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Abstract 

Background 

Carbon nanotubes (CNTs) usage has rapidly increased in the last few decades due to their 

unique properties, exploited in various industrial and commercial products. Certain types of 

CNTs cause adverse health effects, including chronic inflammation and fibrosis. Despite the 

large number of in vitro and in vivo studies evaluating these effects, many important 

questions remain unanswered due to a lack of mechanistic understanding of how CNTs 

induce cellular stress responses. In order to predict CNT toxicity, it is important to 

understand which transcriptional programs are specifically activated in response to CNTs, 

and what similarities and differences exist in relation to other toxic inducers exerting similar 

adverse effects. 

Results 

A systems biology approach was applied to reveal complex interactions at the molecular 

level in mouse lung tissue in response to different fibrosis inducers: two types of multi-

walled CNTs, NM-401 and NRCWE-26, and bleomycin (BLM). Based on mRNA gene 

expression profiles, we inferred gene regulatory networks (GRNs) to capture functional 

hierarchical regulatory structures between genes and their regulators. We found that 

activities of the transcription factors (TFs) Myc, Arid5a and Mxd1 were associated with the 

regulation of cytokine transcription in response to CNTs, while in response to BLM 

treatment, Myc was associated with p53 signaling. TF Litaf was identified as the essential 

regulator for noncanonical signaling of TLR2/4 driven by CNTs. Despite the different nature 

of the lung injury caused by CNTs and BLM, we identified common stress response 

modules, that included DNA damage (TFs: E2f8, E2f1, Foxm1), M1/M2 macrophage 

polarization (TF: Mafb), Interferon response (TFs: Irf7, Stat2 and Irf9) for all agents. 

Conclusions 

These results suggest that the reconstruction and analysis of TF-centric gene interaction 

networks can reveal key targets and regulators of cellular stress responses to toxic agents.  
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Background 

Carbon nanotubes (CNTs) have gained increased attention in the last 30 years due to their 

unique properties, exploited in various industrial and commercial products. CNTs are widely 

used in electronics, energy storage, composite materials, water filters, and biomedical 

applications, such as DNA/proteins biochip and drug delivery [1]. However, inhalation of 

certain CNTs causes adverse health effects, such as chronic inflammation, pulmonary 

fibrosis, carcinogenesis and other undesirable effects [2]. 

Accumulation of toxic CNTs in the lungs activates acute inflammatory responses. It initiates 

the recruitment of inflammatory cells including macrophages, lymphocytes and neutrophils 

and induces the secretion of proinflammatory cytokines, chemokines and growth factors. 

Initial response to nanoparticle inhalation also includes excessive extracellular matrix 

(ECM) remodeling and differentiation of fibroblasts into myofibroblasts [3]. This initial 

response then progresses to a chronic phase, which is characterized by decreased 

inflammatory processes, increased deposition of ECM proteins and myofibroblasts, and 

granuloma formation. Myofibroblasts are known to modulate the fibrosis progression by 

accumulating collagen fibers and other ECM proteins [4]. Other toxicological effects linked 

to CNT exposure include DNA genotoxicity and tumorigenesis [2]. CNTs are known to 

indirectly cause DNA damage, including DNA strand breaks and chromosomal aberrations, 

by inducing ROS generation or suppressing intracellular antioxidants [5, 6]. CNTs can also 

activate oxidative stress by directly interacting with the cell membranes, resulting in the 

increased concentrations of lipid peroxidation products. Frustrated phagocytosis is yet 

another mechanism of ROS generation, which occurs when phagocytes cannot engulf 

CNTs due to their rigidity and physical size [5, 6]. 

Many signaling pathways are involved in shaping biological responses to CNT exposure, 

with TGFβ1 signaling being one of the most important. The latent form of TGFβ1 is 

abundant in the ECM of healthy lung tissues. When activated, TGFβ1 triggers ECM 

remodeling by stimulating the secretion of pro-fibrotic proteins [7]. Besides its essential 
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contribution to collagen deposition in ECM, TGFβ1 also plays a substantial role in the 

regulation of inflammation, macrophage recruitment, and the initiation of epithelial-

mesenchymal transition [8]. In addition to TGFβ1 signaling, other signaling pathways, such 

as the p53 DNA damage response and NF-κB inflammatory pathways are also implicated in 

the CNT-induced fibrosis-related effects. 

The biological response to CNT exposure has many similarities with the responses 

observed for bleomycin (BLM) treatment, that is widely used as a classic model of inducing 

lung fibrosis [9]. BLM is a chemotherapeutic drug that causes DNA strand breaks via 

oxidative mechanisms and can induce lung fibrosis as a severe side effect in human 

patients. A single BLM dose initiates an acute inflammatory phase in lung tissue 

characterized by infiltration of immune cells, release of pro-inflammatory cytokines, and the 

increased presence of myofibroblasts [10]. In rodents the fibrotic phase is initiated seven 

days after BLM instillation with increased expression of pro-fibrotic cytokines and increased 

fibroblast proliferation and collagen accumulation [10]. Elevated levels of the active form of 

TGFβ1 are detected in both acute and fibrotic stages. However, there are differences in 

endpoint effects of BLM and CNTs. For CNT exposure, genotoxic and pro-fibrotic 

responses together with immunomodulation components prevail, leading to chronic 

inflammation, fibrosis and possibly cancer [11]. 

A large number of studies have previously investigated the toxic effects of CNTs on lungs. 

These studies identified the genes and proteins which are influenced by various types of 

CNTs, as well as the pathways and biological process, in which these genes participated 

[12, 13]. However, important questions remain unanswered due to a lack of mechanistic 

understanding of how CNTs influence gene expression in lung cells. In order to predict CNT 

toxicity, it is important to understand which transcriptional programs are specifically 

activated in response to CNTs, and what similarities and differences exist compared to 

classic fibrosis inducers, such as BLM. To better understand and then prevent CNT induced 

fibrosis, we need to know whether all CNTs initiate fibrosis related processes via a shared 

mechanism or through unique mechanisms specific to their physico-chemical 

characteristics. Here, we apply a systems biology approach to reveal complex interactions 

at the molecular level in mouse lung tissue in response to different fibrosis inducers: two 

types of multi walled carbon nanotubes (MWCNTs) NM-401 and NRCWE-26 (that have 

different physico-chemical characteristics), and bleomycin (BLM). We inferred gene 

regulatory networks (GRNs) to capture functional hierarchical regulatory patterns 
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connecting genes and their regulators. Using reverse engineering techniques and gene 

expression profiles from mRNA high-throughput experiments, we identified both gene 

regulators and their targets, which have key roles in pro-fibrotic progression for both 

MWCNTs and bleomycin-induced responses. These genes orchestrate specific 

transcriptional responses to MWCNT and bleomycin instillation. This integrative framework 

can also be applied to investigations of gene regulatory programs activated in response to 

different type of toxic agents. 

Results 

To uncover the mechanisms of the pulmonary response to CNT and BLM exposure, 

transcriptomics data of previously published microarray experiments for MWCNTs NM-401 

and NRCWE-26 [6] and BLM [9] were assessed. The gene expression profiles for two types 

of multi-walled carbon nanotubes (GSE55286), NM-401 (long and stiff) and NRCWE-26 

(short and entangled), and BLM (GSE40151) were obtained from the Gene Expression 

Omnibus Database (https://www.ncbi.nlm.nih.gov/geo/). Data for CNTs and BLM were 

generated using Agilent SurePrint G3 Mouse GE 8x60K Microarrays and Affymetrix Mouse 

430 2.0 arrays, respectively, with RNA isolated from mouse lung tissues. CNTs were 

instilled at three different doses of (18, 54, 162 μg), and gene expression was determined at 

three timepoints (1, 3, 28 days) post-instillation. BLM was administered in one dose (2U/kg 

body weight), and the lung tissue was harvested at 7 post-instillation timepoints (1, 2, 7, 14, 

21, 28, 35 days). Both types of experiments were conducted with vehicle controls for each 

timepoint. 

An overview schematic of our analysis pipeline is represented in Figure 1. First, using the 

reverse engineering algorithms and the transcriptomics data, we inferred a gene regulatory 

network for each agent. The gene interactions were identified for a combined list of DEGs 

derived from all experiments. Next, we identified network modules using the GLay 

clustering algorithm [14]. For each module, we performed pathway enrichment analysis to 

identify biological functions of genes in the module. To reveal TFs and signaling pathways 

directly associated with fibrosis development, we next analyzed subnetworks based on 

fibrosis markers and their direct regulators extracted from the whole networks.  
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Figure 1. Workflow schematics for this study. To infer gene interactions from measured 
transcriptomics data, reverse engineering algorithms were applied. Using the clustering method, 
network modules were identified. For each module, pathway enrichment analysis was performed to 
identify the biological functions of the genes in the module. To reveal fibrosis-associated TFs and 
signaling pathways, subnetworks based on fibrosis markers and their direct regulators extracted 
from the whole networks were analyzed. The subnetworks are represented by bold red lines. 
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1. Inferring gene regulatory networks 

Gene regulatory networks (GRNs) can provide useful insights into transcriptional regulatory 

mechanisms. GRNs inferred from the expression data can suggest which transcription 

factors (TFs) are responsible for the changes in gene expression observed following the 

exposure to two types of nanoparticles (NM-401 and NRCWE-26) and BLM. GRNs have 

hierarchical structures where a few highly interconnected genes, usually TFs, are the hubs 

that account for most interactions. It was previously shown that combining multiple 

inference methods increases the accuracy of reconstructed GRNs [15]. Therefore, we apply 

three different algorithms in order to infer GRNs: 1) linear model of gene regulation with 

Bayesian variable selection [16]; 2) mutual information algorithm ARACNe-AP [17]; and 

3) random forest based algorithm GENIE3 [18]. To improve the prediction accuracy, we 

integrated the results of all three algorithms using the Borda count ranking method [15]. The 

list of TFs was used from AnimalTFDB database [19], and target genes were selected 

based on the combined list of DEGs from CNTs and BLM experiments. Analysis of DEGs 

was performed using the limma package in R/Bioconductor [20]. Genes were considered 

significantly differentially expressed if they (i) showed expression changes of at least ± 1.5-

fold for CNTs or BLM treated groups compared to non-treated controls for each 

experimental condition; and (ii) have FDR p-values ≤ 0.05. The inferred networks 

characteristics are generally similar with clustering coefficients indicating that all GRNs are 

well-connected, small world networks (Table 1). However, the NM-401 GRN has a much 

larger diameter and a characteristic path length, suggesting that the activated regulatory 

program in response to NM-401 treatment might be more complex. The visualization of the 

networks is shown in Figure 2, and the cytoscape file can be found in the Additional file 1. 

Table 1. Networks characteristics. The analysis was performed using the NetworkAnalyzer plugin 

available within the Cytoscape software. 

Network parameter NM-401 NRCWE-26 BLM 

Nodes 3495 3559 3224 

Edges 4802 4912 4438 

Transcription factors 348 350 290 

Clustering coefficients  0.058 0.05 0.048 

Network diameter 16 8 9 

Shortest paths 19549 12121 13807 

Characteristic path length 3.295 2.146 2.384 

Avg. number of neighbors 2.709 2.760 2.725 
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Next, in order to prioritize gene regulators, we identified TFs with the largest numbers of 

connections for each network, which will subsequently be referred to as TFs hubs. These 

network topological features are widely used in the analysis of GRNs and such types of 

genes are considered important in the cellular regulatory program [21, 22]. TFs were 

ranked based on their connection numbers (Additional file 2). The results show the TFs that 

have high connectivity in all networks, such as E2f8 and Irf7. The other key TF hubs are 

differentially represented in different networks, such as Myc, Ubtf, Etv4, Tbx20, Mafb 

(Additional file 2). 

2. Analysis of biological functions of genes in GRN modules 

One of the known properties of GRNs structure is colocalization of genes from the same 

biological processes in the same network cluster [23]. We used this feature for a 

subsequent analysis of biological processes controlled by a TF. The inferred networks 

displayed modular structures (Figure 2, Additional file 1). To identify modules from these 

networks, the GLay clustering method in Cytoscape was applied [14]. Visualization of the 

clustered networks with upregulated and downregulated DEGs for different time points is 

presented in Additional file 3. 

To identify the signaling pathways and functional processes which were altered in each 

module of the networks following instillation of CNTs and BLM, over-representation analysis 

was performed using gProfileR and ReactomePA toolkits [24, 25] and the KEGG, 

REACTOME and GO databases (see Additional files 4, 5, 6). The functional annotation 

analysis was performed for each time point and for upregulated/downregulated genes 

separately where the altered pathways had an adjusted p-value < 0.005. Instillation of 

CNTs and BLM affected various physiological and pathological mechanisms, such as the 

immunomodulatory response (innate and adaptive), response to DNA damage/integrity, 

pathways involved in cell-cell interactions and cell adhesion, and activation of regeneration 

processes, suggesting an involvement of these processes in the adverse effects observed 

upon CNTs and BLM instillation. We mainly focused on inflammation and fibrosis-related 

pathways, with the findings summarized in Table 2 and Additional file 7. 
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Figure 2. Inferred gene regulatory networks for carbon nanotubes and bleomycin. A) NM-401, 
B) NRCWE-26, C) BLM treatments. Green diamonds represent TFs, colored spherical nodes 
represent their potential targets and each color of spherical nodes indicate distinct module. The size 
of the diamonds is proportional to the number of external connections (outdegree). KEGG, 
REACTOME and GO databases were used for functional annotation of altered genes in the 
modules. Subnetworks based on fibrosis-related markers and their regulators are represented by 
bold red lines. 

 

The innate immune response was strongly stimulated by CNTs and BLM instillation. The 

components of pattern recognition receptors (PRRs) including Toll-like receptor, NOD-like 

receptor, RIG-I-like receptor, cytosolic DNA-sensing signaling pathways were upregulated 

in response to CNTs and BLM 1-3 days post-exposure. These pathways are typically 

activated in response to pathogen invasion and lead to the expression of cytokines and 

chemokines. The functional annotation analysis identified two types of modules in the 

networks, which were associated with alternative downstream signaling of PRRs. DEGs 

from the first type of module generally were upregulated 1-2 days post-exposure and 

belonged to PRRs pathways and interleukin signaling, while DEGs from the second type of 

module were activated on 2-3 days and belonged to PRRs and Interferon signaling 

pathways. Both the high dose of NM-401 and the middle dose of NRCWE-26 induced an 

upregulation of DEGs in the Interferon module, while BLM induced a moderate effect. 
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Interestingly, the high dose of NRCWE-26 inhibited the expression of DEGs from this 

particular module (see Figure 3, Additional file 7). Our analyses revealed common TF hubs 

in modules with similar functions in the different networks; for example, Arid5a, Mxd1 were 

identified as TF hubs for the PRR-Interleukin module, while Irf7, Stat2 and Irf9 were 

identified as TF hubs for PRR-Interferon module. In addition, other innate immune response 

pathways also were altered (Additional files 4, 5, 6, 7). All of the assessed agents were 

shown to affect signaling associated with natural killer cytotoxicity. DEGs involved in this 

signaling were downregulated in response to BLM on 2-7 days and high doses of CNTs on 

1-3 days, and upregulated in response to middle doses of NRCWE-26 on 28 day. The TFs 

Bcl11a, Eomes, Satb1, Stat4, Tbx21 were identified in the natural killer cytotoxicity module 

in all networks. BLM also affected the complement and coagulation cascades pathway with 

DEGs upregulated at 7-35 days. Components of adaptive immune response, such as B cell 

signaling, were downregulated in response to BLM and high doses of NRCWE-26. 

Likewise, DEGs from Th1/Th2 cell differentiation, antigen processing and presentation 

pathways were downregulated in response to high doses of NRCWE-26. 

The expression changes of the innate immune system components were followed by 

changes in the cell cycle and DNA damage signaling modules. DEGs in these modules 

were upregulated in response to all agents on day 3 (CNTs) / 2-21 (BLM), and 

downregulated on day 1 in response to middle dose of NRCWE-26. These DEGs contained 

genes from homologous recombination, DNA replication, cell cycle checkpoints, p53 and 

other signaling pathways which are involved in cell cycle and DNA damage processes. The 

TF hubs identified in this module were E2f8, E2f1, Foxm1. 

The cell cycle module has a high number of connections with a closely located module 

containing the TF hubs Trp73 and Sox2 in the CNTs networks (Figure 2). DEGs from the 

module were downregulated in response to NRCWE-26 on day 1, and NM-401 and 

NRCWE-26 on day 3 (see Additional file 3). Functional analysis of these genes revealed a 

relationship with ciliogenesis and ciliary beat frequency processes (GO BP ‘axoneme 

assembly’, ‘regulation of cilium beat frequency’). Cilia are cell organelles in lung epithelial 

cells which provide airways clearance from mucus and dirt. Attenuation of ciliogenesis in 

response to CNTs has been shown previously in bronchial epithelial cells [26]. 

All doses of NRCWE-26 inhibited DEGs from the cardiac muscle contraction pathway on 

day 3, while in the case of BLM this inhibition began at day 14 and was maintained even 

after day 28. The identified genes belonged to the actin and myosin family of genes, which 
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are involved in the formation of the actomyosin cytoskeleton of non-muscle cells. Disruption 

of this structure in phagosome cells can facilitate engulfment processes [27]. TF Tbx20 was 

identified as TF hub in this module. 

 

Table 2. Summary of functional annotation analysis of GRN modules and associated TFs to 
identify pathways affected be CNTs and BLM exposure. The analysis was performed for each 
time point and for upregulated/downregulated genes separately. The adjusted p-value < 0.005 was 
taken as identifying the altered pathways and biological processes, which are shown by red and 
blue color for upregulated and downregulated genes, respectively. 

Signaling pathways and TFs 

NM-401 
high 

doses 

NM-401 
middle 
doses 

NRCWE
-26 high 
doses 

NRCWE
-26 

middle 
doses 

BLM 
 

1 3 28 1 3 28 1 3 28 1 3 28 1 2 7 14 21 28 35 

PRRs and interleukin signaling | TFs: Myc, 
Arid5a, Mxd1 

                   

Interferon response | TFs: Irf7, Stat2, Irf9                    

Natural killer cytotoxicity signaling | TFs: Bcl11a, 
Eomes, Satb1, Stat4, Tbx21 

                   

Complement and coagulation cascades pathway | 
BLM TFs: Mafb, Spi1, Batf3, Litaf 

                   

Adaptive immune response | BLM TFs: Ikzf1, 
Spib, Ikzf3 

                   

Cell cycle | TFs: E2f8, E2f1, Foxm1                    

Regulation of cilium | TFs: Trp73, Sox2                    

p53 signaling pathway | BLM TFs: Cers3, Grhl3, 
Stat3, Myc 

                   

Phagosome, Fcgamma receptor | NM401 TFs: 
Thra, Mafb, Vezf1, Vezf1, Srebf2, Litaf; BLM TFs: 
Mafb, Spi1, Batf3, Litaf, Tfec 

                   

Degradation of the extracellular matrix | NM-401 
TFs: Thra, Mafb, Srebf2, Litaf; NRCWE-26 TFs: 
Pparg, Tbx1, Zkscan14; BLM TFs: Hoxb5, Sox11, 
Sox13 

                   

Trafficking and processing of endosomal TLR, 
surfactant metabolism, ROS and RNS production 
in phagocytes, iron uptake and transport | NM-
401 TFs: Thra, Mafb, Vezf1, Vezf1, Srebf2, Litaf 

                   

PDGF | BLM TF: Tfap2a                    
 

 

Other signaling pathways which were altered during the later time period included 

phagosome and osteoclast differentiation (KEGG). DEGs from these pathways were shown 

to be upregulated from the earliest time period and were continuously activated up to the 

28th day (NM-401) and 35th day (BLM). Based on gene ontology analysis, the enriched 

genes from these pathways belong to the Fcgamma receptor (FCGR) family, ATPases and 
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macrophage scavenger receptors. Enrichment analysis using the REACTOME database 

also revealed alteration of the FCGR signaling pathway. It is conceivable that treatments 

activated FCGR-dependent phagocytosis processes. The FCGR signaling is activated by 

immunoglobulin G (IgG) molecules [27] and plasma protein serum amyloid P (SAP) [28]. 

IgG antibodies can be contained in the protein corona of nanoparticles and act as opsonins 

that by binding to phagocyte FCGRs initiate the re-organization of the actomyosin 

cytoskeleton, membrane remodeling, and eventually phagocytosis [27]. Furthermore, the 

FCGR can be activated by SAP protein during clearance of apoptotic cells [28]. Likewise, 

the same module of BLM network consisted of upregulated DEGs (from day 7) from the 

complement and coagulation cascades pathway, which also can enhance opsonization. 

This upregulation can be explained by the activation of apoptotic material clearance 

processes. All three pathways, phagosome, osteoclast differentiation and coagulation 

cascades, were identified in the same modules, which consisted of the TF hubs Mafb, Spi1, 

Batf3, Litaf and Tfec in the BLM network and TF hubs Thra, Mafb, Vezf1, Vezf1, Srebf2 and 

Litaf in the NM-401 network. 

Several other pathways altered by CNTs and BLM included the following. DEGs mapped to 

the degradation of the extracellular matrix pathway were upregulated in response to all 

treatments, but only BLM and NM-401 affected this process at the later time periods (days 

7-28 BLM, and day 28 NM-401). Pathways altered in response to NM-401 at day 28 

included the trafficking and processing of endosomal TLR, surfactant metabolism, ROS and 

RNS production in phagocytes, iron uptake and transport pathways. Components of all 

these different pathways were upregulated and were enriched in the module with the TF 

hubs Thra, Mafb, Vezf1, Vezf1, Srebf2 and Litaf. PDGF signaling was altered in response 

to BLM, with the DEGs within this pathway upregulated at day 35. PDGF activity can be 

essential for myofibroblast activation, which is one of the important players in fibrosis 

development. Tfap2a was identified as TF hub gene in this module. The late time period 

effects of NRCWE-26 depended on its dose. High NRCWE-26 dose, as well as BLM, 

induced upregulation of inflammatory processes. DEGs from NOD-like receptor and 

cytokine-cytokine receptor interaction pathways were activated. Middle dose NRCWE-26 

induced adaptive immune system processes, such as autoimmune thyroid disease and 

antigen processing-cross presentation. Furthermore, components of natural killer cell 

mediated cytotoxicity and cellular senescence were upregulated. 
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Figure 3. Visualization of DEGs in the NRCWE-26 GRN. The red and blue colors represent the 
upregulated and downregulated DEGs, respectively, for high doses (on the left) and middle doses 
(on the right) at the day 3 timepoint. 

 

Taken together, our results indicate that instillation of these CNTs and BLM activated 

various physiological and pathological mechanisms, such as inflammation, response to 

DNA damage, alteration in ECM synthesis and activation of the regeneration process, thus 

highlighting the involvement of these processes in the adverse effects observed upon CNTs 

and BLM instillation. As indicated by the data for later time period responses, NM-401, as 

well as BLM, led to remodeling of the extracellular matrix and active phagocytosis. 

Interestingly, NRCWE-26 induced biphasic effects: high doses of NRCWE-26 activated the 

innate immune response, while middle doses triggered the adaptive immune components. 

Moreover, middle doses of NRCWE-26 induced the interferon response, while high doses 

did not alter the genes from this module (see Figure 3). Heatmap analysis of DEGs from the 

Interferon signaling pathway (where the list of genes was derived from REACTOME 

Interferon signaling pathway, R-MMU-913531) revealed the same effect for NRCWE-26 

exposure (Additional file 8). 

3. Analysis of gene regulators 

In the previous section, we identified main TF hubs for functionally annotated modules. 

These gene regulators were associated with the following different responses: Arid5a, 

Mxd1 for interleukin signaling; Irf7 for interferon response; E2f8, E2f1, Foxm1 for cell cycle 
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and DNA damage response; Trp73 for cilium regulation; Mafb for phagocytosis and 

Fcgamma receptors activation; Tbx20 for actomyosin cytoskeleton remodeling. It was, 

however, unclear, whether these regulators were important for the main pathological effect 

of CNTs and BLM treatment such as pro-fibrotic responses. 

To gain more insight into the role of gene regulators during the activation of fibrotic 

processes, we next focused on specific subnetworks within the GRNs. Results were 

obtained by using 87 genes, which were previously identified to be important for 

fibrogenesis and tissue remodeling in response to different types of CNTs [13, 29]. This 

gene set includes several matrix metallopeptidases and their inhibitors, interleukins, 

chemokines, ECM regulators, and other genes which are involved in parenchymal injury of 

the lung. We considered this list of genes as targets and found their regulators using the 

inferred whole GRNs for NM-401, NRCWE-26 and BLM (as mentioned above). These 

genes and their regulators formed a unique subnetwork and linked different functional 

modules in the whole network (Figure 2). Previously identified functional modules, such as 

cell cycle - DNA damage, interleukins, interferon and phagocytosis were interlinked by this 

subnetwork, suggesting that they contribute to the fibrotic response via a coordinated 

transcriptional program. 

To identify which TFs are prevalently involved in the regulation of DEGs at different time 

points, we reconstructed subnetworks based on DEGs from the gene set for each time 

point and found their regulators in the whole GRNs. The following analysis was performed 

based on the identified number of connections for each TFs (Table 3). Myc, Arid5a and 

Mxd1 had a high number of connections in CNT subnetworks at days 1-3. Arid5a and Mxd1 

were included in PRR-interleukin module, which was activated in response to CNTs 

treatment at day 1-3 (as mentioned above). Myc was identified in the top 3 TF hubs with the 

highest number of connections in all CNT networks (See section “Inferring gene regulatory 

networks”, Additional file 2), indicating that this TF plays an important role in cell regulation 

in response to CNT treatment. In BLM network Myc was associated with p53 signaling 

(Table 2, Additional file 7). Myc activity is essential for cell cycle progression, apoptosis and 

other biological processes. Myc has cross-regulatory interactions with cytokines, including 

Il1, Il2, Il4, Il6, Il8, Il10, and TNF-α [30]. In NM-401 GRN Myc colocalized with Arid5a, which 

had also the high number of connections in the subnetworks (see Table 3). The TF Arid5a 

has a role in the posttranscriptional regulation of IL6. Arid5a controls Il6 mRNA stability and 

protects Il6 mRNA from regnase-1-mediated degradation [31]. Importantly, Arid5a is 
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regulated by the NF-κB and MAPK signaling pathways, which in turn are activated by Toll-

like receptor 4 [32]. Another TF with high number of connections in CNT subnetworks was 

Mxd1, also known as Mad. This TF is involved in MYC regulation. 

Heterodimerization of MYC with MAX is necessary for activation of MYC target genes. The 

protein MAD, which is encoded by Mxd1 gene, competes with MYC for binding to MAX and 

thereby inhibits MYC activity [33]. Analysis of the log fold change (logFC) values for Myc, 

Max, Mxd1 and cytokines showed that the largest Myc to Mxd1 ratio (ΔlogFC 1.66) was 

observed for day 3 for high dose of NRCWE-26 (Additional file 9). 

Other TFs with a high number of connections in all subnetworks were identified. Litaf 

regulates the expression of cytokines, pro-inflammatory and pro-fibrogenic genes [34–36]. 

Transcription of Litaf can be induced by tumor suppressor p53 [37] and Toll-Like receptors 

(TLR 2/4) [38]. In the CNT networks Litaf is directly connected with Cd14 and Myd88 genes 

(see Additional file 10), which encode toll-like receptor interacting proteins. The TF Irf7 from 

the PRR-interferon GRN module (as mentioned above) also had high degree of connectivity 

in all subnetworks, especially at early time points (Table 3). This TF plays essential role in 

the activation of the viral defense system via triggering type I interferon pathway [39]. TFs 

Mafb and Batf3 had high connectivity degree in NM-401 and BLM subnetworks at late time 

points (Table 3). Mafb was identified in a module associated with FCGR activation and 

phagocytosis (as mentioned above), which was altered also at late time points in the NM-

401 and BLM networks. Mafb can enhance phagocytic activity of macrophages by 

stimulating Fcgr3 [40] and has a key role in the activation of anti-inflammatory profile of 

macrophages by inducing M1/M2 macrophage polarization, which is important for fibrosis 

development [41, 42]. Macrophages produce numerous cytokines, chemokines, matrix 

metalloproteinases, and other inflammatory and ECM remodeling mediators. Macrophages 

can be transformed by external stimuli into different types: M1 (pro-inflammatory) and M2 

(anti-inflammatory) subtypes. The other TF, Batf3, is involved in formation of CD103+ and 

CD8+ dendritic cells that may facilitate lung fibrosis [43, 44]. In line with this result, liver 

fibrosis was attenuated in Batf3 −/− knockout mice [45]. The TF Srebf2, also known as 

Srebp2, was increasing its connectivity over time in the CNT subnetworks for high doses of 

these agents. Srebf2 induces the expression genes that are involved in cholesterol and fatty 

acid synthesis, cholesterol transport [46, 47] and in the formation of lipid-laden 

macrophages (foam cell) [48], which are associated with lung fibrosis [49]. 
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Table 3. Connectivity patterns for TFs. The number of connections for each TF is shown.  

M represents the number of modules in the corresponding subnetwork.

 

 

Surprisingly, TFs from the cell cycle and DNA damage module, which included dozens of 

upregulated genes in all networks (as mentioned above), were weakly represented in the 

CNTs subnetworks. By contrast, analysis of the BLM subnetwork showed a high number of 

connections for these TFs. For instance, in the BLM network E2f8, E2f3 and Prrx2 had high 
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degrees of connectivity up to late time points. Thus, the activity of genes from Cell cycle and 

DNA damage module was mainly associated with fibrotic changes in response to BLM. 

Discussion 

Transcription factors regulate stress-induced biological processes and determine the 

landscape of toxicological response [50–52]. Characterization of the gene regulatory 

programs activated in response to nanoparticle treatment can improve risk assessment and 

potentially aid to build predictive toxicity models. Here, we applied reverse engineering 

techniques for reconstructing gene regulatory networks based on microarray mRNA data 

from the lungs of mice exposed to MWCNTs (NM-401, NRCWE-26) and BLM. Previous 

studies have demonstrated the power of this approach to identify molecular biomarkers and 

drug targets in cancer and other diseases [53], the deduction of adverse outcome pathways 

(AOPs) for chemicals from high-throughput transcriptomic data sets [54, 55], and the 

functional interpretation of responsive modules from gene expression data sets [56]. 

Additionally, based on prior knowledge of interactions between genes and a predefined list 

of disease-associated markers, the pipeline for detecting AOP-linked molecular pathway 

descriptions has been described [57]. 

Since TF activity is dependent on coactivators and because a single protein can be 

involved in different biological processes, as the first step, we identified functional roles of 

TFs using so-called “guilt by association” approach [23, 58]. The inferred whole networks 

were clustered and functional enrichment analysis was performed for each gene module. 

Additional analysis applied to the whole networks is a deduction of gene regulators 

associated with previously identified fibrosis markers. For this purpose, we inferred a 

subnetwork based on 87 genes (which were previously identified as important for 

fibrogenesis and tissue remodeling in response to different types of CNTs [13, 29]) and 

their direct regulators identified in the whole networks (see Figure 2).  

Arid5a, Myc and Mxd1 were identified as important gene regulators of the acute 

inflammatory phase under stress conditions developed following CNT treatment. Arid5a 

was identified as a TF hub in the interleukin module in the whole CNT networks and 

fibrosis-related subnetworks. This TF was directly connected with Il6 gene in CNT 

networks, suggesting their closely related activity. A few studies have been published that 

demonstrate that Arid5a is an essential player in the posttranscriptional regulation of Il6. 
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Arid5a controls Il6 mRNA stability and protects Il6 mRNA from regnase-1-mediated 

degradation [31]. Importantly, Arid5a-deficient mice display reduction of BLM-induced lung 

injury [59]. Arid5a, together with the TF Myc, colocalized in the CNT networks with cytokine-

related genes, mostly appearing in the first phase of inflammatory response. Myc also was 

identified as a TF hub in whole CNT networks and Myc had one of the highest number of 

connections in the fibrosis-related subnetwork. This finding is in line with a recent report 

that upstream analysis identified Myc as a key regulatory gene, activated in response to 

both NM-401 and NRCWE-26 treatments [6]. Myc may also be involved in fibrogenetic 

processes. Myc can regulate and be itself regulated by several cytokines [30], which 

stimulate the expression of pro-fibrotic genes. On the other hand, among Myc’s 

transcriptional targets are integrins, which are transmembrane, cell signaling proteins that 

control cell surface adhesion, cell-matrix and other processes [60, 61]. Integrins can 

mediate the activation of the latent form of TGF-β [61–63], which is considered as a key 

regulator of fibrosis. Myc can directly bind to the promoter of integrin αv and induce its 

transcription [61], thereby promoting the activation of the latent form of TGF-β. Activation of 

Myc target genes depends on its cofactors. Heterodimerization of Myc with Max is 

necessary for activation of Myc target genes. The protein Mad, which is encoded by Mxd1 

gene, competes with Myc for binding to Max and thereby inhibits Myc activity [33]. In our 

analysis, Mxd1 was also identified as a crucial TF. Therefore, we hypothesize that the 

balance between the fold change value of Myc and Mxd1 can be used for the prediction of 

Myc activity. The ratio Myc : Mxd1 was significantly higher in NRCWE-26 than in NM-401-

induced stress response (1.66 and 0.3, respectively). This result corroborates the finding 

that the logFC for Myc is greater for NRCWE-26 than for the NM-401 treatment (Additional 

file 9). 

Transcription factor Irf7, the important player in the innate immune response and the 

activator of the viral defense system via triggering type I interferon pathway [39], was 

identified in this analysis as a critical gene regulator in response to both CNTs and BLM. 

The most interesting finding was that NRCWE-26 inhalation showed a biphasic effect: 

middle and low doses of NRCWE-26 induced the interferon response, while high doses did 

not alter genes from this signaling pathway. A possible explanation for this effect may be 

that in high concentrations NRCWE-26 nanoparticles can form agglomerates (clots), which 

are sensed by immune cells in a different manner than distinct nanoparticles. 
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Another transcription factor that has been identified as an inflammation-related gene 

regulator for CNTs and BLM treatment is Litaf, which controls one of the alternative 

downstream signaling pathways of TLR2/4 [38]. These types of toll-like receptors control 

interferons and cytokines expression and are involved in cellular stress response upon 

action of exogenous or endogenous ligands, such as bacterial LPS and group of proteins 

from damage-associated molecular pattern [64]. Data from several sources have identified 

the activation of TLR2/4 signaling in response to nanoparticles [65, 66] or BLM treatment 

[67]. Litaf was upregulated during acute inflammation phase and had direct links with 

fibrosis-related genes in CNT and BLM networks for the later time period. 

Our findings further support the idea of a pivotal role of macrophage polarization in the 

cellular response to nanoparticles and BLM [12, 68]. We identified the TF Mafb as a 

potential driver of this activity. Mafb was identified in the networks associated with Fc 

gamma receptors expression (as mentioned above ), which can define pro- or anti-

inflammatory profile of immune cells [69] and also can be involved in regulation of M1/M2 

macrophage polarization [70]. 

We have also shown that cell cycle and DNA damage signaling was altered in response to 

all agents. TFs E2f8, E2f1, Foxm1 were identified as important regulators of this stress 

response signaling. It is interesting to note that cell cycle and DNA damage module was 

mainly associated with fibrotic markers in the BLM network. These findings further support 

the idea of different nature of activation of cell cycle and DNA damage pathways in 

response to BLM and nanoparticles. BLM can directly induce single- and double-stranded 

DNA breaks [71], while NM-401 and NRCWE-26 nanoparticles induce mainly an 

inflammation response, which can cause DNA damage. Previous studies have reported the 

absence of DNA strand breaks for these nanoparticles [11, 13]. 

Conclusions 

In the present study we revealed the landscape of transcriptional regulation of responses to 

CNTs and BLM. This analysis identified common and distinctive features for each agent. 

Activity of Myc was mainly associated with cytokine regulation in response to nanoparticles 

and with p53 signaling in response to BLM. Under the control of TFs Irf7, Stat2 and Irf9, 

interferon response was activated by all agents, and NRCWE-26 treatment showed a 

biphasic, dose-dependent effect. Despite the different nature of the lung injury caused by 
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CNTs and BLM, we identified common gene regulators. TFs Litaf and Mafb were identified 

as essential regulators in noncanonical signaling of TLR2/4 and M1/M2 macrophage 

polarization, respectively, highlighting the universal features of these cell responses for 

fibrosis progression. 

In summary, we developed the TF-centric pipeline used to reveal gene regulators, their 

associated biological processes and signaling pathways, which were altered in response to 

CNTs and BLM. This method uses transcriptomics data, generates specific to toxic agent 

interaction networks and is independent from bias in the reference databases for pathway 

mapping. Moreover, this approach can be useful for generating toxicity pathways and 

adverse outcome pathway schemes for toxic agents. 

Methods 

Data set 

The gene expression profiles for two types of multi-walled CNTs (GSE55286), NM-401 

(4048±366 nm in length) and NRCWE-26 (847±102 nm in length), and bleomycin 

(GSE40151) were obtained from Gene Expression Omnibus Database 

(https://www.ncbi.nlm.nih.gov/geo/) (Table 4). Data for the MWCNTs was generated using 

Agilent SurePrint G3 Mouse GE 8x60K Microarrays and for bleomycin using Affymetrix 

Mouse 430 2.0 arrays in in vivo experiments. In the nanoparticle experiments three different 

doses of CNTs (18, 54, 162 μg) and three post-instillation timepoints (1, 3, 28 days) were 

employed. Bleomycin was administered with the one dose 2U/kg body weight, the lung 

tissue was harvested at 7 post-instillation timepoints (1, 2, 7, 14, 21, 28, 35 days). Both type 

of experiments were conducted with vehicle controls for each timepoint. 

DEG analysis was performed using the limma package in R/Bioconductor [20]. The list of 

genes was considered as significantly differentially expressed if the expression changes 

were equal to or larger than ± 1.5-fold for nanoparticles or bleomycin treated group 

compared to non-treated controls for each experimental conditions and the BH-adjusted 

(FDR) p-values were less than or equal to 0.05 (p ≤ 0.05). 
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Table 4. List of used data sets from Gene Expression Omnibus Database. 

Data set Publication Treatment Mouse 

strain 

Number of 

samples 

Post-

exposure 

time point, 

days 

Doses Type of 

microarray 

GSE55286 [13] MWCNT (long 

NM-401 

4048±366 nm, 

short NRCWE-26 

(847±102 nm) 

C57BL6 70 (NM-

401), 69 

(NRCWE-

26) 

1, 3, 28 18, 54, 

162 μg, 

vehicle 

control 

Agilent SurePrint 

G3 Mouse GE 

8x60K Microarray 

GSE40151 [9] Bleomycin C57BL6 111 1, 2, 7, 14, 

21, 28, 35 

2U/kg, 

vehicle 

control 

Affymetrix Mouse 

430 2.0 arrays 

 

Gene Regulatory Network inference 

In order to infer gene regulatory networks for two types of MWCNTs and BLM, we applied 

three different algorithms: linear model of gene regulation with Bayesian variable selection 

[16], the mutual information algorithm ARACNe-AP [17], and the random forest based 

algorithm GENIE3 [18]. The gene interactions were identified for the combined list of DEGs 

derived from all experiments. The predefined list of gene regulators (TFs) was used from 

the AnimalTFDB database [19]. Next, for improving prediction accuracy, we integrated the 

results of all three algorithms by Borda count ranking as described previously [15]. The 

ARACNe-AP algorithm was run with three key steps: MI threshold estimation, 

bootstrapping/MI network reconstruction, building consensus network (only significant 

interactions are filtered, p < 0.05, Bonferroni corrected). Bayesian variable selection and 

GENIE3 algorithms were run with default parameters [16, 18]. Top 3% of the ranked edges 

in each common network were selected for subsequent analysis. Network visualization, 

parameter analysis were performed by open source software platform Cytoscape version 

3.4.0 [72]. The integration of initial GRNs, data processing, statistical analysis were 

performed with R version 3.3.3 (https://www.r-project.org/) and RStudio version 1.0.44 

(https://www.rstudio.com). To identify GRNs modules, the GLay clustering method in 

Cytoscape was applied [14]. For functional annotation of GRN modules we used KEGG 

[73], REACTOME [74], GO [75] databases and gProfileR, ReactomePA toolkits [24, 25]. A 
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threshold for the minimum number of genes per module was 30 and BH-adjusted (FDR) p-

value threshold was 0.005.  

List of abbreviations 

BLM: bleomycin 

CNTs: Carbon nanotubes 

DEGs: differentially expressed genes 

ECM: extracellular matrix 

FCGR: Fcgamma receptor 

GRN: gene regulatory network 

MWCNT: muli-walled carbon nanotubes 

PRRs: pattern recognition receptors 

TF: transcription factor 
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Additional file 1: Inferred GRNs in cytoscape file format. 

Additional file 2: The number of connections for the top 20 (the cells filled with green colour) 

of largest TFs hubs for each whole network. 

Additional file 3: Visualization of the clustered networks with upregulated and 

downregulated DEGs for different time points. 

Additional file 4: KEGG pathway analysis of differentially expressed genes from GRN 

modules. The analysis was performed for each time point and for 

upregulated/downregulated genes separately. 
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Additional file 5: REACTOME pathway analysis of differentially expressed genes from GRN 

modules. The analysis was performed for each time point and for 

upregulated/downregulated genes separately. 

Additional file 6: GO functional analysis of differentially expressed genes from GRN 

modules. The analysis was performed for each time point and for 

upregulated/downregulated genes separately. 

Additional file 7: Summary functional analysis of GRN modules. 

Additional file 8: Heatmaps of DEGs from Interferon signaling pathway (REACTOME). 

Additional file 9: Balance of Myc and Mxd1. The experimental results are presented in the 

descended order of logFC values for Myc. List of cytokines were derived from “Innate & 

Adaptive Immune Responses PCR Array” RT² Profiler PCR Array System, QIAGEN. 

Additional file 10: First neighbors for Litaf. 
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