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Abstract  16 

Background: Red calcareous seaweeds of the genus Galaxaura have been associated with coral 17 

reef degradation. Galaxaura has low nutritional value for most herbivorous fishes and produces 18 

allelopathic chemicals in competition with corals. In this study, the abundance of the filamentous 19 

Galaxaura divaricata was surveyed on 13 spatially independent patch reefs across the lagoon of 20 

Dongsha Atoll, an isolated coral reef ecosystem in the northern South China Sea. Variations in 21 

Galaxaura cover on a degraded reef were monitored over a period of 17 months. Epiphytic 22 

macroalgae associated with Galaxaura were quantified, and species identifications aided through 23 

DNA barcoding.  24 

Results: Patch reefs in the lagoon of Dongsha Atoll were degraded, exhibiting relatively low 25 

living coral cover (21 + 3%), but high cover of macroalgae (30 + 4%), and rubbles and dead 26 

coral (47 + 4%). The distribution of Galaxaura was heterogeneous across the lagoon, with 27 

highest abundance in the southeast area. In that area Galaxaura has persistently bloomed on 28 

degraded reef for at least four years, covering up to 41% of the substrate. Galaxaura provides 29 

substrate for various macroalgae, 15 of which were identified to the species level, four to the 30 

genus level, one to the order Gelidiales, and one to the phylum cyanobacteria. Some of these 31 

epiphytes are allelopathic and known to frequently overgrow corals. For instance, the brown alga 32 

Lobophora sp28, third most common epiphytic macroalga on Galaxaura, frequently overgrows 33 

corals across the lagoon of Dongsha Atoll.  34 

Conclusions: Our study demonstrated that an allelopathic and unpalatable seaweed, such as 35 

Galaxaura can bloom on degraded coral reefs for several years. The complex thallus-structure of 36 

Galaxaura provides suitable substrate for other macroalgae, some of which are noxious to corals. 37 
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By increasing the substrate availability for macroalgae, Galaxaura could facilitate the abundance 38 

of macroalgae, and decrease the recovery potential of degraded coral reefs.  39 

Keywords: coral reef, epiphyte; Galaxaura; lagoon; macroalgae; phase-shift. 40 

 41 

Introduction 42 

Coral-macroalgae competition is a major ecological process on coral reefs [1,2]. 43 

However, climate change, overfishing, and anthropogenic pollution have driven corals 44 

worldwide to a decline and often facilitated macroalgae dominance on degraded reefs [3-9]. The 45 

replenishment of corals on degraded reefs is strongly influenced by the types of dominant 46 

macroalgae [10,11]. Macroalgae that produce noxious allelochemicals in competition with corals 47 

are considered most detrimental for the resilience of degraded coral reefs [10,12-14]. 48 

Allelopathic macroalgae may perpetuate their dominance on degraded reefs by inhibiting the 49 

process of successful recruitment of juvenile corals, the key process of coral reef recovery [15-50 

17].  51 

Species of the red, calcareous genus Galaxaura are common on coral reefs in the Pacific 52 

Ocean [18-22]. Galaxaura is one of the least nutritious macroalga to herbivores fish [23-26], and 53 

highly competitive with coral because of its allelopathic effects on coral and coral larvae [15,27]. 54 

Extracts of the lipid-soluble secondary metabolites of Galaxaura filamentosa were shown to 55 

cause bleaching and death of coral tissue upon direct contact [13-15,28], and deterred coral 56 

larvae from settlement [29]. It has been suggested that high abundance of Galaxaura on 57 

degraded reefs accounts for the inhibition of coral reef recovery [12,29]. More detailed 58 

investigations of the distribution and ecology of reef-associated seaweeds, such as Galxaura, and 59 
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their roles in outcompeting corals will provide valuable information for coral reef management 60 

and conservation [1,30]. 61 

Dongsha Atoll (also known as Pratas Islands) is the only large coral reef atoll (>500 km2) 62 

in the northern South China Sea. The South China Sea is the largest tropical Pacific marginal sea 63 

in Southeast Asia [31], including numerous coral reef atolls and fringing reefs that are great 64 

natural resources, supplying large numbers of people with goods and services, such as fish and 65 

important ecological values [32-34]. The ring-shaped reef flat of Dongsha Atoll encircles a large 66 

lagoon with seagrass beds and hundreds of coral patch reefs [35]. The Lagoon patch reefs are 67 

structured into tops (1-5 m depth) and slopes (5-12 m depth), and provide important habitat and 68 

sheltered nursery grounds for numerous marine organisms, such as green sea turtles and coral 69 

reef fish, including rays and sharks [32,35-37]. The catastrophic mass bleaching event in 1998 70 

and reoccurring bleaching events thereafter have caused severe mass mortalities of corals in the 71 

lagoon, followed by a marked increase of macroalgae [36,38].  72 

The filamentous, calcareous macroalga Galaxaura divaricata is conspicuous on coral 73 

reefs in the lagoon of Dongsha Atoll [19] where it blooms in certain areas, overgrowing large 74 

parts of degraded reef substrate. Several macroalgae, e.g. Sargassum and Lobophora, are known 75 

to provide substrate and form habitats for epiphytic algae [39-41]. Increased substrate 76 

availability can lead to increased macroalgae biomass on coral reefs [1]. However, whether 77 

Galaxaura provides a suitable substrate for macroscopic epiphytes remains unexplored.  78 

The aims of this study are to document the spatial patterns and persistence of Galaxaura 79 

blooms in the lagoon of Dongsha Atoll, show several aspects of Galaxaura-coral competition, 80 

and identify and quantify epiphytic macroalgae that grow on Galaxaura. Potential implications 81 
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of our observations, regarding the recovery potential of Galaxaura dominated reefs, and the role 82 

of Galaxaura as substrate for the facilitation of macroalgae abundance, are discussed. 83 

 84 

Materials and methods 85 

This study was conducted from April 2016 to September 2017 in Dongsha Atoll (Pratas 86 

Island) (Latitude 20o40’43”N, Longitude 116o42’54”E), an isolated coral reef atoll in the north 87 

of the South China Sea. The climate shows seasonal variability under the East Asian monsoon 88 

system, with a colder northeast monsoon season (as winter) and a warm southwest monsoon 89 

season (as summer) [31]. The ring-shaped atoll covers an area of approximately 500 km2 and is 90 

situated 450 km southwest from the coast of Taiwan and 350 km southeast from Hong Kong (Fig 91 

1). The outer reef flat is interrupted by two channels that are located north and south of a small 92 

islet (1.74km2), allowing for water exchange between the lagoon and the open ocean [36,42]. 93 

The semi-closed lagoon is about 20 km wide with a maximum depth of 16 m deep near the 94 

center [36].  95 

The abundance of the red, calcareous, filamentous seaweed Galaxaura divaricata was 96 

surveyed on 13 spatially independent lagoon patch reefs with SUBA (Fig 1B and S1 Table). Two 97 

45-m transect lines were laid out across the reef top (1-5 m depth) and the reef slope (5-12 m 98 

depth) respectively. The percent cover of Galaxaura, living coral, macroalgae (MA; including 99 

low growing, filamentous turf algae [23, 24]), crustose coralline algae (CCA), and other 100 

substrate was estimated, using a 35 cm x 50 cm PVC quadrat [43]. Estimations were done at 1 m 101 

intervals and a total of 90 replicate quadrats were analyzed for each site. ‘Other substrate’ mainly 102 

constituted dead corals, rubbles, larger rocks covered with sediments and sparse turf algae, and 103 
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sand. The seawater temperature was measured every 30 min from March 2016 to September 104 

2017, using Hobo temperature loggers that were fixed at the reef top and reef slope of each site.  105 

To assess variations over time we monitored the percent cover of Galaxaura and living 106 

coral across the slope of site 7 at 5 m depth in April, July, and September 2016 and in September 107 

2017. 45 replicate photos were taken with an Olympus Stylus-TOUGH TG4 digital camera (25-108 

100 lens, 35mm equivalent) mounted onto a PVC-quadrat at 0.64 cm above a sampling 35 cm x 109 

50 cm quadrat [43], using the survey method described above. Percent cover estimations of 110 

Galaxaura were aided by superimposing a 10 x 10 reference grid onto each photograph, where 1 111 

quadrat represented 1% of the total area.  112 

To quantify epiphytic macroalgae associated with Galaxaura, we randomly collected 30 113 

thalli of Galaxaura from site 7 at 5 m depth. The samples contained an equal proportion of small 114 

(6 + 4 g), medium (23 + 6 g), and large (49 + 20 g) thalli. Epiphytic macroalgae were identified 115 

to the closest identifiable taxonomic unit, using either the guidebook [19] or DNA barcoding. 116 

The presence and absence of each taxonomic unit was recorded, and the occurrence frequency (f) 117 

was calculated as follows: f = c (taxonomic uniti)/n, where c (taxonomic uniti) stands for the 118 

count number of thalli that have the epiphyte taxonomic unit i, and n stands for the total number 119 

of thalli analyzed.  120 

Two-paired t-tests were used to detect significant differences of live coral, macroalgae, 121 

and CCA percent cover between reef tops and reef slopes. A two-way ANOVA and a post-hoc 122 

Tukey test were applied to test for significant differences of Galaxaura percent cover between 123 

reef top and reef slope and among sites. Percent cover of Galaxaura and living coral cover at site 124 

7 from four surveys conducted over a 17-month period were analyzed using a two-way ANOVA, 125 

and p-values < 0.05 were considered significant.  126 
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Macroalgae samples were preserved in silica gel and species identified through DNA 127 

barcoding [44]. DNA was extracted with Quick-DNATM Plant/Seed Miniprep Kit (Zymo 128 

Research Co., USA). Primers for the plastid gene specific amplifications were used as follows: 129 

rbcL F7/R753 for rhodophytes [45], rbcL F68/R708 for Phaeophyceae [46], and tufA 130 

F210/R1062 for green algae [47]. The newly generated sequences were deposited in GenBank 131 

and searched using BLASTn against the GenBank database (S2 and S3 Tables). Sequence 132 

similarities of > 98% were considered for species identification.  133 

 134 

Results 135 

Seawater temperatures in the lagoon were highest during the southwest monsoon season 136 

(June-Sept.), averaging 30.1oC, and lowest during the northeast monsoon season (Nov.-April), 137 

averaging 24.8oC. In July and August, maximum temperatures reached 34oC on reef tops and 138 

32.7oC on reef slopes. Across sites the average coral cover accounted for 21 + 3% (+ SE) of the 139 

benthic substrate (range: 5-43%) (Table 1). Average coverage of the substrate was 30 + 4% 140 

(range: 13-58%) by macroalgae, and 2 + 0.2% (range: 1-3%) by crustose coralline algae (CCA). 141 

Dead corals, rubbles, larger rocks, and sand accounted for an average of 47 + 4% (range: 23-69%) 142 

of the substrate. Living corals dominated the reef substratum on two out of 13 patch reefs (sites 1 143 

and 13), whereas dead corals, rubbles, larger rocks, and sand dominated the substrate on nine out 144 

of 13 sites. Macroalgae cover exceeded live coral cover on seven out of 13 sites. No significant 145 

difference in coral cover and macroalgae cover between reef tops and reef slopes was detected 146 

(P-values = 0.394 and 0.552). 147 

The percent cover of Galaxaura divaricata was significantly different between reef tops 148 

and reef slopes (P-value < 0.01), as well as among the 13 survey sites (P-value < 0.001). The 149 
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post-hoc Tukey test showed that Galaxaura was more abundant on reef slopes than on reef tops 150 

(P-value <0.05). The percent cover of Galaxaura was classified as very low (0-1.5%), low (1.5-151 

5%), moderate (5-20%), and high (>20%) (P-value < 0.05; post-hoc Tukey). Galaxaura was 152 

most abundant on patch reef sites in the southeast lagoon (Table 2). The percent cover of 153 

Galaxaura was highest at site 9 (41%) and on the slope of site 7 (16%). Patch reefs in the 154 

northeast lagoon exhibited moderate, low, and very low cover of Galaxaura (range: 0.21-5.7%). 155 

Survey sites in the south, center, west, and north section of the lagoon were characterized by 156 

very low cover of the alga (range: 0-1.4%). The thallus shape and size of Galaxaura varied 157 

across sites (S1 Fig). Medium (5-15 cm diameter), ball-shaped thalli and large (15-30 cm), 158 

carpet-like thalli were exclusively present in the southeast lagoon. Small (1-5 cm), ball-shaped 159 

thalli and small, slender thalli were dominant on patch reefs in the northeast lagoon. DNA 160 

barcodes revealed that all samples of Galaxaura from various sites across the lagoon were 100% 161 

identical in their rbcL sequences, indicative of conspecificity (S3 Table). 162 

Our observations suggest that a Galaxaura bloom can persist for several years. Thick 163 

canopies of Galaxaura have overgrown dead Acropora rubbles for at least 4 years on a degraded 164 

patch reef in the southeast section of the lagoon, with 41 + 25% Galaxaura cover and 5 + 14% 165 

living coral cover (site 9, 3-5 m depth) (Fig 2A-B). Galaxaura was frequently observed in 166 

contact with coral, which in some cases showed beached and dead tissue underneath or in contact 167 

with Galaxaura. The holdfast of Galaxaura penetrates the calcium carbonate structure, creating 168 

a strong attachment to the coral (Fig 2C). In some cases, fluorescent pink and bleached coral 169 

tissue occurred in contact with Galaxaura, indicative of potential allelopathic effects of G. 170 

divaricata on corals (Fig 2D).  171 
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The percent cover Galaxaura did not vary significantly among surveys at site 7 172 

conducted over a period of 17 months (Fig 3). The cover of Galaxaura and living corals did not 173 

change significantly among surveys (P-value = 0.595). Galaxaura cover averaged 15.91 + 0.6% 174 

(+ SE), and coral cover remained low, averaging 16.45 + 1.17%. Coral cover and Galaxaura 175 

cover were not significantly different (P-value = 0.770), and no interaction between the two was 176 

detected (P-value = 0.780). 177 

In our epiphyte survey we identified 21 taxonomic groups of macroalgae in association 178 

with Galaxaura. Among those groups, we identified 15 to the species level, four to the genus 179 

level, one to the order Gelidiales and one to the phylum cyanobacteria (Table 3 and S2 Table). 180 

Among the 15 identified species, red algae were most abundant (10), followed by brown algae 181 

(5), and green algae (5). The most common species associated with Galaxaura were the red 182 

algae Hypnea caespitosa [48] (100% relative abundance) (Fig 4D), Coelothrix irregularis (87%), 183 

Ceramium dawsoniia (43%) and the brown algae Lobophora sp28 [49] (57%) (Fig 4D), Padina 184 

sp5 [50] (53%), and Dictyota bartayresiana (30%). The most common green algae associated 185 

with Galaxaura were Derbesia marina (37%), Caulerpa chemnitzia (27%) (Fig 4B), and 186 

Boodlea composita (20%). Epiphytic macroscopic cyanobacteria (filamentous > 1cm) had a 187 

relative abundance of 17%. Lobophora sp28, third most common macroalga on Galaxaura, was 188 

identified to frequently overgrow corals across the lagoon of Dongsha Atoll (Fig 5 and S2 Fig). 189 

 190 

Discussion 191 

The results of the benthic surveys indicate that coral reefs in the lagoon of Dongsha Atoll 192 

are highly degraded, with high abundance of dead corals, rubbles, larger rocks, and sand (47%). 193 

Our observation is consistent with previous surveys that noted signs of coral degradation in the 194 
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lagoon, with an extremely large proportion of coral rubbles and dead corals [36,51,52]. The 195 

majority of patch reef sites exhibited a coral cover of lower than 25%, which is considered 196 

degraded [53]. Coral reefs in the South China Sea have been facing increasing chronic and acute 197 

thermals stress over the past decades [33,38,51,54]. The summer mean sea surface temperature 198 

shows an average upward trend of 0.2� / decade, with waters surrounding Dongsha Atoll 199 

warming at a faster rate than other areas of the South China Sea [33]. Prior to the 2007 200 

establishment of Dongsha Atoll Marine National Park, Dongsha Atoll was heavily overfished, 201 

and large coral reef areas were destroyed through dynamite and cyanide fishing [36,52,54,55]. 202 

According to a previous survey coral cover and the number of new small corals were especially 203 

low on patch reefs in the south section of the lagoon [56]. Recurrent coral bleaching events 204 

[36,38,57], coral damage by annual typhoons, and destructive fishing practices may have acted 205 

synergistically, leading to the failure of recovery for some of the lagoon patch reefs. Coral cover 206 

and coral recruitment rate was especially low on patch reefs in the southeast lagoon [56].  207 

Species of the red calcareous alga genera Galaxaura occur in two morphological forms, a 208 

smooth and a filamentous form, which is characterized by fine, assimilatory filaments [21]. Our 209 

observations suggested that, under certain conditions, the filamentous Galaxaura divaricata can 210 

become dominant on degraded reefs and form long-standing canopies that grow frequently in 211 

contact with corals. Galaxaura was heterogeneously distributed across the lagoon, and bloomed 212 

on degraded patch reefs in the southeast section, where it attained largest thallus sizes. Maybe 213 

something like this: 214 

Our observations further show the persistence of Galaxaura on degraded reefs both over 215 

a 17-month period and for at least four years. However, our data do not resolve potential 216 

seasonal variations of Galaxaura during the cooler northeast monsoon season. In the tropical 217 
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waters of Florida, U.S., Galaxaura shows seasonal persistence with no significant change in 218 

abundance among seasons [58].  219 

The causes for Galaxaura blooms in the southeast area of the Dongsha lagoon are not 220 

understood. The dominance of macroalgae, such as Galaxaura, on degraded reefs is probably the 221 

consequence rather than the cause of initial coral decline [1,30,59,60]. There are several potential 222 

factors that could facilitate a Galaxaura outgrowth after a disturbance, including shallow, calm, 223 

and sheltered habitats, and nutrient-rich waters with high turbidity. Other members of the 224 

Galaxauraceae family, such as Tricleocarpa, are known to prefer sheltered habitats [61], and 225 

bloom under high water turbidity and low irradiance [62]. The southeast section of the lagoon, 226 

where Galaxaura is most abundant, is sheltered by the relatively wide reef flat (2 km), and 227 

characterized by shallow waters (1-5 meter) and low current [63]. Galaxaura was absent from 228 

environments with strong water currents, i.e. west lagoon, channels, and forereef, where strong, 229 

erosive currents [35,63] may create unfavorable conditions for Galaxaura to establish.  230 

Due to limited water exchange with the open ocean, coral communities and associated 231 

fauna of the shallow, semi-closed lagoons are highly vulnerable to heat stress, eutrophication, 232 

and hypoxia [64-66], especially under the backdrop of climate change [67]. Recurrent mass 233 

mortality events in the Dongsha lagoon in 2014 and 2015 killed thousands of fish, cephalopods, 234 

gastropods, and crustaceans, and eradicated more than 25 km2 of seagrass, potentially caused by 235 

hypoxia [35,68]. During our 2017 survey we recorded extremely low densities of 236 

macroinvertebrates, including echinoids, sea cucumbers, lobsters, and giant clams (Table S4). 237 

Galaxaura filamentosa was among the very few macroalgae that proliferated in the Hikeru the 238 

lagoon of French Polynesia, following a hypoxia-induced mass mortality event [18]. Elevated 239 
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nutrients from seagrass die offs in the southeast lagoon and a potentially higher resistance to 240 

hypoxia may be additional factors promoting blooms of Galaxaura.  241 

A long-term bloom of Galaxaura is likely to have profound implications on the recovery 242 

potential of degraded reefs. The observations of this study further suggest that Galaxaura 243 

divaricata is potentially allelopathic in competition with corals. Allelopathic competition with 244 

corals has previously been demonstrated for Galaxaura filamentosa [12,14,15,27-29]. Extract of 245 

G. filamentosa were shown to inhibit the settlement of Acropora tenuis larvae [29]. The 246 

susceptibility of coral to algal overgrowth depends on the type of coral [1,59] and the coral 247 

colony form. Branching corals appear most vulnerable to algal overgrowth [69]. In the lagoon of 248 

Dongsha Atoll G. divaricata frequently grew in contact with massive and branching Porites, e.g., 249 

P. lobata, P. cylindrica, and P. solida. Previous studies in the tropical Pacific reported similar 250 

observations, where Porites, in particular Porites cylindrica, was frequently found in contact 251 

with the allelopathic Galaxaura filamentosa, suggesting that Porites may be relatively tolerant to 252 

Galaxaura allelopathic chemicals [15]. Acropora corals are fast growing and considered 253 

competitive against macroalgae overgrowth [59]. However, the majority of the thermal-254 

susceptible Acroporid species were eradicated following reoccurring bleaching events since 1998 255 

[36,57]. The coral community in the lagoon of Dongsha Atoll has since been dominated by more 256 

thermal tolerant genera, such as Porites, Echinopora, Pavona, and Turbinaria [51]. These coral 257 

genera are rather slow-growing, and thought to be less competitive to macroalgae overgrowth 258 

[17,59]. Unlike crustose coralline algae (CCA), Galaxaura does not stabilize the coral reef 259 

matrix, and a long-term bloom of Galaxaura is likely to exacerbate the flattening of the complex 260 

three-dimensional coral reef structure, which may have consequences for reef biodiversity, 261 

ecosystem functioning and associated services [64,70].  262 
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Insufficient grazing after disturbance can lead to the establishment and full outgrowth of 263 

macroalgae beyond their initial stages [30]. Galaxaura is known to be largely unpalatable for 264 

various herbivorous fishes due to its calcareous thallus and low nutritional content 265 

[23,25,26,71,72]. Once established, large macroalgae are less efficiently consumed by 266 

herbivorous fishes [30,73]. Local herbivorous fish population on Galaxaura-dominated reefs in 267 

the Dongsha lagoon may not be effective to prevent or reverse the space monopolization by 268 

Galaxaura [30,74]. It is suggested that Galaxaura can alter the chemical microclimate on 269 

degraded reefs with potential implications on fish behavior. Butterfly fishes and other 270 

corallivores avoid corals in close association with Galaxaura filamentosa, making it potentially 271 

difficult for these trophic guilds to find food [75,76]. Water soluble chemicals of Galaxaura 272 

rugosa negatively impact the predator risk assessment of damselfish by nullifying their 273 

perception of predator warn odors [11]. In summary, the long-standing canopies of Galaxaura 274 

are likely to hamper coral larvae recruitment through allelopathic recruitment inhibition [29], 275 

ultimately preventing coral reef recovery [1,15].  276 

Galaxaura divaricata provides a suitable substrate to host a variety of macroalgae. Some 277 

of the identified macroalgae on Galaxaura are widely important in coral overgrowth in response 278 

to disturbances, and are known for their allelopathic inhibition coral larvae recruitment, e.g. 279 

Lobophora [77,78], Dictyota bartayresiana [79,80], and cyanobacteria [81,82]. Here, we firstly 280 

report that the yet undescribed species, Lobophora sp28 [49], third most abundant macroepiphyte 281 

on Galaxaura, was frequently observed to overgrow and kill corals, preferentially branching 282 

Porites spp. (primarily P. cylindrica) through epizoism (Figs 5 and S2). Similarly, Lobophora 283 

hederacea overgrows and kills corals in New Caledonia through epizoism [83].  284 
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Galaxaura is known to be of low preference to various herbivorous fishes due to its 285 

calcification [84,85] and low nutritional value [25,84,86,87]. Galaxaura was proposed to provide 286 

associational refuge to more palatable macroalgae [86]. For instance, rabbitfishes prefer 287 

Caulerpa and Dictyota [88,89], but avoid Galaxaura [23]. These epiphytic macroalgae thus 288 

could indirectly gain the benefit by growing between the branches of Galaxaura, as they are less 289 

likely to be spotted by herbivorous fish. Commensalistic interactions are important for the 290 

establishment of less common, nutrient-rich seaweeds that grow in association with common, 291 

nutrient-poor seaweeds [80]. Even if the common seaweeds lowered the growth rate of the less 292 

common ones (competition), evidence suggest that the benefits provided by macroalgae 293 

associations outweigh the drawbacks through competition [80,90]. Moreover, the microscopic 294 

filaments of Galaxaura may facilitate the attachment of macroalgae spores, while the calcium 295 

carbonate branches may provide structural support for other macroalgae. Considering that an 296 

increase in substrate availability can enhance the biomass of macroalgae on the reef [1], we 297 

hypothesize that, by providing a suitable and sheltered substrate for epiphytic macroalgae, 298 

Galaxaura may facilitate the diversity and abundance of macroalgae on degraded reefs. This 299 

study is merely observational and does not provide experimental evidence for the facilitation of 300 

macroalgae diversity and abundance by Galaxaura. However, the abovementioned hypotheses 301 

would be of great interest awaiting future validation. 302 

 303 

Conclusions 304 

Our observations illustrated that the allelopathic and unpalatable seaweed Galaxaura 305 

divaricata can become dominant on degraded reefs in shallow, sheltered environments. On 306 

degraded coral reefs, the dominant macroalgae have a profound impact on coral recruitment and 307 
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coral recovery. Allelopathic and unpalatable macroalgae such as Galaxaura were proposed to 308 

perpetuate their dominance on degraded reefs by chemically inhibiting the process of coral 309 

recruitment. Thus, a long-term dominance by the allelopathic, nutrient-poor Galaxaura could 310 

provide a negative feedback, perpetuating reef degradation. In addition, we suggest that 311 

Galaxaura provides a suitable substrate for a variety of macroalgae, potentially facilitating 312 

macroalgae growth and abundance on degraded reefs. Several common macroepiphytes on 313 

Galaxaura have been proven to be allelopathic in competition with corals and inhibit coral larvae 314 

settlement. Thus, degraded coral reefs dominated by Galaxaura may fail to recover, and face a 315 

substantial decline in biodiversity of corals, fishes, and other associated fauna, which may have 316 

far-reaching effects on coral reef ecosystem functioning and services. Macroalgal assemblages, 317 

such as the Galaxaura-macroepiphyte system, warrant further investigation to better understand 318 

the interactions between macrophyte inhabitants and habitat forming seaweeds and their 319 

ecological implications. There are 439 listed coral reef atolls on earth; among them are 335 with 320 

open or semi-enclosed lagoons [91]. Atoll lagoons are highly productive and serve as valuable 321 

and nursery habitat for marine life; however, they are most vulnerable to the effects of climate 322 

change [18,66,67]. Results from our study can be informative for the management and 323 

conservation of lagoons and shallow, inshore coral reef ecosystems, especially for coral reefs in 324 

the South China Sea and the Pacific Ocean, where Galaxaura is a common seaweed.  325 
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Tables 546 

Table 1. Covera (%) of live coral, macroalgae (MA), crustose coralline algae (CCA), and 547 

other substrate on 13 patch reefs in the lagoon of Dongsha Atoll, South China Sea. 548 
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aData are mean (%) + SD of 90 replicate quadrats. 566 
b “Other substrate” constituted mainly dead coral, larger rocks covered with sediments and sparse 567 

turf algae, rubbles and sand. 568 

  569 

 
Location Coral MA CCA Otherb 

1 North 40 + 24 35 + 23 1.93 + 2.18 23 + 25 
2 North 22 + 25 13 + 12 2.57 + 5.58 63 + 32 
3 North 24 + 22 29 + 23 1.47 + 2.39 46 + 24 
4 Northeast 10 + 15 20 + 16 1.37 + 2.42 69 + 22 
5 Northeast 17 + 19 29 + 25 1.62 + 1.91 53 + 32 
6 Northeast 24 + 20 19 + 15 2.15 + 3.01 55 + 25 
7 Southeast 14 +17 58 + 24 2.79 + 2.59 25 + 22 
8 Southeast 29 + 29 20 + 14 2.07 + 2.15 50 + 33 
9 Southeast 5 + 14 41 + 25 0.84 + 0.89 53 + 25 

10 Center 10 + 13 43 + 27 3.33 + 3.07 43 + 25 
11 Center 24 + 27 18 + 19 1.07 + 1.27 56 + 25 
12 West 11 + 19 42 + 24 2.46 + 2.94 45 + 26 
13 West 43 + 25 22 + 18 3.00 + 3.63 32 + 29 

 
mean + SE 21 + 3 30 + 4 2.05 + 0.21 47 + 4 
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Table 2. Cover (%) of Galaxaura divaricata on 13 patch reefs in the lagoon of Dongsha Atoll, 570 

South China Sea. 571 

Site Location 
Patch reef area 

Cover rank 
Top (1-5 m) Slope (5-10 m) 

1 North 0.02 0.02 very low 
2 North 0 0 very low 
3 North 0.27 0.31 very low 
4 Northeast 1.52 1.4 very low - low 
5 Northeast 5.69 3.37 low - moderate 
6 Northeast 0.79 0.21 very low 
7 Southeast 0.02 15.86 moderate 
8 Southeast 0.17 4.31 very low - low 
9 Southeast 41.87 40.87 high 
10 South 0 0 very low 
11 Center 0.46 0.02 very low 
12 West 0 0 very low 
13 West 0 0 very low 
aData are mean (%) of 45 replicate quadrats for reef top and reef slope respectively. 572 
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Table 3. Relative abundance (%) of epiphytic macroalgae on Galaxaura divaricata from a 574 

degraded patch reef.  575 

Epiphyte taxon Phylum Relative abundance 
Acanthophora spiciferaa Red 3 
Ceramium dawsonii (MH048927)

b Red 43 
Coelothrix irregularis (MH048928) Red 87 
Dichotomaria obtusata Red 3 
Gelidiales Red 27 
Gracilaria spp. Red 7 
Hypnea caespitosa (MH048929, MH048930, MH048931) Red 100 
Hypnea sp. (MH048932) Red 30 
Laurencia dendroidea Red 13 
Laurencia spp. Red 20 
Dictyota bartayresiana Brown 30 
Dictyota spp. Brown 13 
Lobophora sp28c

(MH048934, MH048935, MH048936, MH048937) Brown 57 
Padina sp5d

(MH048933) Brown 53 
Sargassum spp. Brown 3 
Boodlea composita Green 20 
Caulerpa chemnitzia (MH048959) Green 27 
Derbesia marina Green 37 
Phyllodictyon anastomosans Green 10 
Valonia ventricosa Green 10 
Cyanobacteria (filamentous > 1cm)  Cyanobacteria 17 

Macroscopic epiphytes were identified from 30 thalli of G. divaricata from site 7 at 5 m depth. 576 
aIdentification of species and taxonomic groups according to [19]. 577 
bGenBank number in parentheses based on species identifications through DNA barcoding.  578 
cDenomination according to [49]. 579 
dDenomination according to [50].  580 

581 
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Figure legends 582 

Fig 1. Study site. A) Geographical location of Dongsha Atoll in the northern South China Sea. B) 583 

Lagoon patch reef sites surveyed in this study. 584 

Fig 2. Galaxaura divaricata overgrowth of corals. A-B) Galaxaura has overgrown a degraded 585 

patch reef in the southeast lagoon of Dongsha Atoll for at last 4 years (site 9, 3-5 m depth). C) 586 

The holdfast of G. divaricata penetrates into a branching Porites coral (Porites cylindrica), 587 

creating small holes (inlet). D) Coral (Porites solida) tissue bleaching (arrows) following direct 588 

contact with Galaxaura, allelopathic chemicals produced by the alga.  589 

Fig 3. Long-lasting bloom of Galaxaura divaricata on site 7 in the southeast lagoon of 590 

Dongsha Atoll. The percent cover of G. divaricata did not change significantly among surveys 591 

conducted over a period of 17 months (P-value > 0.05; Two-way ANOVA). Data are mean + SE 592 

of 45 replicate quadrats. 593 

Fig 4. Examples showing epiphytic macroalgae that frequently grow on Galaxaura 594 

divaricata. A) Valonia ventricosa, B) Caulerpa chemnitzia, C) Dictyota sp., D) Lobophora sp28 595 

[49] (arrow head), and Hypnea caespitosa (arrow).  596 

Fig 5. Coral overgrowth by Lobophora sp28. A) Example showing Lobophora sp28 growing 597 

on Galaxaura divaricata (arrows), and in contact with coral (Porites solida) (arrowheads). B) 598 

Coral overgrowth (Porites cylindrica in this case) by Lobophora sp28 is wide spread in the 599 

shallow lagoon of Dongsha Atoll. 600 

 601 
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Supplementary information  603 

S1 Table. GPS coordinates of patch reef survey sites in the lagoon of Dongsha Atoll, South 604 

China Sea (Taiwan). 605 

Site Latitude Longitude 
1 20o44'26.28'' 116o47'8.879'' 
2 20o43'31.62'' 116o47'52.679'' 
3 20o42'16.14'' 116o48'27.419'' 
4 20o44'20.52'' 116o51'35.699'' 
5 20o42'29.88'' 116o52'54.599'' 
6 20o42'6.72'' 116o50'53.279'' 
7 20o38'24'' 116o50'20.999'' 
8 20o38'3.12'' 116o49'30.479'' 
9 20o36'52.86'' 116o49'24.179'' 
10 20o36'53.4'' 116o46'2.399'' 
11 20o39'52.2'' 116o46'32.159'' 
12 20o41'49.2'' 116o44'45.659'' 
13 20o42'12.36'' 116o44'14.639'' 
 606 
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S2 Table. Information and Genbank numbers of macroalgae samples used for DNA 608 

barcoding in this study. 609 

Species Phylum Voucher# Date Site Area Substrate Marker GenBank# 

Ceramium dawsonii Red KO208 Oct-16 7 slope G. divaricata rbcL MH048927 

Coelothrix irregularis Red K0206 Oct-16 7 slope G. divaricata rbcL MH048928 

Hypnea caespitosa Red K0204 Oct-16 7 slope G. divaricata rbcL MH048929 

Hypnea caespitosa Red K0203 Oct-16 7 slope G. divaricata rbcL MH048930 

Hypnea caespitosa Red SD17120 Aug-17 7 slope G. divaricata rbcL MH048931 

Hypnea sp. Red K0205 Oct-16 7 slope G. divaricata rbcL MH048932 

Lobophora sp28a Brown SD17023 Aug-17 7 slope G. divaricata rbcL MH048934 

Lobophora sp28 Brown SD17021 Aug-17 7 slope G. divaricata rbcL MH048935 

Lobophora sp28 Brown SD17019 Aug-17 7 slope G. divaricata rbcL MH048936 

Lobophora sp28 Brown SD17017 Aug-17 7 slope G. divaricata rbcL MH048937 

Lobophora sp28 Brown K0173 Apr-16 7 slope Coral rbcL MH048940 

Lobophora sp28 Brown SD17058 Aug-17 9 slope Coral rbcL MH048941 

Padina sp5b Brown SD17114 Aug-17 7 slope G. divaricata rbcL MH048933 

Caulerpa chemnitzia Green SD17117 Aug-17 7 slope G. divaricata tufA MH048959 
aDenomination according to [49]. 610 
bDenomination according to [50]. 611 
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S3 Table. Information and Genbank numbers of Galaxaura divaricata samples from 613 

various locations in the lagoon of Dongsha Atoll that were used for DNA barcoding in this 614 

study. 615 

Species Voucher# Date Site Area Substrate Thallus size Marker GenBank# 
G. divaricata K0210 Apr-16 7 slope rock medium rbcL MH048946 
G. divaricata R90B12 Feb-14 9 top rock large rbcL MH048942 
G. divaricata SD17048 Aug-17 9 slope rubble large rbcL MH048957 
G. divaricata SD17098 Aug-17 6 top rock small rbcL MH048943 
G. divaricata SD17099 Aug-17 1 top rock small rbcL MH048956 
G. divaricata SD17100 Aug-17 5 top rock small rbcL MH048955 
G. divaricata SD17101 Aug-17 5 top rock small rbcL MH048958 
G. divaricata SD17102 Aug-17 5 slope rock medium rbcL MH048954 
G. divaricata SD17103 Aug-17 1 slope rock small rbcL MH048953 
G. divaricata SD17104 Aug-17 6 slope rock medium rbcL MH048952 
G. divaricata SD17105 Aug-17 5 slope rock medium rbcL MH048951 
G. divaricata SD17106 Aug-17 6 slope rock small rbcL MH048950 
G. divaricata SD17107 Aug-17 6 slope rock small rbcL MH048944 
G. divaricata SD17110 Aug-17 6 top coral medium rbcL MH048949 
G. divaricata SD17112 Aug-17 4 slope rock medium rbcL MH048948 
G. divaricata SD17113 Aug-17 4 slope rock small rbcL MH048947 

 616 
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S4 Table. Paucity of macrobenthic invertebrates in the lagoon of Dongsha Atoll. 618 

Macrobenthic fauna Count Density (individual/ 100 m2) 
Diadema savignyi 3 0.03 
Diadema setosum 1 0.01 
Echinometra mathaei 126 1.26 
Echinothrix calamaris 3 0.03 
Tripneustes gratilla 4 0.04 
Culcita novaeguineae 54 0.54 
Echinaster luzonicus 2 0.02 
Fromia spp. 8 0.08 
Linckia multifora 15 0.15 
Holothuria 0 0 
Cypraea tigris 3 0.03 
Giant clam 34 0.34 
Lambis spp. 3 0.03 
Lobster 0 0 
Data derived from a belt transect survey of 13 patch reefs and seven seagrass beds (10,000 m2 619 

total area surveyed) across the lagoon of Dongsha Atoll in September 2017.  620 
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S1 Fig. Various sizes and thallus shapes of Galaxaura divaricata from different locations in 622 

the lagoon of Dongsha Atoll. A-B) Small, ball-shaped thalli, and C-D) small, slender thalli were 623 

dominant on patch reefs in the north and northeast lagoon. E) Medium, ball-shaped thalli, and F) 624 

large carpet-like thalli were exclusively present in the southeast section of the lagoon.  625 

S2 Fig. Coral overgrowth by Lobophora sp28. A) Coral overgrowth (Porites cylindrica in this 626 

case) by Lobophora sp28 is a wide spread in the lagoon of Dongsha Atoll. B) The same coral 627 

showing dead tissue (arrow) after removal of the algae. 628 
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 630 

Fig. 1. 631 
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Fig. 2. 633 
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Fig. 3. 635 
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Fig. 4. 638 
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640 

Fig. 5. 641 
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Fig. S1. 644 
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Fig. S2. 647 

A. B.
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