nuclear, mitochondrial, and/or plastid genomes (King et al. 2008). With adequate 60 

primer selection, this method can detect a wide range of species, and does not require 61 

specific expertise necessary for other methods (for example identifying degraded prey 62 

items). 63 
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However, DNA metabarcoding is not free from bias. PCR primers must be specifically 64 

tailored to particular sets of taxa or species (Jarman et al. 2002). Although more 65 

“universal” PCR primer pairs have been developed (for example targeting all bilaterians 66 

or even all eukaryotes; (Jarman, Deagle, and Gales 2004), all primer sets exhibit bias 67 

towards certain taxa. Tedersoo et al. (Tedersoo et al. 2015) found five-fold differences 68 

in fungal operational taxonomic units (OTU) estimates when using different sets of 69 

fungal-specific PCR primer pairs. Leray et al. (Leray et al. 2013) found that published 70 

universal primer pairs (i.e. those that do not target specific taxa) were capable of 71 

amplifying only between 57% and 91% of tested metazoan species, with as few as 33% 72 

of species in some phyla being amplified at all (e.g. cnidarians). Deagle et al. argued 73 

that in general, COI regions are simply not sufficiently conserved, and thus should not 74 

be used for metabarcoding studies at all (Deagle et al. 2014). Finally, Pawluczyk et al. 75 

showed that different loci from the same species exhibit up to 2,000-fold differences in 76 

qPCR-estimated DNA quantity within samples (Pawluczyk et al. 2015). It has even been 77 

shown that the polymerase itself can bias diversity metrics when using metabarcoding 78 

methods (Pereira et al. 2018). For these reasons, a less biased molecular-based 79 

method is desirable. 80 

Metagenomic approaches, in which all DNA in the sample is directly sequenced, offer a 81 

promising alternative. Such methods have been used for diet analysis in only very few 82 

and recent instances (Srivathsan et al. 2015; Paula et al. 2015; Srivathsan et al. 2016). 83 

Although metagenomic approaches decrease the bias arising from PCR amplification of 84 

specific DNA regions, additional biases can arise, as the presence or absence of 85 

species and genera can only be inferred for those species or genera present in genomic 86 

databases. Although this is similarly true for metabarcoding approaches, metabarcode 87 

databases are considerably more comprehensive in terms of species representation as 88 

compared to genomic databases. Importantly, genomic sequence databases are rapidly 89 

increasing in species diversity, as are the methods to query these large databases 90 

(Wood and Salzberg 2014; Kim et al. 2016).  91 
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Here, we quantify rat diet composition using a metagenomic approach based on 92 

nanopore sequencing (Oxford Nanopore Technologies). The data suggest that rat diets 93 

around Auckland, New Zealand, comprise a wide range of plant, animal, and fungal 94 

families. We show using multivariate analyses that rat diets are distinguishable by 95 

habitat and location. This work establishes long-read metagenomic methods as a 96 

straightforward approach for diet quantification. 97 

Materials and Methods 98 

Study Areas 99 

We trapped rats from three locations near Auckland, New Zealand. Each location 100 

comprised a different type of habitat: undisturbed inland native forest (Waitakere 101 

Regional Parklands, WP); native bush surrounding an estuary (Okura Bush Walkway, 102 

OB); and restored coastal wetland (Long Bay Regional Park, LB) (Fig. 1). Traps in OB 103 

and LB were baited with peanut butter, apple, and cinnamon wax pellets; or bacon fat 104 

and flax pellets. Traps in WP were baited with chicken eggs, rabbit meat, or cinnamon 105 

scented poison pellets. From 16 November to 16 December 2016, traps were surveyed 106 

by established volunteer conservation groups at each site every 48 hours. A total of 36 107 

rats were collected from these locations. The majority of rats collected (34/36) were 108 

determined to be male by visual inspection, and identified as Rattus norvegicus. These 109 

34 rats were selected for further analysis.  110 
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Fig. 1. Location of rat sampling sites in the greater Auckland area in the North Island 111 

of New Zealand. Each point indicates a trap where one rat was captured, with the colour 112 

of the points indicating the three broad locations: the native estuarine bush habitat of 113 

Okura Bush (OB), the restored wetland of Long Bay (LB), and the native forest of 114 

Waitakere Park (WP). The two insets show the three locations in higher resolution with 115 

topographical details. Green indicates park areas. Precise geographical coordinates 116 

were only available for five out of eight rats in WP. 117 

 118 

DNA Isolation 119 

Within 48 hours of trapping, rats were stored at either -20°C or -80°C until dissection. 120 

We removed intact stomachs from each animal, rinsed them with 70% ethanol, and 121 

removed the contents. After snap freezing in liquid nitrogen, we homogenised the 122 

stomach contents using a sterile mini blender to ensure sampling was representative of 123 

the entire stomach.  124 
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We purified DNA from 10-20 mg of homogenised stomach contents using the Promega 125 

Wizard Genomic DNA Purification Kit, with the following modifications to the Animal 126 

Tissue protocol: after protein precipitation, we transferred the supernatant to a new tube 127 

and centrifuged a second time to minimise protein carryover. The DNA pellet was 128 

washed twice with ethanol. These modifications were performed to improved DNA 129 

purity. We rehydrated precipitated DNA by incubating overnight in molecular biology 130 

grade water at 4°C and stored the DNA at -20°C. DNA quantity, purity, and quality was 131 

ascertained by nanodrop and agarose gel. The DNA samples were ranked according 132 

quantity and purity (based on A260/A280 and secondarily, A230/A280 ratios). The eight 133 

highest quality DNA samples from each location were selected for DNA sequencing. 134 

DNA Sequencing 135 

Sequencing was performed on two different dates (24 January 2017 and 17 March 136 

2017) using a MinION Mk1B device and R9.4 chemistry. For each sequencing run, DNA 137 

from each rat was barcoded using the 1D Native Barcoding Kit (Barcode expansion kit 138 

EXP-NBD103 with sequencing kit SQK-LSK108) following the manufacturer’s 139 

instructions. Twelve samples were pooled and run on each flow cell, for a total of 24 140 

individual rats. The flow cells had 1373 active pores (January) and 1439 active pores 141 

(March). Sequencing was performed using local base calling in MinKnow v1.3.25 142 

(January) or MinKnow v1.5.5 (March), but both runs were re-basecalled after data 143 

collection using Albacore 2.2.7 with the following command: read_fast5_basecaller.py -i 144 

./fast5_input -t 48 -s basecalled_output -f FLO-MIN106 -k SQK-LSK108 --barcoding -r -145 

o fastq,fast5 -q 0 --disable_filtering.  146 

Sequence classification 147 

All sequences were BLASTed (blastn v2.6.0+) against a locally compiled database 148 

consisting of the combined NCBI other_genomic and nt databases (downloaded on 13th 149 

June 2018 from NCBI). Default blastn parameters were used (gapopen 5, gapextend 2), 150 

and only hits with an e-value of 0.01 or less were retained. Due to the predominance of 151 
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short indels present in nanopore sequence data, we used the datasets basecalled in 152 

January and March of 2017 to test whether changing these default penalties affected 153 

the results (gapopen 1, gapextend 1). We found that these adjusted parameters did not 154 

qualitatively change our results. 155 

We assigned sequence reads to specific taxon levels using MEGAN6 (v.6.11.7 June 156 

2018) (Huson et al. 2016). We only used reads with BLAST hits having an e-value of 157 

1x10-20 or lower (corresponding to a bit score of 115 or higher) and an alignment length 158 

of 100 bp or more. To assign reads to taxon levels, we considered all hits having bit 159 

scores within 20% of the bit score of the best hit (MEGAN parameter Top Percent). 160 

Statistical analyses 161 

Multivariate analyses were done using the software PRIMER v7 (Clarke and Gorley 162 

2015). The data used in the multivariate analyses were in the form of a sample- (i.e. 163 

individual rat) by-family matrix of read counts. All bacteria, rodent, and primate families 164 

were removed. The majority of rodent hits were to rat and mouse, resulting from the 165 

rats’ own DNA (see below). The majority of the primate hits were to human sequences, 166 

which probably resulted from sample contamination.  167 

The read counts were converted to proportions per individual rat, by dividing by the total 168 

count for each rat, to account for the fact that the number of reads varied substantially 169 

among rats (Clarke et al. 2006). The proportions were then square-root transformed so 170 

that subsequent analyses were informed by the full range of taxa, rather than just the 171 

most abundant families (Clarke and Green 1988). We then calculated a matrix of Bray-172 

Curtis dissimilarities, which quantified the difference in the gut DNA of each pair of rats 173 

based on the square-root transformed proportions of read counts across families 174 

(Clarke et al. 2006).  175 

We used unconstrained ordination (specifically, non-metric multidimensional scaling 176 

(nMDS)) applied to the dissimilarity matrix to examine the overall patterns in the diet 177 

composition among rats. To assess the degree to which the diet compositions of rats 178 
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were distinguishable among the three locations, we applied canonical analysis of 179 

principal coordinates (CAP) (Anderson and Willis 2003) to the dissimilarity matrix. CAP 180 

is a constrained ordination which aims to find axes through multivariate data that best 181 

separates a priori groups of samples (in this case, the groups are the locations from 182 

which the rats were sampled); it is akin to linear discriminant analysis but CAP can be 183 

used with any resemblance matrix. The out-of-sample classification success was 184 

evaluated using a leave-one-out cross-validation procedure (Anderson and Willis 2003). 185 

We used Similarity Percentage (SIMPER) (Clarke 1993)) to characterise taxa that 186 

distinguished between the locations. This allowed us to identify the families with the 187 

greatest percentage contributions to (1) the Bray-Curtis similarities of diets within each 188 

location and (2) the Bray-Curtis dissimilarities between each pair of locations.  189 

Results 190 

DNA sequencing and assignment of reads to taxa 191 

After DNA isolation and sequencing, we obtained a total of 82,977 reads from the 192 

January sequencing run and 96,150 reads from the March run. Median read lengths 193 

were 606 bp and 527 bp for the January and March datasets, respectively (Fig. 2A). 194 

These lengths are considerably shorter than other nanopore sequencing results from 195 

both our and others work (Jain et al. 2016). This is most likely due to degradation of the 196 

DNA during digestion in the stomach as well as fragmentation during DNA isolation 197 

(Deagle, Eveson, and Jarman 2006) and sequencing library preparation. The median 198 

quality scores per read ranged from 7-12 (0.80 - 0.94 accuracy) for both runs (Fig. S1). 199 

The number of reads per barcoded rat sample varied by 10-fold for January and up to 200 

40-fold in March(Fig. 2B and 2C). This is primarily due to the highly variable quality of 201 

DNA in each sample. However, read length and quality were similar for all samples 202 

(Fig. S1). 203 
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 204 

Fig. 2. Results of nanopore metagenomic sequencing of rat stomach contents. (a) 205 

Read length distribution for January and March nanopore runs.  Read lengths 206 

varied between 300 and 3,000 bp. (b) and (c) Barcode distributions for January and 207 

March runs, respectively. We multiplexed the samples on the flow cells, using 12 208 

barcodes per flow cell. The distribution of read numbers across barcodes was quite 209 

uneven, varying by up to 40-fold in some cases. 20% (January) and 30% (March) of all 210 

reads could not be assigned to a barcode (“None”). The inability to assign these reads 211 

to a barcode is due primarily to their lower quality. 212 

 213 

To quantify diet contents we first BLASTed all sequences against a combined database 214 

of the NCBI nt database (the partially non-redundant nucleotide sequences from all 215 

traditional divisions of GenBank excluding genome survey sequence, EST, high-216 

throughput genome, and whole genome shotgun 217 

(ftp://ftp.ncbi.nlm.nih.gov/blast/db/README)) and the NCBI other_genomic database 218 

(RefSeq chromosome records for non-human organisms 219 

(ftp://ftp.ncbi.nlm.nih.gov/blast/db/README)). We used BLAST as it is generally viewed 220 

as the gold standard method in metagenomic analyses (McIntyre et al. 2017). Of the 221 

133,022 barcoded reads, 30,535 (23%) hit a sequence in the combined nt and 222 

other_genomic database at an e-value cut-off of 0.01. 223 
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As an initial assessment of the quality of these hits, we examined the alignment lengths 224 

and e-values. We found a bimodal distribution of alignment lengths and a highly skewed 225 

distribution of e-values (Fig. 3A). We hypothesized that many of the short alignments 226 

with high e-values were false positives. We thus first filtered this hit set, only retaining 227 

BLAST hits with e-values less than 1e-20. Similar quality filters have been imposed 228 

previously (Srivathsan et al. 2015). A total of 22,331 hits passed this filter. Mean read 229 

quality had substantial effects on the rates of BLAST success, with almost 40% of high 230 

accuracy read having hits in the March dataset, as compared to 1% of low accuracy hits 231 

(Fig. 3B). 232 

To specifically assign each sequence read to a taxon, we analysed the BLAST results in 233 

MEGAN6 (Huson et al. 2016). The algorithm employed in MEGAN6 assigns reads to a 234 

most recent common ancestor (MRCA) taxon level. For example, if a read has BLAST 235 

hits to five species, three of which have bit scores within 20% of the best hit, the read 236 

will be assigned to the genus, family, order, or higher taxon level that is the MRCA of 237 

those best-hit three species (Huson et al. 2007). If a read matches one species far 238 

better than to any other, by definition, the MRCA is that species. 239 

Of the reads from the rat stomachs with BLAST hits, 31% were assigned by MEGAN as 240 

being bacterial. 55% of these were Lactobacillus spp. These results match previous 241 

studies on rat stomach microbiomes, which have found lactobacilli to be the dominant 242 

taxa (Maurice et al. 2015; Brownlee and Moss 1961; Li et al. 2017; Horáková, Zierdt, 243 

and Beaven 1971). Plant-associated Pseudomonas and Lactococcus taxa were also 244 

common, at 7% and 6%, respectively. 245 

  246 
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Fig. 3. BLAST hits of metagenomic reads. (a) Biplot showing the e-value and 247 

alignment length of the top BLAST hit for each read. We observed a bimodal 248 

distribution of alignment lengths and a skewed distribution of e-values. The y-axis is 249 

plotted on a log scale, with zero e-values suppressed by adding a small number (1e-250 

190) to each e-value. The horizontal red dotted line indicates the e-value cut-off we 251 

implemented and the vertical red dotted line indicates the length cut-off (e-value < 1e-20 252 

and alignment length of 100, respectively) to decrease false positive hits. (b) The 253 

fraction of reads with high quality BLAST hits (e-value < 1e-20) increases as a 254 

function of read accuracy. We binned the data according to mean read accuracy (bin 255 

width of 0.02) and calculated the fraction of reads within each bin that had a high quality 256 

BLAST hit for the January and March runs separately (blue and orange points, 257 

respectively). The number of reads in each bin is indicated above or below each point 258 

(in thousands). There is a clear positive correlation between mean accuracy and the 259 

likelihood of a high-quality BLAST hit, reaching almost 40% for very high quality reads 260 

(accuracy greater than 92.5%). 261 

  262 
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MEGAN assigned reads to a wide range of eukaryotic taxa. To conservatively infer 263 

taxon presence, we first reclassified MEGAN species-level assignments to the level of 264 

genus. However, after this, many clear false positive assignments remained (e.g. hippo 265 

and naked mole rat). These matches were generally short and of low identity. To reduce 266 

such false positive taxon inferences, we used information from reads assigned to the 267 

genera Rattus (rat) and Mus (mouse). We inferred that the reads assigned to Rattus 268 

(2,696 reads in total) were true positive genus-level assignments and that the reads 269 

assigned to Mus (2,798 reads in total) were false positive genus-level assignments (and 270 

not true positive Mus-derived reads). Although rats are known to prey on mice 271 

(Bridgman et al. 2013), if this had occurred, we would expect that (1) the ratio of mouse 272 

to rat reads would be higher in the subset of rats that had predated mice; (2) in those 273 

same rats, the percent identity of the reads assigned to Mus would be higher than in 274 

rats that had not predated mice. However, we found that the ratio of mouse to rat reads 275 

was similar for all rats, and there was no evidence of higher percent identities for Mus 276 

reads from rats that had higher ratios. 277 

Notably, the mean percent identity values of the best BLAST hits for these two groups 278 

of reads differed substantially, with Rattus reads having a median identity of 86.4%, and 279 

Mus 81.0% (Fig. 4A). The mean percent identity for Rattus reads corresponds very well 280 

to that expected given the mean quality scores of the reads (assuming the true 281 

sequence of the read is 100% identical to Rattus, 86.4% identity corresponds to a mean 282 

quality score of 8.7). 283 

There was also a clear difference in the alignment lengths: the median ratio of 284 

alignment length to read length was 0.57 for Rattus and 0.52 for Mus (Fig. 4B). 285 

Importantly, the majority of diet items have percent identities that overlap with the 286 

Rattus reads, and alignment length to read length ratios that exceed the Rattus reads, 287 

suggesting that many diet taxa assignments are correct down to the level of genus. 288 

However, to minimise the rates of false positive taxon assignments of diet items, we 289 

implemented cut-offs based on the characteristics of the Mus- and Rattus-assigned 290 

reads. For genus-level assignment, we required at least 82.5% identity and an 291 
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alignment length to read length ratio of at least 0.55. These cut-offs exclude 88% of the 292 

reads falsely assigned to Mus, instead assigning them correctly to one taxon level 293 

higher, the Family Muridae. 294 

Fig. 4. Distributions of percent identity and length for alignments of reads 295 

matching Rattus (rat), Mus (mouse), and diet items. (a) Percent identity for 296 

alignments of rat (Rattus) and diet items is much higher than for mouse (Mus). 297 

Histograms are shown for the percent identity of the alignment of the top BLAST hit with 298 

the read. Mus matches show a clear shift to the left (lower percent identity) as 299 

compared to Rattus and diet items. Although different genera, Mus and Rattus are in 300 

the same family (Muridae). The dotted lines indicate the cut-offs that we implemented 301 

for inferring reads as belonging to a specific genus (above 82.5% identity) or family 302 

(above 77.5% identity). (b)  Ratios of alignment lengths to read lengths of rat 303 

(Rattus) and diet items are higher than for mouse (Mus). This plot is analogous to 304 

that in (a). The dotted line indicates the cut-off that we implemented for inferring reads 305 

as belonging to a specific genus (above 0.55). 306 

 307 
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For family-level assignments, we required 77.5% identity, an alignment length to read 308 

length ratio of at least 0.1, and a total alignment length of at least 150 bp. Using higher 309 

cut-offs for the ratio of alignment length to read length excluded a large number of likely 310 

true positive taxa for which only short mtDNA or rDNA database sequences were 311 

present in the databases. For all other read-to-taxon assignments, we placed the read 312 

at the level of Order, or used the taxon level assigned by MEGAN. Using these cut-offs, 313 

16% of all reads were classified at the Genus level; 71% were classified at the Family-314 

level or below; 89% were classified at the Order-level or below; and 98% were classified 315 

at the Phylum-level or below. 316 

Even though we imposed these relatively stringent filters, we observed that a small 317 

number of likely false positive taxa remained. Most were single reads with short 318 

alignments: Poeciliidae (177 bp); Salmonidae (172 bp); Cyprinodontiformes (140 bp and 319 

177 bp); and Octopodidae (151 bp). The exception to this were three reads from two 320 

rats matching Buthidae (scorpions), which had alignment lengths of 762 bp, 664 bp, and 321 

298 bp. It is unlikely these are true positives, and instead that these rats predated 322 

harvestmen, a closely related sister taxon within Arachnida. Despite the presence of 323 

these false positive taxa, to ensure we could identify the majority of taxa at high 324 

resolution (i.e. family-level), we did not further increase the stringency of our filters. 325 

Identification of stomach contents 326 

Within each rat, a wide variety of plant, animal, and fungal families and orders were 327 

discernible, ranging from two to 25 orders per rat (mean 8.7) (Fig. 5). Plants were the 328 

primary diet item, with the largest fraction of rats consuming four predominant orders: 329 

Poales (grasses), Fabales (legumes), Arecales (palms), and Araucariales (podocarps). 330 

The dominance of plant matter (fruits and seeds) in rat diets has been established 331 

previously (Sweetapple and Nugent 2007; Riofrío-Lazo and Páez-Rosas 2015). Animal 332 

taxa made up a smaller component of each rat’s diet, with Insecta dominating: 333 

Hymenoptera, Coleoptera, Lepidoptera (moths and butterflies), Blattodea 334 

(cockroaches), Diptera (flies), and Phasmatodea (stick insects). In addition 335 
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Stylommatophora (slugs and snails) were present in substantial numbers (Fig. 6A and 336 

6B). Fungi were only a small component, although several families and orders were 337 

present: Sclerotiniaceae (plant pathogens), Saccharomycetaceae (budding yeasts), 338 

Mucorales (pin molds), Russulales (brittlegills and milk-caps), and Chytotheriales (black 339 

yeasts). Finally, for many rats, a substantial proportion of the stomach contents were 340 

parasitic worms (primarily Spirurida (nematodes) and Hymenolepididae (tapeworms)). 341 

Close examination of this data suggested that specific families and orders were 342 

overrepresented in the diets of rats from particular locations. For example, six out of 343 

eight rats from the native estuarine bush habitat (OB) consumed Arecaceae, while only 344 

one in the restored wetland area (LB) did. All three rats that consumed Phaseanidae 345 

were from the native estuarine habitat (OB). All five rats that consumed Solanales were 346 

from the restored wetland area. These patterns suggested that it might be possible to 347 

use diet components alone to pinpoint the habitat from which each rat was sampled. 348 

 349 

Fig. 5. Numbers of taxa in individual rats. Each boxplot indicates the range of 350 

families (left boxes) or orders (right boxes) consumed by each rat in each location (OB: 351 

Okura Bush; LB: Long Bay Park; WP: Waitakere Park). The numbers for individual rats 352 

(eight per location) are plotted in grey. 353 

  354 
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Fig. 6. Proportions of taxa in the diets of individual rats. Reads assigned to taxa at 355 

the family and order level are shown in the top and bottom panels, respectively. Each 356 

row corresponds to a single rat, with the proportions of reads for that rat assigned to 357 

each family or order indicated in shades of blue and yellow. Reads that were not 358 

assigned to a specific family or order are on the right end of the figure. The families and 359 

orders have been sorted so that the most common diet components appear on the left. 360 

Only the 55 most common families are shown. Note that the colour gradations 361 

presented on the scale are not linear.  362 
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nMDS and CAP analysis by location 363 

In order to determine if diet composition of the rats differed consistently between 364 

locations, we first performed an unconstrained analysis using nMDS on taxa assigned 365 

at the family level. Using family rather than order or genus provides a balance between 366 

how precisely we identify the taxon of diet item (genus, family, order), and whether we 367 

assign a taxon at all. While family-level assignments are less precise than genus-level, 368 

only 16% of all reads were classified at the genus level, while 71% were classified at the 369 

family level.   370 

The family-level unconstrained ordination (nMDS; Fig. 7a) showed no obvious grouping 371 

of rats with respect to the locations, indicating that locations did not correspond to the 372 

predominant axes of variation among the diets. However, a constrained ordination 373 

analysis (CAP; Fig. 7b) identified axes of variation that distinguished the diets of rats 374 

from different locations. The CAP axes correctly classified the locations of 19 out of 24 375 

(79%) rats using a leave-one-out procedure. 376 

The families that best characterised the three locations (i.e., had the greatest within-377 

location SIMPER scores) varied among locations. WP had average Bray-Curtis within-378 

location similarity of 13%; mostly attributable to Hymenolepidae (accounting for 51% of 379 

the within-group similarity), Solanaceae (11%), and Fabaceae (11%). The average 380 

similarity for OB was 21%, with the greatest contributing taxa being Arecaceae (33%), 381 

Poaceae (23%), Fabaceae (9%), and Phasianidae (8%). The average similarity for WP 382 

was 24%, with the greatest contributing taxa being Poaceae (72%) (Table S4). The 383 

families with the largest correlations with the first two principal coordinates and thus 384 

responsible for the separation between groups) were Arecaceae, Podocarpaceae, 385 

Phasianidae, and Pinaceae (Fig. 7c).  386 
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Fig. 7. Unconstrained nMDS (a) and constrained CAP (b) ordinations of the diets 387 

of rats from three locations. Both ordinations were based on Bray-Curtis 388 

dissimilarities of square root transformed proportions of reads attributed to each 389 

family.  The locations were a native estuarine bush (OB, orange); a restored marine 390 

wetland (LB, purple); and a native forest (WP, light blue). The CAP ordination is 391 

repeated in panel (c) with the rats omitted to show the Pearson correlations 392 

between families and the two cap axes. The eight families with the strongest 393 

correlations are shown, indicating the taxa most strongly associated with each location. 394 

 395 

Discussion 396 

Accuracy and sensitivity 397 

Here we have shown that using a simple long-read metagenomic DNA sequencing 398 

approach allows rapid classification of rat diet components. We expect that this 399 

technique for dietary analysis could be applied to a variety of animals and sample types, 400 

including samples that require less invasive collection (e.g. fecal matter). The sensitivity 401 

of this approach will likely improve as the accuracy and yield of Oxford Nanopore 402 

sequencing increases, and as the diversity of taxa in genomic sequence databases 403 

increases. Several aspects of the data support this. 404 
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First, we note that we did not find BLAST hits for the majority of reads. This is partially 405 

due the relatively low accuracy of the Oxford Nanopore sequencing platform at the time 406 

we preformed this analysis (approximately 87%). However, the fraction of reads yielding 407 

hits in the database increased substantially for higher quality reads, approaching 40% 408 

for very high-quality reads (Fig. 3b). Other factors also likely reduced the numbers of 409 

BLAST hits, such as the paucity of genome sequence data for many taxa. This is 410 

convincingly illustrated by comparing across taxa the fraction of genomic hits to 411 

mitochondrial or rDNA sequence hits: although genome data exists for only a few taxa, 412 

mtDNA and rDNA sequence data are present in the database for the vast majority of 413 

animal and plant genera. 414 

For animals with sequenced genomes in the database, we found that only a minority of 415 

reads mapped to mitochondrial or rDNA sequences (e.g. 32% of Rattus hits and 22% of 416 

Anoplophora hits). For plants with sequenced genomes, the fraction of mtDNA or rDNA-417 

matching reads was even lower: between 4% (Aegilops) and 6% (Triticum and 418 

Solanum). For genera with little or no genomic sequence, the vast majority of matches 419 

were solely to mtDNA, rDNA, or microsatellite loci: 90% of Phoenix (date palm) hits; all 420 

Helix (snail) and Rhaphidophora (cave weta) hits. All Artioposthia (New Zealand 421 

flatworm) hits were to rDNA. These results indicate that for genera with no genomic 422 

sequence data, we have underestimated the actual number of sequences from that 423 

taxon by approximately three- to twenty-fold (for animals and plants, respectively). 424 

As the species sampling of genomic databases increases (Lewin et al. 2018), the taxon-425 

level precision of this method will improve. Given the current rate of genomic 426 

sequencing, with careful sampling, the vast majority of multicellular plant and animal 427 

families (and even genera) will likely have at least one type species with a sequenced 428 

genome within the next decade. Continued advancement in sequence database search 429 

algorithms as compared to current methods (Wood and Salzberg 2014; Kim et al. 2016; 430 

Nasko et al. 2018) should considerably decrease the computational workload necessary 431 

to find matching sequences. 432 
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To decrease biases in genomic databases, some previous studies have performed 433 

metagenomic classification using mitogenome data alone (Srivathsan et al. 2016; Paula 434 

et al. 2016). Using such methods, they found between 0.004% and 0.008% of all 435 

metagenomic reads matched mitogenomes from diet taxa. Limiting database searches 436 

to mitogenomes partially ameliorates biases in terms of taxon field in terms of taxon 437 

representation (i.e. most taxa will have similar levels of genomic representation in the 438 

databases). However, it considerably decreases diet resolution given that for some 439 

taxa, only a small percentage of sequence reads derive from the mitochondria as 440 

opposed to the nuclear genome. 441 

It is important to note that our interest in diet also includes resolving relative biomass 442 

and relative numbers of each prey species, neither of which necessarily correlate well 443 

with the amount of DNA (either mitochondrial or nuclear) purified from a sample. Even a 444 

simple correction for the fraction of reads matching mitochondrial versus nuclear 445 

genomes is difficult, as different plant and animal tissues differ considerably in the 446 

relative amounts of mitochondrial versus nuclear DNA (e.g. leaf versus fruit). 447 

Methodological advantages 448 

We found that rats consumed many soft-bodied species (e.g. mushrooms, flat worms, 449 

slugs, and lepidopterans) that would be difficult to identify using visual inspection of 450 

stomach contents.  Capturing such a wide variety of taxa would be difficult to quantify 451 

using metabarcoding methods, as there are no universal 18S or COI universal primers 452 

capable of amplifying sequences in all these taxa. While it might be possible to use 453 

primer sets targeted at different phyla or orders, quantitatively comparing diet 454 

components across these using sequences amplified with different primer sets is 455 

extremely difficult due to differences in primer binding and PCR efficiency. 456 

The nanopore MinION-based sequencing method used in this simple metagenomic 457 

approach has several advantages. Compared to other high throughput sequencing 458 

technologies (e.g. Illumina, IonTorrent, or PacBio), there is no initial capital investment 459 
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required to use the platform. On a per-sample basis, data generation is inexpensive 460 

(approximately $150 USD per barcoded sample, and approximately half this price if 461 

reagents are purchased in bulk). Library preparation and sequencing can be extremely 462 

rapid, going from DNA sample to sequence in less than two hours (Zaaijer et al. 2017). 463 

Furthermore, the sequencing platform itself is highly portable. As the cost of nanopore-464 

based sequencing continues to decrease (both per sample and per base pair), it should 465 

become possible to use molecular methods for routine ecological monitoring of species 466 

presence or absence in field settings, without significant investment in infrastructure 467 

(Kamenova et al. 2017). Finally, we suggest that our approach of standardising the read 468 

counts by sample, followed by an optional transformation such as square root and 469 

dissimilarity-based multivariate ordination, offers a useful analytical pipeline for 470 

analysing metagenomic diet-composition data. 471 

Conclusion 472 

Here we have shown that a rapid long-read metagenomic approach is able to accurately 473 

characterise diet taxa at the family-level and distinguish between the diets of rats 474 

according to the locations from which they were sourced, with almost 80% out-of-475 

sample classification success. This approach also identifies the taxa responsible for 476 

such patterns. This information may be used to guide conservation efforts toward 477 

specific areas and habitats in which native species are most at risk from this highly 478 

destructive introduced predator. 479 

  480 
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Supplemental Tables 497 

Table S1. Read numbers and total base pairs for each barcode in the January 498 

sequencing run. 499 

Rat Total reads Total Mbp Mean length 

OB2 19,907 14.62 734 

WP11 10,164 9.63 947 

WP5 8237 6.78 823 

LB7 7548 7.04 933 

OB13 3644 3.63 995 

WP9 2954 2.4 814 

OB5 2850 2.06 721 

WP8 2801 2.32 827 

LB6 2531 1.6 632 

OB7 2473 1.87 756 

LB5 1641 1.16 705 

LB3 1554 0.99 636 

None 16673 13.01 781 

Total 82,977 67.1  
  500 
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Table S2. Read numbers and total base pairs for each barcode in the March 501 

sequencing run. 502 

Barcode Total 
reads 

Total Mbp Mean 
length LB1 17,820 9.21 517 

LB8 16,923 13.13 776 

WP2 10,511 7.00 666 

LB4 8684 4.92 567 

OB11 5689 3.40 598 

WP10 1563 0.99 633 

OB12 1479 0.89 604 

WP12 1309 0.78 596 

LB2 1127 0.76 676 

WP3 637 0.73 1141 

OB14 541 0.37 683 

OB10 435 0.24 555 

None 29,432 21.33 725 

Total 96,150 63.75  
  503 
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Table S3. SIMPER analysis of family contributions to group similarities. Abbreviations: 504 

Av.Abund: average abundance; Av.Si: average similarity; Sim/SD: similarity over 505 

standard deviation; Percent.contr: percent contribution. 506 

 507 

Family Av.Abun
d 

Av.Si
m 

Sim/SD Percent.cont
r 

Group 

Hymenolepidida
e 

3.37 6.87 0.34 51.2 LB 

Solanaceae 1.57 1.48 0.34 11.1 LB 

Fabaceae 1.74 1.41 0.44 10.5 LB 

Arecaceae 2.86 7.11 1 33.4 OB 

Poaceae 2.87 4.82 0.55 22.7 OB 

Fabaceae 1.17 1.98 0.51 9.3 OB 

Phasianidae 1.79 1.67 0.34 7.9 OB 

Poaceae 5.08 17.61 0.62 72.1 WP 
  508 
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Table S4. SIMPER analysis of family contributions to group dissimilarities. The families 509 

are sorted by percent contribution to group dissimilarity. Abbreviations: Abund.Group1 510 

and Abund.Group2: abundance of each family in groups 1 and 2 (see Group 1 and 2 511 

columns). Av.Diss: average dissimilarity; Diss/SD: Dissimilarity over standard deviation; 512 

Percent.contr: percent contribution. 513 

Family Abund.Group1 Abund.Group2 Av.Diss Diss/SD Percent.contr Group1 Group2 
Poaceae 1.95 5.08 15.15 1.04 16.74 LB WP 
Poaceae 2.87 5.08 11.29 1.26 13.78 OB WP 
Hymenolepididae 3.37 0.48 10.8 0.73 11.93 LB WP 
Hymenolepididae 3.37 0.29 9.37 0.79 10.32 LB OB 
Poaceae 1.95 2.87 8.37 1.1 9.22 LB OB 
Arecaceae 0.05 2.86 6.99 1.41 7.7 LB OB 
Arecaceae 2.86 1.31 5.92 1.29 7.23 OB WP 
Fabaceae 1.74 1.05 6.14 0.67 6.78 LB WP 
Podocarpaceae 0 2.38 5.34 0.83 5.9 LB WP 
Podocarpaceae 0.71 2.38 4.82 0.99 5.88 OB WP 
Fabaceae 1.74 1.17 4.87 0.81 5.37 LB OB 
Fabaceae 1.17 1.05 4.31 0.84 5.26 OB WP 
Phasianidae 1.79 0 4.03 0.7 4.92 OB WP 
Phasianidae 0 1.79 4.28 0.72 4.71 LB OB 
Physalopteridae 1.63 0.18 3.79 0.59 4.63 OB WP 
Physalopteridae 0.46 1.63 4.15 0.65 4.57 LB OB 
Solanaceae 1.57 0 3.95 0.65 4.37 LB WP 
Solanaceae 1.57 0 3.56 0.67 3.92 LB OB 
Helicidae 0.87 0.47 3.46 0.52 3.82 LB WP 
Oleaceae 1.06 0.25 3.09 0.44 3.77 OB WP 
Arecaceae 0.05 1.31 3.4 0.65 3.75 LB WP 
Piperaceae 1.42 0 3.36 0.65 3.71 LB WP 
Helicidae 0.87 0.82 3.33 0.58 3.66 LB OB 
Cerambycidae 1.41 0.18 2.99 0.77 3.65 OB WP 
Cerambycidae 0 1.41 3.07 0.74 3.38 LB OB 
Oleaceae 0 1.06 3.06 0.41 3.37 LB OB 
Piperaceae 1.42 0 3.04 0.67 3.35 LB OB 
Onchocercidae 0.39 1.04 3.02 0.77 3.33 LB OB 
Geoplanidae 0.8 0.48 2.64 0.49 3.22 OB WP 
Thelaziidae 0.9 0.64 2.85 0.77 3.14 LB OB 
Helicidae 0.82 0.47 2.54 0.61 3.1 OB WP 
Onchocercidae 1.04 0 2.49 0.66 3.04 OB WP 
Formicidae 0.44 1.17 2.39 1.04 2.92 OB WP 
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Sclerotiniaceae 0 1.28 2.63 0.57 2.91 LB WP 
Sclerotiniaceae 0 1.28 2.3 0.57 2.81 OB WP 
Formicidae 0 1.17 2.46 0.94 2.72 LB WP 
Rosaceae 0.92 0.3 2.13 0.58 2.61 OB WP 
Ectobiidae 0.63 0.34 2.24 0.5 2.48 LB WP 
Thelaziidae 0.9 0 2.13 0.56 2.36 LB WP 
Geoplanidae 0 0.8 2.04 0.37 2.25 LB OB 
Rosaceae 0 0.92 1.99 0.5 2.19 LB OB 
Numididae 0.78 0 1.68 0.56 2.05 OB WP 
Myrtaceae 0.66 0 1.8 0.38 1.99 LB WP 
Thelaziidae 0.64 0 1.53 0.51 1.86 OB WP 
Ranunculaceae 0.66 0 1.36 0.37 1.5 LB WP 

 514 

Datafile S1. Table of read BLAST hits and assigned MEGAN taxa with reads 515 

reclassified at the family or order level by filtering on read length to alignment length 516 

ratio and percent identity. 517 

Datafile S2. Table of read BLAST hits and assigned MEGAN taxa with no filters 518 

applied. 519 

 520 

Supplemental Figures 521 

Fig S1. Biplots of read lengths and qualities for each barcode in the January and 522 

March runs. 523 

  524 
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Fig S2. Correlation of read accuracy with alignment characteristics. (a) Read 525 

accuracy is positively correlated with the percent identity of the top BLAST hit. Points 526 

show a subsample of reads; orange line indicates a running median; red dotted line is 527 

the y=x line, which is expected if accuracy corresponds exactly to percent identity. (b) 528 

Read accuracy and alignment length show no relationship. (c) Read accuracy and the 529 

ratio of read length to alignment length are positively correlated. 530 

 531 
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