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Abstract 14 

Using metagenomics to determine animal diet offers a new and promising alternative to 15 

current methods. Here we show that rapid and inexpensive diet quantification is 16 

possible through metagenomic sequencing with the portable Oxford Nanopore MinION. 17 

Using a simple amplification-free approach, we profiled the stomach contents from wild-18 

caught rats. We conservatively identified diet items from over 50 taxonomic orders, 19 

ranging across nine phyla that include plants, vertebrates, invertebrates, and fungi. This 20 

highlights the wide range of taxa that can be identified using this simple approach. We 21 

calibrate the accuracy of this method by comparing the characteristics of reads 22 

matching the ground-truth host genome (rat) to those matching diet items. We also 23 

suggest a means to correct for biases in metagenomic approaches that arise due to the 24 

paucity of genomic sequence in databases as compared to mitochondrial DNA or 25 

rDNA. Finally, we implement a constrained ordination analysis to show that it is possible 26 

to identify the sampling location of an individual rat within tens of kilometres based on 27 

diet content alone. This work establishes long-read metagenomic methods as a 28 

straightforward and robust approach for diet quantification. It considerably simplifies the 29 

workflow and avoids many inherent biases as compared to metabarcoding. Continued 30 

increases in the accuracy and throughput of Nanopore sequencing, along with improved 31 

genomic databases, means that this approach will continue to improve in accuracy.  32 
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Introduction 33 

Bias in current methods 34 

Accurate information about what organisms are eating informs many aspects of our 35 

understanding of ecosystems and food web dynamics, however unbiased and sensitive 36 

assessment of diet content is extremely difficult to achieve due to the limited accuracy 37 

of available methods. A variety of methods have been applied to quantify diet 38 

components in animals, including visual inspection of gut contents (Daniel, 1973; Pierce 39 

& Boyle, 1991) stable isotope analysis (Carreon-Martinez & Heath, 2010; Major, Jones, 40 

Charette, & Diamond, 2007), and time-lapse video (Brown, Moller, Innes, & Jansen, 41 

2008; Dunlap & Pawlik, 1996). However, these methods can be biased and imprecise. 42 

Identification of prey items using visual examination of stomach contents is strongly 43 

affected by which items are most easily degraded (for example, soft-bodied species). 44 

Stable isotope analysis yields only broad information on diet such as relative 45 

consumption of protein and plant matter, as well as information on whether prey items 46 

are terrestrial or marine in origin (Basha, Chamberlain, Zaki, Kandeel, & Fares, 2016; 47 

Hobson, 1987). Time-lapse video (Dunlap & Pawlik, 1996; Volpov et al., 2015) requires 48 

identification of the specific prey item, often difficult or impossible for small prey items 49 

or in low-light conditions. To circumvent these issues, DNA-based methods (King, 50 

Read, Traugott, & Symondson, 2008; Soininen et al., 2009) are becoming more popular. 51 

Perhaps the most widely applied DNA-based method is metabarcoding. This approach 52 

relies on PCR amplification and sequencing of conserved regions from nuclear, 53 
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mitochondrial, or plastid genomes (King et al., 2008). With adequate primer selection, 54 

this method can detect a wide range of species, and does not require specific expertise 55 

necessary for other methods (for example identifying degraded prey items). 56 

However, DNA metabarcoding is not free from bias. PCR primers must be specifically 57 

tailored to particular sets of taxa or species (Jarman, Gales, Tierney, Gill, & Elliott, 58 

2002). Although more “universal” PCR primer pairs have been developed (for example 59 

targeting all bilaterians or even all eukaryotes; (Jarman, Deagle, & Gales, 2004), all 60 

primer sets exhibit bias towards certain taxa. Tedersoo et al. (2015) (Tedersoo et al., 61 

2015) found five-fold differences in fungal operational taxonomic units (OTU) estimates 62 

when using different sets of fungal-specific PCR primer pairs. Leray et al. (2013) (Leray 63 

et al., 2013) found that published universal primer pairs (i.e. those that do not target 64 

specific taxa) were capable of amplifying only between 57% and 91% of tested 65 

metazoan species, with as few as 33% of species in some phyla being amplified at all 66 

(e.g. cnidarians). Deagle et al. (2014) argued that in general, COI regions are simply not 67 

sufficiently conserved, and thus should not be used for metabarcoding studies at all 68 

(Deagle, Jarman, Coissac, Pompanon, & Taberlet, 2014). Finally, Pawluczyk et al. (2015) 69 

showed that different loci from the same species exhibit up to 2,000-fold differences in 70 

qPCR-estimated DNA quantity within samples (Pawluczyk et al., 2015). It has even 71 

been shown that the polymerase itself can bias diversity metrics when using 72 

metabarcoding methods (Pereira, Peplies, Brettar, & Hoefle, 2018). For these reasons, a 73 

less biased method is desirable. 74 
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Metagenomic sequencing for diet 75 

Metagenomic sequencing, in which all of the DNA in the sample is directly sequenced, 76 

offers an attractive alternative to metabarcoding for several reasons. Metagenomic 77 

approaches have most frequently been used to yield insights into microbial diversity 78 

and function (Anantharaman et al., 2016; Fierer et al., 2012; Hover et al., 2018; Xu & 79 

Knight, 2015). Recent advances in computational methods (Breitwieser & Salzberg, 80 

2018; Huson, Mitra, Ruscheweyh, Weber, & Schuster, 2011; Kim, Song, Breitwieser, & 81 

Salzberg, 2016; Wood & Salzberg, 2014) now allow routine rapid quantification of 82 

microbial taxa in metagenomic samples. However, metagenomic approaches have 83 

rarely been used to quantify eukaryotic taxa. An important application of such a method 84 

would be for diet analysis, as many diet items are difficult to identify based on macro- 85 

or microscopic analysis. 86 

Here, we quantify rat diet composition using a novel metagenomic approach based on 87 

long-read nanopore sequencing (Oxford Nanopore Technologies). This study shows for 88 

the first time that low-accuracy long-read sequences can be used to accurately classify 89 

eukaryotic metagenomic data. As a test case, we quantify rat diet using stomach 90 

contents. Using such samples is opportune for both methodological and ecological 91 

reasons. 92 

First, rats are extremely omnivorous. As such, they serve as an excellent means to 93 

quantify the breadth of taxa that can be detected using a metagenomic long read 94 

approach. Second, the use of stomach samples means that a significant number of 95 
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reads will be host reads. This allows us to assess the characteristics of true positive 96 

sequence reads (rat-derived reads that match rat database sequences), as well as false 97 

negative and false positive reads (rat-derived reads that match non-rat database 98 

sequences). We can then determine whether reads matching diet items have similar 99 

characteristics to known true positive (host) reads. 100 

Finally, understanding rat diets has important ecological implications. It is well-101 

established that the relatively recent introduction of mammalian predators to New 102 

Zealand and other islands has had significant negative effects on many of the native 103 

animal populations. This ranges from insects (Gibbs, 1998), to reptiles (Towns, 104 

Daugherty, & Cree, 2001), to molluscs (Stringer, Bassett, McLean, McCartney, & 105 

Parrish, 2003), to birds (Diamond & Veitch, 1981; Dowding & Murphy, 2001), and can 106 

have detrimental effects for entire terrestrial and aquatic ecosystems (Graham et al., 107 

2018). Currently, an ambitious plan is being put into place that aims for the eradication 108 

of all mammalian predators from New Zealand (including possums, rats, stoats, and 109 

hedgehogs), by 2050 (http://www.doc.govt.nz/predator-free-2050; (Russell, Innes, 110 

Brown, & Byrom, 2015). A useful step toward this goal would be to prioritise the 111 

management of predators, and establish in which locations native species experience 112 

the highest levels of predation. To do so requires establishing the diet content of local 113 

mammalian predators. 114 
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Materials and Methods 115 

Study Areas 116 

We trapped rats from three locations near Auckland, New Zealand. Each location 117 

comprised a different type of habitat: undisturbed inland native forest (Waitakere 118 

Regional Parklands, WP); native bush surrounding an estuary (Okura Bush Walkway, 119 

OB); and restored coastal wetland (Long Bay Regional Park, LB) (Fig. 1).  Traps in OB 120 

and LB were baited with peanut butter, apple, and cinnamon wax pellets; or bacon fat 121 

and flax pellets. Traps in WP were baited with chicken eggs, rabbit meat, or cinnamon 122 

scented poison pellets. From 16 November to 16 December 2016, traps were surveyed 123 

by established conservation groups at each site every 48 hours. A total of 36 rats were 124 

collected from these locations. The majority of rats collected (34/36) were determined to 125 

be male Rattus rattus by visual inspection. These 34 rats were selected for further 126 

analysis. 127 

  128 

DNA Isolation 129 
Within 48 hours of trapping, rats were stored at either -20°C or -80°C until dissection. 130 

We removed intact stomachs from each animal and removed the contents. After snap 131 

freezing in liquid nitrogen, we homogenised the stomach contents using a sterile mini 132 

blender to ensure sampling was representative of the entire stomach.  133 

We purified DNA from 10-20 mg of homogenised stomach contents using the Promega 134 

Wizard Genomic DNA Purification Kit, with the following modifications to the Animal 135 
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Tissue protocol: after protein precipitation, we transferred the supernatant to a new tube 136 

and centrifuged a second time to minimise protein carryover. The DNA pellet was 137 

washed twice with ethanol. These modifications were performed to improved DNA 138 

purity. We rehydrated precipitated DNA by incubating overnight in molecular biology 139 

grade water at 4°C, and stored the DNA at -20°C. DNA quantity, purity, and quality was 140 

ascertained by nanodrop and agarose gel electrophoresis. The DNA samples were 141 

ranked according quantity and purity (based on A260/A280 and secondarily, A230/A280 142 

ratios). The eight highest quality DNA samples from each of the three locations were 143 

selected for DNA sequencing. 144 

DNA Sequencing 145 

Sequencing was performed on two different dates (24 January 2017 and 17 March 146 

2017) using a MinION Mk1B device and R9.4 chemistry. For each sequencing run, DNA 147 

from each rat was barcoded using the 1D Native Barcoding Kit (Barcode expansion kit 148 

EXP-NBD103 with sequencing kit SQK-LSK108) following the manufacturer’s 149 

instructions. Twelve samples were pooled and run on each flow cell, for a total of 24 150 

individual rats. The flow cells had 1373 active pores (January) and 1439 active pores 151 

(March). Sequencing was performed using local base calling in MinKnow v1.3.25 152 

(January) or MinKnow v1.5.5 (March), but both runs were re-basecalled after data 153 

collection using Albacore 2.2.7 with demultiplexing performed in Albacore and filtering 154 

disabled (options --barcoding  --disable_filtering). 155 
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Sequence classification 156 

All sequences were BLASTed (blastn v2.6.0+) against a locally compiled database 157 

consisting of the combined NCBI other_genomic and nt databases (downloaded on 13th 158 

June 2018 from NCBI). Default blastn parameters were used (gapopen 5, gapextend 2), 159 

and only hits with an e-value of 1e-2 or less were saved. Due to the predominance of 160 

short indels present in nanopore sequence data, we used an initial set of basecalled 161 

data to test whether changing these default penalties affected the results (gapopen 1, 162 

gapextend 1). We found that these adjusted parameters did not qualitatively change our 163 

results. 164 

We assigned sequence reads to specific taxon levels using MEGAN6 (v.6.11.7 June 165 

2018) (Huson et al., 2016). We only used reads with BLAST hits having an e-value of 166 

1x10-20 or lower (corresponding to a bit score of 115 or higher) and an alignment length 167 

of 100 base pairs or more. To assign reads to taxon levels, we considered all hits 168 

having bit scores within 20% of the bit score of the best hit (MEGAN parameter Top 169 

Percent). 170 

Multivariate analyses 171 

Multivariate analyses were done using the software PRIMER v7 (K. R. Clarke & Gorley, 172 

2015). The data used in the multivariate analyses were in the form of a sample- (i.e. 173 

individual rat) by-family matrix of read counts. All bacteria, rodent, and primate families 174 

were removed. The majority of rodent hits were to rat and mouse, resulting from the 175 
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rats’ own DNA (see below). The majority of the primate hits were to human sequences, 176 

which likely resulted from sample contamination.  177 

The read counts were converted to proportions per individual rat, by dividing by the 178 

total count for each rat, to account for the fact that the number of reads varied 179 

substantially among rats (K. Robert Clarke, Robert Clarke, Somerfield, & Gee Chapman, 180 

2006). The proportions were then square-root transformed so that subsequent analyses 181 

were informed by the full range of taxa, rather than just the most abundant families (K. 182 

R. Clarke & Green, 1988). We then calculated a matrix of Bray-Curtis dissimilarities, 183 

which quantified the difference in the gut DNA of each pair of rats based on the square-184 

root transformed proportions of read counts across families (K. Robert Clarke et al., 185 

2006).  186 

We used unconstrained ordination--specifically, non-metric multidimensional scaling 187 

(nMDS) applied to the dissimilarity matrix--to examine the overall patterns in the diet 188 

composition among rats. To assess the degree to which the diet compositions of rats 189 

were distinguishable among the three locations, we applied canonical analysis of 190 

principal coordinates (CAP) (Anderson & Willis, 2003) to the dissimilarity matrix. CAP is 191 

a constrained ordination which aims to find axes through multivariate data that best 192 

separates a priori groups of samples (in this case, the groups are the locations from 193 

which the rats were sampled); CAP is akin to linear discriminant analysis but it can be 194 

used with any resemblance matrix. The out-of-sample classification success was 195 

evaluated using a leave-one-out cross-validation procedure (Anderson & Willis, 2003). 196 
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We used Similarity Percentage (SIMPER; (K. R. Clarke, 1993)) to characterise and 197 

distinguish between the locations. This allowed us to identify the families with the 198 

greatest percentage contributions to (1) the Bray-Curtis similarities of diets within each 199 

location (Table S3) and (2) the Bray-Curtis dissimilarities between each pair of locations 200 

(Table S4).  201 

Results 202 

DNA sequencing and assignment of reads to taxa 203 

After DNA isolation and sequencing, we obtained a total of 82,977 reads from the 204 

January run and 96,150 reads from the March run. Median read lengths were 606 bp 205 

and 527 bp for the January and March datasets, respectively (Fig. 2A).  These lengths 206 

are considerably shorter than other nanopore sequencing results from both our and 207 

others work (Jain, Olsen, Paten, & Akeson, 2016). This is most likely due to degradation 208 

of the DNA during digestion in the stomach as well as fragmentation during DNA 209 

isolation (Deagle, Eveson, & Jarman, 2006) and sequencing library preparation. The 210 

median phred quality scores per read ranged from 7-12 (0.80 - 0.94 accuracy) for both 211 

runs (Fig. S1). The number of reads per barcoded rat sample varied by 10-fold for 212 

January and up to 40-fold in March (Fig. 2B and 2C). This is due mostly to the highly 213 

variable quality of DNA in each sample. However, read length and quality were similar 214 

for all samples (Fig. S1). 215 

To quantify diet contents we first BLASTed all sequences against a combined database 216 

of the NCBI nt database (the partially non-redundant nucleotide sequences from all 217 
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traditional divisions of GenBank excluding genome survey sequence, EST, high-218 

throughput genome, and whole genome shotgun 219 

(ftp://ftp.ncbi.nlm.nih.gov/blast/db/README)) and the NCBI other_genomic database 220 

(RefSeq chromosome records for non-human organisms 221 

(ftp://ftp.ncbi.nlm.nih.gov/blast/db/README)).  We used BLAST as it is generally viewed 222 

as the gold standard method in metagenomic analyses (McIntyre et al., 2017). Of the 223 

133,022 barcoded reads, 30,535 (23%) hit a sequence in the combined nt and 224 

other_genomic database at an e-value cutoff of 1e-2. 225 

As an initial assessment of the quality of these hits, we examined the alignment lengths 226 

and e-values. We found a bimodal distribution of alignment lengths and a highly skewed 227 

distribution of e-values (Fig. 3A). We hypothesized that many of the short alignments 228 

with high e-values were false positives. We thus first filtered this hit set, only retaining 229 

BLAST hits with e-values less than 1e-20 and alignments greater than 100 bp. Similar 230 

quality filters have been imposed previously (Srivathsan, Sha, Vogler, & Meier, 2015). A 231 

total of 22,154 hits passed this filter (Datafile S1). Mean read quality had substantial 232 

effects on the likelihood of a read yielding a BLAST hit, with almost 40% of high 233 

accuracy read having hits in the March dataset, as compared to 1% of low accuracy hits 234 

(Fig. 3B). 235 

To specifically assign each sequence read to a taxon, we analysed the BLAST results in 236 

MEGAN6 (Huson et al., 2016). The algorithm employed in MEGAN6 assigns reads to a 237 

most recent common ancestor (MRCA) taxon level. For example, if a read has BLAST 238 

hits to five species, three of which have bit scores within 20% of the best hit, the read 239 
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will be assigned to the genus, family, order, or higher taxon level that is the MRCA of 240 

those best-hit three species (Huson, Auch, Qi, & Schuster, 2007). If a read matches one 241 

species far better than to any other, by definition, the MRCA is that species. 242 

5,334 reads (24%) were not assigned to any taxon by Megan. Of the remainder, 31% 243 

were assigned by MEGAN as being bacterial. 55% of these were Lactobacillus spp. 244 

These results match previous studies on rat stomach microbiomes, which have found 245 

lactobacilli to be the dominant taxa (Brownlee & Moss, 1961; Horáková, Zierdt, & 246 

Beaven, 1971; Li et al., 2017; Maurice et al., 2015). Plant-associated Pseudomonas and 247 

Lactococcus taxa were also common, at 7% and 6%, respectively. 248 

MEGAN assigned reads to a wide range of eukaryotic taxa. To conservatively infer 249 

taxon presence, we first reclassified MEGAN species-level assignments to the level of 250 

genus. However, after this, many clear false positive assignments remained (e.g. hippo 251 

and naked mole rat). These matches were generally short and of low identity. To reduce 252 

such false positive taxon inferences, we used information from reads assigned to the 253 

genera Rattus (rat) and Mus (mouse). We inferred that the reads assigned to Rattus 254 

(2,696 reads in total) were true positive genus-level assignments and that the reads 255 

assigned to Mus (2,798 reads in total) were false positive genus-level assignments (and 256 

not true positive Mus-derived reads). Although rats are known to prey on mice 257 

(Bridgman, Innes, Gillies, Fitzgerald, & King, 2013), if this had occurred, we would 258 

expect that (1) the ratio of mouse to rat reads would be higher in the subset of rats that 259 

had predated mice; (2) in those same rats, the percent identity of the reads assigned to 260 

Mus would be higher than in rats that had not predated mice. However, we found that 261 
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the ratio of mouse to rat reads was similar for all rats. In addition, there was no 262 

evidence of higher percent identities for Mus reads from rats that had higher ratios. 263 

Notably, the mean percent identity values of the best BLAST hits for Rattus and Mus 264 

reads differed substantially, with Rattus reads having a median identity of 86.4%, and 265 

Mus 81.0% (Fig. 4A). The mean percent identity for Rattus reads corresponds very well 266 

to that expected given the mean quality scores of the reads (assuming the true 267 

sequence of the read is 100% identical to Rattus, 86.4% identity corresponds to a 268 

mean quality score of 8.7; Fig. S2A-C). There was also a clear difference in the 269 

alignment lengths: the median ratio of alignment length to read length was 0.57 for 270 

Rattus and 0.52 for Mus (Fig. 4B). We note that read identity and the ratio of alignment 271 

length to read length are positively correlated (Fig. S2G-I). There is little correlation 272 

between read identity and alignment length alone (Fig. S2D-F). 273 

Importantly, the majority of diet items have percent identities that overlap with the 274 

Rattus reads, and alignment length to read length ratios that often exceed the Rattus 275 

reads. This suggests that many diet taxa assignments are correct down to the level of 276 

genus (as the Rattus-assigned reads are correct to the level of genus). However, to 277 

further decrease false positive taxon assignments of diet items, we implemented cut-278 

offs based on the characteristics of the Mus- and Rattus-assigned reads. For genus-279 

level assignment, we required at least 82.5% identity and an alignment length to read 280 

length ratio of at least 0.55. These cutoffs exclude 88% of the reads falsely assigned to 281 

Mus, instead assigning them correctly to one taxon level higher, the Family Muridae. 282 
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For family-level assignments, we required 77.5% identity, an alignment length to read 283 

length ratio of at least 0.1, and a total alignment length of at least 150 bp. Using higher 284 

cutoffs for the ratio of alignment length to read length excluded a large number of likely 285 

true positive taxa for which only short mtDNA or rDNA database sequences were 286 

present in the databases. For all other read-to-taxon assignments, we placed the read 287 

at the level of Order, or used the taxon level assigned by MEGAN. Using these cutoffs, 288 

16% of all reads were classified at the Genus level; 71% were classified at the Family-289 

level or below; 89% were classified at the Order-level or below; and 98% were classified 290 

at the Phylum-level or below. 291 

After filtering out bacterial, host, and contaminant reads (matching primate DNA), 4,719 292 

reads remained (28% of all classified reads) (Datafile S2). Within these, we observed 293 

that a small number of likely false positive taxa remained. Most were single reads with 294 

short alignments: Poeciliidae (177 bp); Salmonidae (172 bp); Cyprinodontiformes (140 295 

bp and 177 bp); and Octopodidae (151 bp). The exception to this were three reads from 296 

two rats matching Buthidae (scorpions), which had alignment lengths of 762 bp, 664 bp, 297 

and 298 bp. It is unlikely these are true positives, and instead we hypothesise that these 298 

rats predated harvestmen (Opiliones), a closely related sister taxon within Arachnida but 299 

lacking significant amounts of genomic data. Despite the presence of these false 300 

positive taxa, we did not further increase the stringency of our filters, allowing us to 301 

resolve most taxa at the level of family, with a small rate of false positive inference 302 

(here, eight clear instances out of almost 5,000 reads). 303 
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Identification of diet  304 

Within each rat, a wide variety of plant, animal, and fungal orders were discernible, 305 

ranging from two to 25 orders per rat (mean 8.7; Fig. 5). In total, we identified taxa from 306 

68 different Families, 55 different Orders, 15 different Classes, and eight different Phyla 307 

(Fig 6). Plants were the primary diet item, with the largest fraction of rats consuming four 308 

predominant orders: Poales (grasses), Fabales (legumes), Arecales (palms), and 309 

Araucariales (podocarps). The dominance of plant matter (fruits and seeds) in rat diets 310 

has been established previously (Riofrío-Lazo & Páez-Rosas, 2015; Sweetapple & 311 

Nugent, 2007). Animal taxa made up a smaller component of each rat’s diet, with 312 

Insecta dominating: Hymenoptera, Coleoptera, Lepidoptera (moths and butterflies), 313 

Blattodea (cockroaches), Diptera (flies), and Phasmatodea (stick insects). In addition, 314 

Stylommatophora (slugs and snails) were present in substantial numbers (Fig. 6A and 315 

6B). Fungi were only a small component of the rats’ diet, although several orders were 316 

present: Sclerotiniales (plant pathogens), Saccharomycetales (budding yeasts), 317 

Mucorales (pin molds), Russulales (brittlegills and milk-caps), and Chytotheriales (black 318 

yeasts). Finally, for many rats, a substantial proportion of the stomach contents were 319 

parasitic worms (primarily Spirurida (nematodes) and Hymenolepididae (tapeworms)). 320 

Due to our metagenomic approach, the fraction of each element of the rats’ diets is 321 

distorted by biases in genomic databases: whole genome data exists for only a few taxa, 322 

while mtDNA and rDNA sequence data are present in the database for the vast majority 323 

of animal and plant genera. To quantify this bias, we determined the fraction of hits that 324 

mapped to non-genomic database sequences relative to the fraction of hits that mapped 325 
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to genomic DNA. By quantifying this fraction for species with complete genome 326 

sequences in the database and species without complete genomes we aimed to assess 327 

the effects of this bias. 328 

For the majority of animals with sequenced genomes in the database, we found that the 329 

fraction of reads that mapped genomic sequence ranged from 61% (Gallus) to 73% 330 

(Rattus) to 100% (Coturnix and Numida) (Fig. 7). We hypothesise that this variation is 331 

likely due to the type of tissue sequenced. For Rattus the sequenced tissue was 332 

primarily stomach muscle, which has a relatively high fraction of mtDNA; for Coturnix 333 

and Numida it may have been eggs. For plants with sequenced genomes, the fraction of 334 

reads matching genomic sequence was generally higher: between 88% (Zea) and 98% 335 

(Cenchrus). 336 

In contrast, for genera with little or no genomic sequence in the database, the vast 337 

majority of matches were solely to mtDNA, rDNA, or microsatellite loci: 90% of Phoenix 338 

(date palm) hits; all Helix (snail); and all Rhaphidophora (cave weta) hits. All Artioposthia 339 

(New Zealand flatworm) hits were to rDNA. These results indicate that for genera with 340 

no genomic sequence data, we have underestimated the actual number of sequences 341 

from that taxon by approximately three- to twenty-fold (for animals and plants, 342 

respectively). It is difficult to determine how these numbers correlate with biomass. 343 

Close examination of the sequence classification data suggested that specific families 344 

(and orders) were overrepresented in the diets of rats from particular locations. For 345 

example, six out of eight rats from the native estuarine bush habitat (OB) consumed 346 

Arecaceae, while only one in the restored wetland area (LB) did. All three rats that 347 
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consumed Phaseanidae were from the native estuarine habitat (OB). All five rats that 348 

consumed Solanales were from the restored wetland area. These patterns suggested 349 

that it might be possible to use diet components alone to pinpoint the habitat from which 350 

each rat was sampled. 351 

nMDS and CAP analysis by location 352 

In order to determine if diet composition of the rats differed consistently between 353 

locations, we first performed an unconstrained analysis using nMDS on taxa assigned at 354 

the family level. Using family rather than order or genus provides a balance between 355 

how precisely we identify the taxon of diet item (genus, family, order), and whether we 356 

assign a taxon at all. While family-level assignments are less precise than genus-level, 357 

only 16% of all reads were classified at the genus level, while 71% were classified at the 358 

family level.   359 

The family-level unconstrained ordination (nMDS) showed no obvious grouping of rats 360 

with respect to the locations (Fig. 8a), indicating that locations did not correspond to the 361 

predominant axes of variation among the diets. However, a constrained ordination 362 

analysis (CAP) identified axes of variation that distinguished the diets of rats from 363 

different locations (Fig. 8b). We found that the CAP axes correctly classified the 364 

locations of 19 out of 24 (79%) rats using a leave-one-out procedure. The families 365 

having the largest correlations with the first two principal coordinates, and most 366 

responsible for the separation between groups, were primarily plants: Arecaceae, 367 
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Podocarpaceae, Piperaceae, and Pinaceae. In addition, insect groups (Cerambycids 368 

and Formicids) and birds (Phaseanidae and Numididae) played a role (Fig. 8c). 369 

The families driving similarity within the three locations (i.e., had the greatest within-370 

location SIMPER scores) varied among locations. LB had average Bray-Curtis within-371 

location similarity of 13%; mostly attributable to Hymenolepidae (accounting for 51% of 372 

the within-group similarity), Solanaceae (11%), and Fabaceae (11%). The average 373 

similarity for OB was 21%, with the greatest contributing taxa being Arecaceae (33%), 374 

Poaceae (23%), Fabaceae (9%), and Phasianidae (8%). The average similarity for WP 375 

was 24%, with the greatest contributing taxa being Poaceae (72%) (Table S4). 376 

Discussion 377 

Accuracy and sensitivity 378 

Here we have shown that using a simple metagenomic approach with error-prone long 379 

reads allows rapid and accurate classification of rat diet components. We expect that 380 

this technique can be used to infer diet for a wide variety of animal and sample types, 381 

including samples that use less invasive collection methods, such as fecal matter. The 382 

sensitivity of this approach will likely improve as the accuracy and yield of Oxford 383 

Nanopore sequencing increases. The analysis here is based on less than 200,000 reads 384 

from two flow cells. The rapid improvement of this technology is such that current 385 

yields are often far in excess of two million reads per flow cell. The method will also 386 
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improve as the diversity of taxa in genomic sequence databases increases. Several 387 

aspects of the data support this. 388 

First, we note that we did not find BLAST hits for the majority of reads. This is partially 389 

due the relatively low accuracy of the Oxford Nanopore sequencing platform at the time 390 

these data were collected (approximately 87%). However, the fraction of reads yielding 391 

hits in the database increased substantially for higher quality reads, approaching 40% 392 

for very high quality reads (Fig. 3b). Other factors also likely reduce the numbers of 393 

BLAST hits, such as the paucity of genome sequence data for many taxa. This is 394 

convincingly illustrated by comparing across taxa the fraction of genomic hits to 395 

mitochondrial or rDNA sequence hits. 396 

As the species sampling of genomic databases increases (Lewin et al., 2018), the 397 

taxon-level precision of this method will improve. Given the current rate of genomic 398 

sequencing, with careful sampling, the vast majority of multicellular plant and animal 399 

families (and even genera) will likely have at least one type species with a sequenced 400 

genome within the next decade. Continued advancement in sequence database search 401 

algorithms as compared to current methods (Kim et al., 2016; Nasko, Koren, Phillippy, 402 

& Treangen, 2018; Wood & Salzberg, 2014) should considerably decrease the 403 

computational workload necessary to find matching sequences. 404 

Although metagenomic approaches decrease the bias arising from PCR amplification of 405 

specific DNA regions, additional biases can arise, as the presence or absence of 406 

species and genera can only be inferred for those species or genera present in 407 
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genomic databases. Although this is similarly true for metabarcoding approaches, 408 

metabarcode databases are rapidly becoming more comprehensive in terms of species 409 

representation as compared to genomic databases. Importantly, genomic sequence 410 

databases are rapidly increasing in species diversity, as are the methods to query these 411 

large databases(Kim et al., 2016; Wood & Salzberg, 2014) 412 

To decrease biases in genomic databases, some previous studies have performed 413 

metagenomic classification using mitogenome data alone. Using such methods, 414 

Srivathsan et al and Paula et al. (2016) (Srivathsan, Ang, Vogler, & Meier, 2016); (Paula 415 

et al., 2016) found between 0.004% and 0.008% of all metagenomic reads matched 416 

mitogenomes from diet taxa. Limiting database searches to mitogenomes partially 417 

ameliorates biases in terms of taxon field in terms of taxon representation (i.e. most taxa 418 

will have similar levels of genomic representation in the databases). However, it 419 

considerably decreases diet resolution given that for some taxa, only a small percentage 420 

of sequence reads derive from the mitochondria as opposed to the nuclear genome. 421 

It is also important to note that our interest in diet also includes resolving relative 422 

biomass and relative numbers of each prey species, neither of which necessarily 423 

correlate well with the amount of DNA (either mitochondrial or nuclear) purified from a 424 

sample. Even a simple correction for the fraction of reads matching mitochondrial versus 425 

nuclear genomes is difficult, as different plant and animal tissues differ considerably in 426 

the relative amounts of mitochondrial versus nuclear DNA (e.g. leaf versus fruit). 427 
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Methodological advantages 428 

We found that rats consumed many soft-bodied species (e.g. mushrooms, flat worms, 429 

slugs, and lepidopterans) that would be difficult to identify using visual inspection of 430 

stomach contents.  Achieving data on such a wide variety of taxa would be difficult to 431 

quantify using other molecular methods, as there are no universal 18S or COI universal 432 

primers capable of amplifying sequences in all these taxa. While it might be possible to 433 

use primer sets targeted at different phyla or orders, quantitatively comparing diet 434 

components across these using sequences amplified with different primer sets is 435 

extremely difficult due to differences in primer binding and PCR efficiency. 436 

The nanopore MinION-based sequencing method used in this simple metagenomic 437 

approach has several advantages. Compared to other high throughput sequencing 438 

technologies (e.g. Illumina, IonTorrent, or PacBio), there is no initial capital investment 439 

required to use the platform. On a per-sample basis, data generation is inexpensive 440 

(approximately $150 USD per barcoded sample, and approximately half this price if 441 

reagents are purchased in bulk). Library preparation and sequencing can be extremely 442 

rapid, going from DNA sample to sequence in less than two hours (Zaaijer et al., 2017). 443 

Furthermore, the sequencing platform itself is highly portable. As the cost of nanopore-444 

based sequencing continues to decrease (both per sample and per base pair), it should 445 

become possible to use molecular methods for routine ecological monitoring of species 446 

presence or absence in field settings, without significant investment in infrastructure 447 

(Kamenova et al., 2017). Finally, we suggest that our approach of standardising the read 448 

counts by sample, followed by an optional transformation such as square root and 449 
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dissimilarity-based multivariate ordination, offers a useful analytical pipeline for 450 

analysing metagenomic diet-composition data. 451 

We note that modifications to our approach might further increase the precision of our 452 

ability to infer community composition. Any error-prone long read dataset (i.e. PacBio or 453 

ONT) has both short (e.g. 500 bp) and long (e.g. 5000 bp) reads, as well as high quality 454 

(e.g. mean accuracy greater than 90%) and low quality (e.g. mean accuracy less than 455 

80%) reads. When inferring community composition, a null expectation is that taxa 456 

should be equally represented by long, high quality reads as they are by short, low 457 

quality reads. If some taxa are represented only by short, low quality reads, this 458 

suggests that these taxa may be false positive inferences. Similarly, the difficulty in 459 

correctly mapping short inaccurate reads could be mitigated by weighting the probability 460 

of taxon mapping by the number of long, accurate reads that map to certain taxa. Thus, 461 

the fact that not all reads are extremely long and accurate does not mean that they 462 

cannot all be used to infer taxon presence in metagenomic analyses. 463 

Conclusion 464 

Here we have shown that a rapid error-prone long read metagenomic approach is able 465 

to accurately characterise diet taxa at the family-level, and distinguish between the diets 466 

of rats according to the locations from which they were sourced. This information may 467 

be used to guide conservation efforts toward specific areas and habitats in which native 468 

species are most at risk from this highly destructive introduced predator. 469 
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Tables and Figures 667 

 668 

Fig. 1. Location of rat sampling sites in the greater Auckland area in the North Island 669 
of New Zealand. Each point indicates a trap where one rat was captured, with the 670 
colour of the points indicating the three broad locations: the native estuarine bush 671 
habitat of Okura Bush (OB), the restored wetland of Long Bay (LB), and the native 672 
forest of Waitakere Park (WP). The two insets show the three locations in higher 673 
resolution with topographical details. Green indicates park areas. Precise geographical 674 
coordinates were only available for five out of eight rats in WP. 675 
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 677 

 678 

Fig. 2. Results of nanopore metagenomic sequencing of rat stomach contents. (a) 679 
Read length distribution for January and March nanopore runs.  Read lengths 680 
varied between ~300 and 3,000 bp, with a small number greater than 10,000 bp. (b) 681 
and (c) Barcode distributions for January and March runs, respectively. We 682 
multiplexed the samples on the flow cells, using 12 barcodes per flow cell. The 683 
distribution of read numbers across barcodes was quite uneven, varying by up to 40-684 
fold in some cases. 20% (January) and 30% (March) of all reads could not be assigned 685 
to a barcode (“None”). The inability to assign these reads to a barcode is due primarily 686 
to their lower quality. 687 
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 689 

 690 

Fig. 3. BLAST hits of metagenomic reads. (a) Plot with marginal histograms 691 
showing the e-value and alignment length of the top BLAST hit for each read. We 692 
observed bimodal distributions of alignment lengths and e-values. The y-axis is plotted 693 
on a log scale, with zero e-values suppressed by adding a small number (1e-190) to 694 
each e-value. The horizontal red dotted line indicates the e-value cutoff we 695 
implemented and the vertical red dotted line indicates the length cutoff (e-value < 1e-20 696 
and alignment length of 100, respectively) to decrease false positive hits. (b) The 697 
fraction of reads with high quality BLAST hits (e-value < 1e-20) increases as a 698 
function of read accuracy. We binned the data according to mean read accuracy (bin 699 
width = 0.02) and calculated the fraction of reads within each bin that have a high 700 
quality BLAST hit for the January and March runs separately (blue and orange points, 701 
respectively). The number of reads in each bin is indicated above each point (in 702 
thousands). There is a clear positive correlation between mean accuracy and the 703 
likelihood of a high-quality BLAST hit, reaching almost 40% for very high quality reads 704 
(accuracy >92.5%). 705 
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 707 

Fig. 4. Distributions of percent identity and length for alignments of reads 708 
matching Rattus (rat), Mus (mouse), and diet items. (a) Percent identity for 709 
alignments of rat (Rattus) and diet items is much higher than for mouse (Mus). 710 
Histograms are shown for the percent identity of the alignment of the top BLAST hit 711 
with the read. Mus matches show a clear shift to the left (lower percent identity) as 712 
compared to Rattus and diet items. Although different genera, Mus and Rattus are in 713 
the same family (Muridae). The dotted lines indicate the cut-offs that we implemented 714 
for inferring reads as belonging to a specific genus (above 82.5% identity) or family 715 
(above 77.5% identity). (b)  Ratios of alignment lengths to read lengths of rat 716 
(Rattus) and diet items are higher than for mouse (Mus). This plot is analogous to 717 
that in (a). The dotted line indicates the cut-off that we implemented for inferring reads 718 
as belonging to a specific genus (above 0.55).  719 
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 720 

Fig. 5. Numbers of taxa in individual rats. Each boxplot indicates the range of families 721 
(left boxes) or orders (right boxes) consumed by each rat in each location (OB: Okura 722 
Bush; LB: Long Bay Park; WP: Waitakere Park). The numbers for individual rats (eight 723 
per location) are plotted in grey. 724 
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 726 
 727 

 728 

 729 

Fig. 6. Proportions of taxa in the diets of individual rats. (a) Reads assigned to taxa 730 
at the family and (b) order level. The rows correspond to a single rat, with the 731 
proportions of reads for that rat assigned to each family or order indicated in shades of 732 
blue and yellow. Reads that were not assigned to a specific family or order are 733 
indicated at the right side of the figure. The families and orders have been sorted so 734 
that the most common diet components appear on the left. Only the 55 most common 735 
families are shown. Note that the color gradations presented on the scale are not linear. 736 
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 737 

Fig. 7. Fractions of reads matching genomic and non-genomic sequence for the best 738 
BLAST hit of each read. For the species with largely complete genomes, the fraction of 739 
reads matching genomic sequence ranges from 60% to 100%. This large range is likely 740 
due to the tissue from which the DNA was isolated. For example, muscle tissue has a 741 
higher fraction of mtDNA to nuclear DNA than egg. For species without fully sequenced 742 
genomes, this fraction ranges from 0% to 20% (for species with a small amount of 743 
genomic data present in the database). 744 
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 746 

Fig. 8. Unconstrained nMDS (a) and constrained CAP (b) ordinations of the diets of 747 
rats from three locations. Both ordinations were based on Bray-Curtis 748 
dissimilarities of square root transformed proportions of reads attributed to each 749 
family.  The locations were a native estuarine bush (OB, orange); a restored marine 750 
wetland (LB, purple); and a native forest (WP, light blue). The CAP ordination is 751 
repeated in panel (c) as a biplot with the rats omitted to show the Pearson correlations 752 
between families and the first two CAP axes. The eight families with the strongest 753 
correlations are shown, indicating the taxa associated with each location. 754 
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Supplemental Tables 757 

Table S1. Read numbers and total base pairs for each barcode in the January 758 
sequencing run. 759 

Rat Total 
reads 

Total 
Mbp 

Mean 
length 

OB2 19907 14.62 734 

WP11 10164 9.63 947 

WP5 8237 6.78 823 

LB7 7548 7.04 933 

OB13 3644 3.63 995 

WP9 2954 2.4 814 

OB5 2850 2.06 721 

WP8 2801 2.32 827 

LB6 2531 1.6 632 

OB7 2473 1.87 756 

LB5 1641 1.16 705 

LB3 1554 0.99 636 

None 16673 13.01 781 

Total 82977 67.1 N/A 
 760 
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Table S2. Read numbers and total base pairs for each barcode in the March 762 
sequencing run. 763 

Barcode Total 
reads 

Total 
Mbp 

Mean 
length 

LB1 17820 9.21 517 

LB8 16923 13.13 776 

WP2 10511 7.00 666 

LB4 8684 4.92 567 

OB11 5689 3.40 598 

WP10 1563 0.99 633 

OB12 1479 0.89 604 

WP12 1309 0.78 596 

LB2 1127 0.76 676 

WP3 637 0.73 1141 

OB14 541 0.37 683 

OB10 435 0.24 555 

None 29432 21.33 725 

Total 96150 63.75 N/A 
 764 
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Table S3. SIMPER analysis of family contributions to group similarities. 766 

Family Average 
Abundance 

Average 
Similarity 

Similarity/SD Percentage 
contribution 

Group 

Hymenolepididae 3.37 6.87 0.34 51.2 LB 

Solanaceae 1.57 1.48 0.34 11.1 LB 

Fabaceae 1.74 1.41 0.44 10.5 LB 

Arecaceae 2.86 7.11 1 33.4 OB 

Poaceae 2.87 4.82 0.55 22.7 OB 

Fabaceae 1.17 1.98 0.51 9.3 OB 

Phasianidae 1.79 1.67 0.34 7.9 OB 

Poaceae 5.08 17.61 0.62 72.1 WP 

 767 
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Table S4. SIMPER analysis of family contributions to group dissimilarities. 769 

Species Average 
Abund 
Group1 

Average 
Abund 
Group2 

Avg. Dis-
similarity 

Dis-
similarity 
/SD 

% 
contrib 

Group1 Group2 

Poaceae 1.95 5.08 15.15 1.04 16.74 LB WP 

Poaceae 2.87 5.08 11.29 1.26 13.78 OB WP 

Hymenolepi
didae 

3.37 0.48 10.8 0.73 11.93 LB WP 

Hymenolepi
didae 

3.37 0.29 9.37 0.79 10.32 LB OB 

Poaceae 1.95 2.87 8.37 1.1 9.22 LB OB 

Arecaceae 0.05 2.86 6.99 1.41 7.7 LB OB 

Arecaceae 2.86 1.31 5.92 1.29 7.23 OB WP 

Fabaceae 1.74 1.05 6.14 0.67 6.78 LB WP 

Podocarpac
eae 

0 2.38 5.34 0.83 5.9 LB WP 

Podocarpac
eae 

0.71 2.38 4.82 0.99 5.88 OB WP 

Fabaceae 1.74 1.17 4.87 0.81 5.37 LB OB 

Fabaceae 1.17 1.05 4.31 0.84 5.26 OB WP 

 770 

Datafile S1. Table of read BLAST hits and assigned MEGAN taxa with no filters 771 
applied. 772 

Datafile S2. Table of read BLAST hits and assigned MEGAN taxa for diet items, with 773 
reads reclassified at the family or order level by filtering on read length to alignment 774 
length ratio and percent identity. 775 

Supplemental Figures 776 
Fig S1. Biplots of read lengths and qualities for each barcode in the January and 777 
March runs. 778 

Fig S2. Correlation of read accuracy with alignment characteristics. (a-c) Read 779 
accuracy is positively correlated with the percent identity of the top BLAST hit. Points 780 
show a subsample of reads; orange line indicates a running median; red dotted line is 781 
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the y=x line, which is expected if accuracy corresponds exactly to percent identity. (a) 782 
indicates the relationship for diet items; (b) for rats; and (c) for mice. (d-f) Read accuracy 783 
and alignment length show no significant relationship. Plots again are (d) diet items; (e) 784 
rats; and (f) mice. (g-i) Read accuracy and the ratio of read length to alignment length 785 
are positively correlated: more accurate reads are more likely to have long alignments 786 
relative to read length. Plots again are (g) diet items; (h) rats; and (i) mice. 787 

 788 
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