1	Filamentous calcareous alga provides a substrate for coral-
2	competitive macroalgae in the degraded lagoon of Dongsha
3	Atoll, Taiwan
4 5	Short title: Filamentous calcareous alga provides substrate for coral-competitive macroalgae
6	
7	Carolin Nieder ¹ , Chaolun Allen Chen ^{2,3,4} , and Shao-Lun Liu ^{5*}
8	¹ Institute of Marine Science, University of Auckland, Auckland, New Zealand
9	² Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
10	³ Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
11	⁴ Department of Life Science, National Taiwan Normal University, Taipei 106,
12	Taiwan
13	⁵ Department of Life Science & Center for Ecology and Environment, Tunghai
14	University, Taichung, Taiwan
15	
16	
17	* Corresponding author; E-mail: shaolunliu@gmail.com (SLL)
18	

19 Abstract

20	Background: The chemically-rich seaweed <i>Galaxaura</i> is not only highly competitive
21	with corals, but also provides substrate for other macroalgae. Its ecology and
22	associated epiphytes remain largely unexplored. To fill this knowledge gap, we herein
23	undertook an ecological assessment to explore the spatial variation, temporal
24	dynamics, and epiphytic macroalgae of G. divaricata on patch reefs in the lagoon of
25	Dongsha Atoll, a shallow coral reef ecosystem in the northern South China Sea,
26	repeatedly impacted by mass coral bleaching events.
27	Methods: Twelve spatially independent patch reefs in the Dongsha lagoon were first
28	surveyed to assess the benthic composition in April 2016, and then revisited to
29	determine G. divaricata percent cover in September 2017, with one additional
30	Galaxaura-dominated reef (site 9). Four surveys over a period of 17 months were
31	carried out on a degraded patch reef (site 7) to assess the temporal variation in G .
32	divaricata cover. Epiphytic macroalgae associated with G. divaricata were quantified
33	and identified through the aid of DNA barcoding.
34	Results: Patch reefs in the Dongsha lagoon were degraded, exhibiting relatively low
35	live coral cover (5-43%), but high proportions of macroalgae (13-58%) and other
36	substrates (rubble and dead corals; 23-69%). The distribution of G. divaricata was
37	heterogeneous across the lagoon, with highest abundance (16-41%) in the southeast

38	area. Temporal surveys from site 7 and photo-evidence from site 9 suggested that an
39	overgrowth by G. divaricata was still present to a similar extend after 17 months and
40	3.5 years. Yet, G. divaricata provides a suitable substrate some allelopathic
41	macroalgae (e.g., Lobophora sp.).
42	Conclusions: Our study demonstrates that an allelopathic seaweed, such as <i>G</i> .
43	divaricata, can overgrow degraded coral reefs for extended periods of time. By
44	providing habitat for harmful macroalgae, a prolonged Galaxaura overgrowth could
45	strengthen negative feedback loops on degraded coral reefs, further decreasing their
46	recovery potential.
47	
48	Keywords: coral reef; epiphyte; Galaxaura; lagoon; macroalgae; phase-shift.
49	
50	Introduction
51	Coral-macroalgae competition is a naturally ecological process on coral reefs
52	[1]. However, anthropogenic disturbances, e.g., climate change, overfishing, and
53	pollution, have intensified space competition of macroalgae against corals and in turn
54	led to a phase shift from a coral-dominated to a macroalgae-dominated ecosystem [2].
54 55	led to a phase shift from a coral-dominated to a macroalgae-dominated ecosystem [2]. The recovery of live corals on degraded reefs is strongly influenced by the types of

57	Allelopathic macroalgae produce lipid-soluble secondary metabolites, e.g., loliolide
58	derivatives or terpenes, that are poisonous to corals (known as allelochemicals). Such
59	allelochemicals are capable of bleaching and killing coral tissue [5], decreasing the
60	photosynthetic efficiency of zooxanthellae [6], and altering the coral microbiome,
61	ultimately decreasing coral health [7,8]. Allelopathic macroalgae are considered most
62	detrimental for the resilience of coral reefs [12], as these types may perpetuate their
63	dominance by deterring coral larval settlement, and inhibiting the growth and survival
64	of juvenile recruits, key processes of coral reef recovery [9-11].
65	The red upright calcifying seaweed Galaxaura is known to be highly
66	allelopathic against corals. Life history of the genus Galaxaura can be grouped into
67	two morphotypes, a smooth and a filamentous type. The latter is characterized by
68	hairy branches that are covered with fine assimilatory filaments [12]. Extracts of the
69	lipid-soluble secondary metabolites of G. filamentosa were shown to cause bleaching
70	and death of coral tissue [13,14], and deterred coral larvae from settling [15]. It has
71	thus been suggested that high abundance of Galaxaura on degraded reefs can inhibit
72	the recovery of live coral cover [4,15,16].
73	The filamentous morphotype of G. divaricata, is widely distributed in
74	subtropical and tropical reef areas in the Pacific Ocean [17]. Filamentous G.
75	divaricata is also common on coral reefs in the shallow lagoon of Dongsha Atoll [18].

76	Dongsha Atoll is the only large (> 500 km^2) coral reef atoll in the northern South
77	China and represents a highly valuable hot-spot for marine biodiversity in this region
78	[19]. A catastrophic mass bleaching in 1998 and reoccurring bleaching events
79	thereafter have, however, caused severe mass mortalities of corals in the Dongsha
80	lagoon, followed by a marked increase of macroalgae [20,21]. To date, little is known
81	about the current state of recovery and dominant macroalgae in Dongsha lagoon patch
82	reefs. The proliferation of G. divaricata on degraded reefs in the lagoon of Dongsha
83	Atoll was first uncovered during a systematic macroalgae sampling expedition in
84	February 2014 [18]. Of interest to us was our observation that G. divaricata was
85	highly populated by macroalgae. Habitat formation is known from other macroalgae
86	(e.g., crustose Lobophora or canopy-forming Sargassum and Turbinaria) that provide
87	substrate for epiphytic algae [22-24]. The dense epiphytic community associated with
88	G. divaricata might indicate a previously unappreciated role of Galaxaura as a habitat
89	forming seaweed.
90	The goals of this study were to 1) assess the benthic composition of lagoon
91	patch reefs, 2) document the spatial distribution of G. divaricata on patch reefs in the

92 lagoon, 3) monitor the temporal dynamics of *G. divaricata* percent cover over time,

and 4) quantify and identify the epiphytic macroalgae associated with *G. divaricata*.

94 The provision of new habitat for other macroalgae by *G. divaricata* could have

95	several ecological implications, worth exploring. For instance, the epiphytic
96	community on G. divaricata may enhance macroalgae biodiversity on the reef, or
97	provide trophic support for herbivores, while a facilitation of allelopathic algal types
98	would decrease the resilience of coral reefs.
99	
100	Materials and methods
101	Ethics statement
102	The ecological assessments and sample collections in this study were
103	conducted with permissions of the Dongsha Atoll National Park.
104	
105	Site description
106	This study was conducted from April in 2016 to September 2017 in the lagoon
107	of Dongsha Atoll (also known as Pratas Island; 20°40'43" N, 116°42'54" E), which is
108	an isolated coral reef atoll in the northern South China Sea. The atoll covers an area of
109	approximately 500 km ² and is situated 450 km southwest from the coast of Taiwan
110	and 350 km southeast from Hong Kong (Fig 1A). The climate is seasonal and varies
111	between a northeast monsoon winter (October-April) and southwest monsoon summer
112	(May-September) [25]. Field work during the northeast winter monsoon is often
113	restricted due to local weather conditions. The ring-shaped reef flat encircles a large
	6

114	lagoon with seagrass beds and hundreds of coral patch reefs [26]. Channels, at the
115	north and south of the small islet (1.74km ²), interrupt the reef flat, allowing for water
116	exchange between the lagoon and the open ocean. The semi-closed lagoon is about 20
117	km wide with a maximum depth of 16 m near the center [20]. The Lagoon patch reefs
118	are structured into reef tops (1-5 m depth) and reef slopes (5-12 m depth), and provide
119	important habitat and sheltered nursery grounds for numerous marine organisms, such
120	as green sea turtles and coral reef fish, including rays and sharks [26]. For background
121	information the lagoon water temperature was measured at each survey site, every 30
122	min from March 2016 to September 2017 using HOBO Pendant® Temperature/Light
123	8K Data Loggers (UA-002-08, Onset Computer Corporation, USA). Water
124	temperatures were highest during the summer monsoon, averaging 30.1°C, and lowest
125	during the winter monsoon, averaging 24.8°C. Maximum temperatures from July to
126	August reached 34°C on reef tops and 32.7°C on reef slopes.
127	
128	Spatial variation in benthic composition and G. divaricata cover of lagoon patch
129	reefs
130	To assess the benthic composition of patch reefs in the lagoon of Dongsha
131	Atoll, 12 spatially independent reefs were initially surveyed with SCUBA in April

132 2016 (Fig 1B and S1 Table). A 45-m transect was laid out across each reef area: reef

133	top (1-5 m depth) and reef slope (5-12 m depth). The two transects were 10-20 m
134	apart from each other. The percent cover of live corals, total macroalgae (MA; all
135	upright growing (including G. divaricata) and crustose non-coralline seaweeds, and
136	low growing, filamentous turf algae [27]), crustose coralline algae (CCA), and other
137	substrates was estimated using a 35 cm x 50 cm PVC sapling frame [28]. Other
138	substrates mainly constituted dead coral skeleton, rubble, and rocks covered with
139	sediments. Estimates were done <i>in-situ</i> at every meter mark, with a total of 45
140	sampling frames analyzed per transect. The 12 sites were revisited in September 2017
141	to estimate the percent cover of G. divaricata and live corals only, using the same
142	survey method described above. An additional patch reef (site 9) was included, as this
143	site was historically shown to be dominated by G. divaricata based on photo evidence,
144	resulting in a total of 13 survey sites (Fig 1B and S1 Table). The diameter of
145	haphazardly selected G. divaricata thalli were measured in situ at each site and
146	classified as small (1-5 cm diameter), medium (>5-15 cm diam.), and large (>15-30
147	cm diam.).
148	Temporal variation in G. divaricata cover

- 149 To assess variations in the *G. divaricata* cover over time, we selected the slope
- area of a degraded patch reef (site 7) that was considerably overgrown by G.
- 151 *divaricata* (14-18%) and had relatively low coral cover (13-19%). Percent cover of G.

152	divaricata, and live corals were estimated in April 2016, the last month of the winter
153	monsoon season, and three times in the summer monsoon season in July, and
154	September 2016, and in September 2017, spanning a period of 17 months. At each
155	time 45 photographs were taken in 1 m intervals along a 45 m fixed transect with an
156	Olympus Stylus-TOUGH TG4 digital camera (25-100 lens, 35mm equivalent)
157	mounted onto a PVC-quadrat (height = 0.64 cm) above a 35 cm x 50 cm sampling
158	frame. Cover estimates were obtained from photographs using ImageJ software, and a
159	superimposed 10 x 10 reference grid, where 1 square represented 1 % of the total grid
160	area. G. divaricata cover estimates were arbitrarily ranked into four different
161	categories: very low (0-1.5%), low (>1.5 – 5%), high (>5-20%), and very high
162	(>20%).

163

Epiphytic macroalgae associated with *G. divaricata* 164

This study was carried out in September 2017. Thirty thalli of G. divaricata 165 were collected from a degraded reef (site 7) with relatively high percent cover of G. 166 167 divaricata (14-18%). G. divaricata thalli were haphazardly collected along a 45-m transect at 5 m depth. Epiphytic macroalgae were removed and identified to the 168 169 closest identifiable taxonomic unit, using either the Dongsha seaweed guide book [18] or DNA barcoding. The presence and absence of each taxonomic unit was recorded, 170

171	and the occurrence frequency (f) was calculated as follow: $f = c (taxonomic unit_i)/n$,
172	where c (taxonomic unit _i) stands for the count number of thalli that have the epiphyte
173	taxonomic unit i , and n equals 30, the total number of thalli analyzed. For DNA
174	barcoding, macroalgae samples were preserved in silica gel after collection, and the
175	total genomic DNA of samples was extracted with Quick-DNA TM Plant/Seed
176	Miniprep Kit (Zymo Research Co., USA). Primers for the plastid gene specific
177	amplifications were used as follows: <i>rbcL F7/R753</i> for red algae [29], <i>rbcL F68/R708</i>
178	for brown algae [30], and <i>tufA F210/R1062</i> for green algae [31]. The newly generated
179	sequences were deposited in GenBank and searched using BLASTn against the
180	GenBank database (S2 and S3 Tables). Sequence similarities of >98% were
181	considered for species identification.
182	
183	Statistical analysis
184	Spatial variations in the percent cover of major benthic categories (corals, total
185	macroalgae, crustose coralline algae, and other substrates) and G. divaricata were
186	compared between two reef areas (top and slope) among sites using a two-way
187	ANOVA, with area and site as fixed factors. Similarly, a two-way ANOVA was

- applied to evaluate the temporal variations in the cover of two major benthic
- 189 categories (live corals and *G. divaricata*) among four time points, with benthic

190	category and time as fixed factors. A significant difference was considered for p-
191	values lower than 0.05. Maps and statistical graphs were done using R software.
192	
193	Results
194	Benthic composition
195	Our spatial survey showed that both live coral cover and total macroalgae
196	cover significantly varied between reef top (1-5 m) and reef slope (5-10 m) and
197	among sites (area × site: $F_{11, 1056} = 17.601-26.27$, $P < 0.05$; Figs 2A and 2B, and S4
198	Table). Percent cover for corals, macroalgae, and CCA were generally higher on the
199	reef top, while other substrates were slightly higher on the slope (area: $F_{1, 1056}$ =
200	6.617-62.725, $P < 0.05$; Figs 2A-2C and S4 Table). We found that the macroalgae
201	cover generally exceeded live coral cover on patch reefs in the Dongsha lagoon (Figs
202	2A and 2B). Using an arbitrary cutoff of 25%, we observed a higher coral cover in the
203	west of the lagoon, in between the North and South channel, where water exchange is
204	more efficient, i.e., sites1-3, 8, 11, and 13 (Fig 2A). In contrast, no clear spatial
205	pattern of the macroalgae cover was observed. Using a 50% cutoff, it, however,
206	appeared that the shallow and calm area in the southeast lagoon showed a higher
207	macroalgae cover than other areas (i.e., sites 7 and 10; Fig 2B). Compared with live
208	corals and total macroalgae, the CCA cover was relatively low (range: 1-3%; Fig 2C),

- 209 while the average "other substrates" cover (mainly dead coral skeletons, rubble, and
- rocks) was extremely high (range: 23-69%; Fig 2D).
- 211
- 212 Spatial variations in *G. divaricata* cover

213	The percent cover of Galaxaura divaricata was significantly different between
214	reef tops and reef slopes, showing a higher percent cover on the slope (area: $F_{1, 1144}$ =
215	6.574, $P < 0.05$; S5 Table). There was a significant statistical interaction between area
216	(slope and top) and site (e.g., top > slope at site 5 and slope > top at site 7; area \times site:
217	$F_{12, 1144} = 7.460$, $P < 0.05$; Fig 3 and S5 Table). <i>G. divaricata</i> cover was significantly
218	different among the 13 sites (site: $F_{12, 1144} = 179.278$, $P < 0.05$; Fig 3 and S5 Table),
219	showing highest cover in the southeast area of the lagoon, i.e., site 9 (41%) and the
220	slope of site 7 (16%) (Fig 3). Patch reefs in the northeast lagoon exhibited moderate,
221	low, and very low cover of G. divaricata (range: 0.21-5.7%) (Fig 3 and S6 Table).
222	Survey sites in the south, center, west, and north of the lagoon were characterized by
223	very low cover of G. divaricata (range: 0-1.4%; Fig 3 and S6 Table). During our
224	survey, we observed that the thallus shape and size of G. divaricata varied across sites
225	(S1 Fig). Small ball-shaped or slender thalli were dominant on patch reefs in the
226	northeast lagoon, while medium ball-shaped and large, carpet-like thalli were
227	exclusively present in the southeast lagoon. To further rule out the possibility of

cryptic species, our DNA barcoding analyses confirmed that all samples across sites
were 100% identical in their *rbc*L sequences, indicative of conspecificity (S3 Table).

231 Temporal dynamics of *G. divaricata* cover

232	Our temporal survey at a <i>Galaxaura</i> -dominated reef (the slope area of site 7)
233	revealed that the percent cover of G. divaricata did not vary significantly among the
234	surveys conducted at four time points (April 2016, July 2016, September 2016, and
235	September 2017) over a period of 17 months (time: $F_{3, 352} = 0.632$, $P = 0.595$; Fig 4
236	and S7 Table). The percent cover between live corals and G. divaricata did not differ
237	significantly (benthic category: $F_{1, 352} = 0.086$, $P = 0.770$; Fig 4 and S7 Table).
238	Overall, there was no significant statistical interaction between the percent cover of G .
239	<i>divaricata</i> and live corals among time points (benthic category × time: $F_{3, 352} = 0.363$,
240	P = 0.780; Fig 4 and S7 Table). Across four time points the mean G. divaricata cover
241	remained relatively high (16.45 \pm 1.17%), while mean coral cover was low (15.91 \pm
242	0.6%). In addition, we provide photo-evidence from an additional patch reef (site 9, 3-
243	5 m) overgrown by G. divaricata. Photographs of the site were taken in February
244	2014 and in September 2017, showing that the same G. divaricata overgrowth was
245	present after 3.5 years (Figs 5A and 5B). G. divaricata frequently grew on live corals,
246	where the holdfast penetrated the calcium-carbonate structure, creating a strong

247	attachment to the corals (Fig 5C). In several cases we observed a fluorescent pink
248	discoloration and bleaching of the coral tissue at the contact zone with G. divaricata,
249	strongly indicative of allelopathic inhibition by G. divaricata (Fig 5D).
250	
251	Epiphytic macroalgae associated with G. divaricata
252	We identified 21 taxonomic groups of macroalgae, including macroscopic
253	filamentous cyanobacteria, in association with G. divaricata (Table 1 and S2 Table).
254	Among these, 15 were identified to the species level, with seven species of red algae,
255	three species of brown, and five species of green algae (Table 1 and S2 Table). The
256	most common green macroalgae associated with G. divaricata were Derbesia marina
257	(occurrence frequency: 37%) (Fig. 6A), Caulerpa chemnitzia (27%) (Fig 6B), and
258	Boodlea composita (20%). The most common brown macroalgae associated with G.
259	divaricata were the brown algae Lobophora sp. (as Lobphora sp28 in [32]) (57%),
260	Padina sp. (as Padina sp5 in [33]) (53%), and Dictyota bartayresiana (30%) (Fig 6C).
261	The most common red macroalgae associated with G. divaricata were Hypnea
262	caespitosa (100%) (Fig 6D), Coelothrix irregularis (87%), Ceramium dawsoniia
263	(43%). Lastly, epiphytic macroscopic cyanobacteria (> 1cm in height) had an
264	occurrence frequency of 17%. Among these epiphytic macroalgae we observed that

265	the allelopathic <i>Lobophora</i> (identified as <i>Lobphora</i> sp28; S2 Table) was also found to
266	frequently overgrow corals in the Dongsha lagoon (Fig 7 and S2 Fig).

Discussion

269	Our study shows that most patch reefs in the lagoon of Dongsha Atoll are
270	degraded. Many reefs have a low live coral cover (below 25%) and high proportions
271	of macroalgae, dead corals, and rubble, all of which are signs of reef degradation [34].
272	This is consistent with previous surveys that reported degraded conditions of lagoon
273	patch reefs at Dongsha [35,36]. The filamentous form of Galaxaura divaricata
274	overgrows degraded patch reefs in the southeast lagoon. This area is sheltered by a 2
275	km-wide reef flat, harboring shallow (1-5 m) and calm waters that may provide
276	suitable growth conditions for G. divaricata. The proliferation of macroalgae is likely
277	the consequence of an initial coral decline [37,38]. The synergistic effects of thermal
278	stress, overfishing, and typhoon damage may have caused the decline of the once
279	pristine corals in the Dongsha lagoon, followed by a proliferation of G. divaricata,
280	among other macroalgae. Thermal stress on corals has increased over the past decades,
281	with waters surrounding Dongsha Atoll warming at a faster rate than other areas of
282	the South China Sea [35,39,40]. Recurrent bleaching events have caused high coral

283	mortality and eradicated thermo-sensitive coral genera from the lagoon [41].
284	Overfishing and the extensive use of dynamite and cyanide, prior to the establishment
285	of the Dongsha Atoll National Park in 2007 reduced fish, and destroyed large areas of
286	coral framework [20,42]. Insufficient grazing after disturbance can lead to the
287	establishment and full outgrowth of macroalgae beyond their initial stages [43].
288	Galaxaura is known to be largely unpalatable for various herbivorous fishes due to its
289	calcareous thallus and low nutritional content [44-46]. Local herbivorous fish
290	population in the Dongsha lagoon may not be effective to control the outgrowth of
291	Galaxaura in certain areas.
292	Semi-closed lagoons are highly vulnerable to eutrophication and hypoxia,
292 293	Semi-closed lagoons are highly vulnerable to eutrophication and hypoxia, especially under the backdrop of climate change [47,48]. Reoccurring events of
293	especially under the backdrop of climate change [47,48]. Reoccurring events of
293 294	especially under the backdrop of climate change [47,48]. Reoccurring events of hypoxia during hot summers in 2014 and 2015 have caused substantial mass-die offs
293 294 295	especially under the backdrop of climate change [47,48]. Reoccurring events of hypoxia during hot summers in 2014 and 2015 have caused substantial mass-die offs of the coral associated fauna and flora in the Dongsha lagoon [49]. Particularly,
293 294 295 296	especially under the backdrop of climate change [47,48]. Reoccurring events of hypoxia during hot summers in 2014 and 2015 have caused substantial mass-die offs of the coral associated fauna and flora in the Dongsha lagoon [49]. Particularly, densities of macroinvertebrates, including echinoids, sea cucumbers, lobsters, and
293 294 295 296 297	especially under the backdrop of climate change [47,48]. Reoccurring events of hypoxia during hot summers in 2014 and 2015 have caused substantial mass-die offs of the coral associated fauna and flora in the Dongsha lagoon [49]. Particularly, densities of macroinvertebrates, including echinoids, sea cucumbers, lobsters, and giant clams are extremely low (Table S4). <i>Galaxaura</i> appears to be well adapted to

300 Polynesia [50].

301	Although the filamentous G. divaricata is a common allelopathic seaweed in
302	subtropical and tropical waters, it has never been reported as a nuisance in
303	overgrowing coral reefs. Our observations are the first to report a prolonged G .
304	divaricata overgrowth in degraded coral reefs. For instance, the G. divaricata cover
305	was equally high on a degraded reef after 17-months. We further provide photo-
306	evidence from another patch reef showing that the same G. divaricata overgrowth
307	was present to a similar extend after 3.5 years. The photos clearly show that G .
308	divaricata dominated the reef substrate of the site in both, the cooler northeast
309	monsoon (winter) season (Fig 5.A, water temperature: 22.5°C), and the warmer
310	southwest monsoon (summer) season (Fig 5.B, water temperature: 29°C). Due to
311	challenging weather conditions, we were only able to conduct our quantitative
312	temporal survey in April, the last month of the winter season, and therefore we cannot
313	rule out potential variations in G. divaricata cover over the full length of that season.
314	Expanding temporal surveys in the future will be worth of doing to confirm the long-
315	term persistence of G. divaricata overgrowth.
316	A prolonged overgrowth of filamentous G. divaricata may have profound
317	implications for the recovery potential of degraded reefs at Dongsha Atoll. Owning to
318	its allelopathic effects on corals long-standing canopies of G. divaricata are likely to
319	hamper coral recruitment ultimately preventing coral recovery [15,51]. As a caveat of

320	this study, it is important to note that we did not attempt to isolate and identify
321	allelopathic chemicals in G. divaricata. But, previous studies have identified lipid-
322	soluble terpenoid compounds from filamentous Galaxaura cell extracts as
323	allelochemicals that were capable of bleaching and killing of coral tissue [13]. It is
324	also known that Galaxaura can change the chemical microclimate on degraded reefs
325	with adverse effects on fish feeding behavior [4]. For instance, butterflyfish and other
326	corallivores avoid corals in close association with Galaxaura, making it potentially
327	difficult for these trophic guilds to find food [52,53]. Unlike other calcifying algae,
328	such as coralline algae, Galaxaura does not stabilize the reef matrix. Thus, a
329	prolonged Galaxaura overgrowth may contribute to the erosion and flattening of the
330	reef structure, which negatively impacts biodiversity, and trophic support for coral
331	associated organisms [54].
332	The filamentous G. divaricata is used as habitat by a variety of macroalgae.
333	The availability of new habitat for epiphytic macroalgae provided by a prolonged
334	Galaxaura overgrowth could have several implications for the ecology and recover
335	potential of the reef. For instance, nutrient rich epiphytes could provide trophic
336	support for herbivorous fishes and invertebrate, such as crustaceans and mollusks
337	[24,55,56]. On the other hand, the association with the unpalatable Galaxaura may
338	provide a refuge from herbivory for certain palatable algae [38,57], and facilitate their

339	establishment on the reef, increasing macroalgae biodiversity [58]. The facilitation of
340	harmful, allelopathic algal types could decrease the resilience and promote alternative
341	stable states on coral reefs [59]. Some of the identified G. divaricata epiphytes, such
342	as cyanobacteria [10], Dictyota [60], and Lobophora [9,61] are widely shown to
343	overgrow corals after disturbance, and are known for their allelopathic inhibition of
344	coral larvae recruitment. Here, we firstly report that an undescribed species
345	Lobophora sp. (as Lobophora sp28 in [32]), the third most abundant macroalga on G .
346	divaricata, overgrows and kills corals in the Dongsha lagoon through epizoism (Fig 7
347	and S2). Moreover, the microscopic filaments of G. divaricata may facilitate the
348	attachment of macroalgae spores, while the calcified branches may provide structural
349	support for fine, filamentous macroalgae. Considering that an increased substrate
350	availability can promote macroalgae biomass on coral reefs, we hypothesize that, by
351	providing a habitat for epiphytic macroalgae, G. divaricata may facilitate the diversity
352	and abundance of macroalgae on degraded reefs. This study is merely observational
353	and does not provide experimental evidence for the facilitation of macroalgae
354	diversity and abundance by G. divaricata. However, the abovementioned hypotheses
355	would be of great interest awaiting future validation.
356	

Conclusions

358	Our observations illustrated that the allelopathic and unpalatable filamentous
359	seaweed, Galaxaura divaricata, can become dominant on degraded reefs in shallow,
360	sheltered, and calm environments. We show that G. divaricata provides suitable
361	substrate for a variety of macroalgae, further facilitating macroalgae growth and
362	abundance on degraded reefs. Thus, a prolonged proliferation of Galaxaura could
363	potentially enhance negative feedback loops, thereby perpetuating reef degradation.
364	Several common epiphytic macroalgae on Galaxaura are allelopathic and known to
365	frequently overgrow corals. Macroalgal assemblages, such as the Galaxaura-epiphyte
366	system, warrant further investigation to better understand their ecological implications
367	on the resilience of coral reefs, especially of shallow atoll lagoons. There are 439
368	listed coral reef atolls on earth; among them are 335 with semi-enclosed lagoons [62].
369	Atoll lagoons are highly productive and serve as valuable nursery habitat for marine
370	life; however, they are most vulnerable to the effects of climate change [48,63].
371	Results from our study can be informative for the management and conservation of
372	lagoons and shallow, inshore coral reef ecosystems, especially in the South China Sea
373	and the Pacific Ocean, where filamentous Galaxaura is very common.
374	
375	Acknowledgements
376	The authors would like to thank our colleagues of the joint project: "Patterns

of Resilience in Dongsha Atoll Coral Reefs" for their collaboration and great support
 20

378	throughout this study. We thank Keryea Soong and staff of the Dongsha Atoll
379	Research Station, the Dongsha Atoll National Park, the Coastal Guard Administration,
380	and the Ministry of Marine Affairs for logistic support. We would like to thank
381	George P. Lohmann and Cherng-Shyang Chang for assistance with benthic surveys,
382	as well as Chieh-Hsuan Lee and Pin-Chen Chen for assistance with fieldwork and
383	DNA barcoding.
384	
385	Author contributions
386	Conceptualization: Carolin Nieder, Shao-Lun Liu.
387	Formal analysis: Carolin Nieder, Shao-Lun Liu.
388	Investigation: Carolin Nieder.
389	Writing-original draft: Carolin Nieder, Chaolun Allen Chen, Shao-Lun Liu.
390	Writing-review & editing: Carolin Nieder, Chaolun Allen Chen, Shao-Lun Liu.
391	
392	References
393 394	1. McCook L, Jompa J, Diaz-Pulido G. Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs. 2001;19: 400-417.
395 396 397	2. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Bio. 2007;17: 360-365.

- 398 3. Birrell CL, McCook LJ, Willis BL, Diaz-Pulido GA. Effects of benthic algae on the
- replenishment of corals and the implications for the resilience of coral reefs.
- 400 Oceanogr Mar Biol Annu Rev. 2008;46: 25-63.
- 401 4. McCormick MI, Barry RP, Allan BJ. Algae associated with coral degradation
- 402 affects risk assessment in coral reef fishes. Sci Rep. 2017;7: 16937.
- 5. Rasher DB, Stout EP, Engel S, Kubanek J, Hay ME. Macroalgal terpenes function
- 404 as allelopathic agents against reef corals. Proc Natl Acad Sci. 2011;108: 17726-17731.
- 6. Andras TD, Alexander TS, Gahlena A, Parry RM, Fernandez FM, Kubanek J, et al.
- 406 Seaweed allelopathy against coral: surface distribution of a seaweed secondary
- 407 metabolite by imaging mass spectrometry. J Chem Ecol. 2012;38: 1203-1214.
- 7. Nugues MM, Smith GW, Hooidonk RJ, Seabra MI, Bak RP. Algal contact as a
 trigger for coral disease. Ecol Lett. 2004;7: 919-923.
- 410 8. Thurber RV, Burkepile DE, Correa AM, Thurber AR, Shantz AA, Welsh R, et al.
- 411 Macroalgae decrease growth and alter microbial community structure of the reef-
- 412 building coral, *Porites astreoides*. PLoS One. 2012;7: e44246.
- 413 9. Morrow KM, Bromhall K, Motti CA, Munn CB, Bourne DG. Allelochemicals
- 414 produced by brown macroalgae of the *Lobophora* genus are active against coral larvae
- and associated bacteria, supporting pathogenic shifts to vibrio dominance. Appl
- 416 Environ Microbiol. 2016;83: 10.1128.
- 417 10. Kuffner IB, Walters LJ, Becerro MA, Paul VJ, Ritson-Williams R, Beach KS.
- Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser.
 2006;323: 107-117.
- 420 11. Webster FJ, Babcock RC, Van Keulen M, Loneragan NR. Macroalgae inhibits
- 421 larval settlement and increases recruit mortality at Ningaloo Reef, Western Australia.
- 422 PloS One. 2015;10: e0124162.
- 423 12. Liu S, Liao LM, Wang W. Conspecificity of two morphologically distinct
- 424 calcified red algae from the northwest Pacific Ocean: *Galaxaura pacifica* and *G*.
- 425 *filamentosa* (Galaxauraceae, Rhodophyta). Bot Stud. 2013;54: 1.
- 13. Rasher DB, Stout EP, Engel S, Kubanek J, Hay ME. Macroalgal terpenes function
 as allelopathic agents against reef corals. Proc Natl Acad Sci. 2011;108: 17726-17731.

- 428 14. Rasher DB, Hay ME. Chemically rich seaweeds poison corals when not controlled
- 429 by herbivores. Proc Natl Acad Sci. 2010;107: 9683-9688.
- 430 15. Dixson DL, Abrego D, Hay ME. Reef ecology. Chemically mediated behavior of
- 431 recruiting corals and fishes: a tipping point that may limit reef recovery. Science.
- 432 2014;345: 892-897.
- 433 16. Rasher DB, Hay ME. Seaweed allelopathy degrades the resilience and function of434 coral reefs. Commun Integr Biol. 2010;3: 564-566.
- 435 17. Wendy Guiry in Guiry, M.D. & Guiry, G.M. Algaebase. World-wide electronic
- publication, National University of Ireland, Galway. Searched on 13 December 2018.
 Alasakasa 2018. Assilables kttp://www.alasakasa.assi
- 437 Algaebase. 2018. Available: http://www.algaebase.org.
- 438 18. Wang WL, Liu SL, Li TH. Seaweeds of Dongsha Atoll in the South China Sea.
- 439 Kaohsiung, Taiwan: Marine National Park Headquarters; 2015.
- 19. Huang D, Licuanan WY, Hoeksema BW, Chen CA, Ang PO, Huang H, et al.
- Extraordinary diversity of reef corals in the South China Sea. Mar Biodivers. 2015;45:157-168.
- 443 20. Dai C. Dongsha Atoll in the South China Sea: Past, present and future. Islands of
- the World VIII International Conference "Changing Islands Changing Worlds" 1-7
- 445 November 2004, Kinmen Island (Quemoy), Taiwan.
- 21. DeCarlo TM, Cohen AL, Wong GT, Davis KA, Lohmann P, Soong K. Mass coral
 mortality under local amplification of 2° C ocean warming. Sci Rep. 2017;7: 44586.
- 448 22. Fricke A, Titlyanova T, Nugues M, Bischof K. Depth-related variation in
- epiphytic communities growing on the brown alga *Lobophora variegata* in a
- 450 Caribbean coral reef. Coral Reefs. 2011;30: 967-973.
- 451 23. Prince JS, O'Neal SW. The ecology of Sargassum pteropleuron Grunow
- 452 (Phaeophyceae, Fucales) in the waters off South Florida: I. Growth, reproduction and
- 453 population structure. Phycologia. 1979;18: 109-114.
- 454 24. Bittick SJ, Clausing RJ, Fong CR, Scoma SR, Fong P. A Rapidly Expanding
- 455 Macroalga Acts as a Foundational Species Providing Trophic Support and Habitat in
- the South Pacific. Ecosystems. 2018: 1-9.

457 458	25. Wang B, Zhang Y, Lu M. Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon. J Clim. 2004;17: 699-710.
459 460	26. Chou Y. Dongsha Atoll Research Station-A steady research platform in South China Sea. Kuroshio Science. 2016; 10-1: 23-27.
461 462	27. Connell S, Foster M, Airoldi L. What are algal turfs? Towards a better description of turfs. Mar Ecol Prog Ser. 2014;495: 299-307.
463 464 465	28. Preskitt LB, Vroom PS, Smith CM. A rapid ecological assessment (REA) quantitative survey method for benthic algae using photo-quadrats with scuba. Pac Sci. 2004;58: 201-209.
466 467 468	29. Freshwater DW, Rueness J. Phylogenetic relationships of some European <i>Gelidium</i> (Gelidiales, Rhodophyta) species, based on <i>rbc</i> L nucleotide sequence analysis. Phycologia. 1994;33: 187-194.
469 470 471	30. Draisma SG, Prud'Homme van Reine, Willem F, Stam WT, Olsen JL. A reassessment of phylogenetic relationships within the Phaeophyceae based on RUBISCO large subunit and ribosomal DNA sequences. J Phycol. 2001;37: 586-603.
472 473 474	31. Famà P, Wysor B, Kooistra WH, Zuccarello GC. Molecular phylogeny of the genus <i>Caulerpa</i> (Caulerpales, Chlorophyta) inferred from chloroplast tufA gene1. J Phycol. 2002;38: 1040-1050.
475 476 477	32. Vieira C, Camacho O, Sun Z, Fredericq S, Leliaert F, Payri C, et al. Historical biogeography of the highly diverse brown seaweed <i>Lobophora</i> (Dictyotales, Phaeophyceae). Mol Phylogenet Evol. 2017;110: 81-92.
478 479 480	33. Silberfeld T, Bittner L, Fernández-García C, Cruaud C, Rousseau F, de Reviers B, et al. Species diversity, phylogeny and large scale biogeographic patterns of the genus <i>Padina</i> (Phaeophyceae, Dictyotales). J Phycol. 2013;49: 130-142.
481 482 483	34. Gomez, ED, Yap HT. Monitoring reef condition. In: Kenchington RA, Hudson ET. editors. Coral Reef Management Handbook, UNESCO Regional Office for Science and Technology for Southeast Asia (ROSTSEA); 1988. pp. 171-178.
484 485	35. Tkachenko KS, Soong K. Dongsha Atoll: A potential thermal refuge for reef- building corals in the South China Sea. Mar Environ Res. 2017;127: 112-125.

486 36. Morton B. Dongsha Atoll, South China Sea: Ground Zero! Mar Pollut Bull.
487 2002;44: 835-837.

488 37. Diaz-Pulido G, McCook LJ, Dove S, Berkelmans R, Roff G, Kline DI, et al.

- 489 Doom and boom on a resilient reef: climate change, algal overgrowth and coral
- 490 recovery. PloS One. 2009;4: e5239.
- 38. Roff G, Doropoulos C, Zupan M, Rogers A, Steneck RS, Golbuu Y, et al. Phase
 shift facilitation following cyclone disturbance on coral reefs. Oecologia. 2015;178:
 1193-1203.
- 494 39. DeCarlo TM, Karnauskas KB, Davis KA, Wong GT. Climate modulates internal
 495 wave activity in the Northern South China Sea. Geophys Res Lett. 2015;42: 831-838.

496 40. Zuo X, Su F, Wu W, Chen Z, Shi W. Spatial and temporal variability of thermal
497 stress to China's coral reefs in South China Sea. Chinese Geogr Sci. 2015;25: 159498 173.

499 41. Li J, Lee T, Tew KS, Fang L. Changes in the coral community at Dongsha Atoll,
500 South China Sea from 1975 to 1998. Acta Zoologica Taiwanica. 2000;11: 1-15.

42. Morton B, Blackmore G. South China Sea. Mar Pollut Bull. 2001;42: 1236-1263.

43. Bozec Y, Doropoulos C, Roff G, Mumby PJ. Transient grazing and the dynamics
of an unanticipated coral–algal phase shift. Ecosystems. 2018: 1-16.

- 44. Mantyka CS, Bellwood DR. Macroalgal grazing selectivity among herbivorous
 coral reef fishes. Mar Ecol Prog Ser. 2007;352: 177-185.
- 45. Rasher DB, Hoey AS, Hay ME. Consumer diversity interacts with prey defenses
 to drive ecosystem function. Ecology. 2013;94: 1347-1358.
- 508 46. Duffy JE, Hay ME. Herbivore resistance to seaweed chemical defense: the roles509 of mobility and predation risk. Ecology. 1994;75: 1304-1319.
- 47. Charpy L, Dufour P, Garcia N. Particulate organic matter in sixteen Tuamotu atoll
 lagoons (French Polynesia). Mar Ecol Prog Ser. 1997: 55-65.
- 512 48. Andréfouët S, Dutheil C, Menkes CE, Bador M, Lengaigne M. Mass mortality
- 513 events in atoll lagoons: environmental control and increased future vulnerability.
- 514 Global Change Biol. 2015;21: 195-205.

515	49. Gajdzik L, DeCarlo TM. The perfect calm: Reoccurring mass die-offs on a remote
516	coral atoll. Matters. 2017;3: e201707000003.

- 517 50. Adjeroud M, Andréfouët S, Payri C. Mass mortality of macrobenthic communities
- in the lagoon of Hikueru atoll (French Polynesia). Coral Reefs. 2001;19: 287-291.
- 519 51. Bonaldo RM, Hay ME. Seaweed-coral interactions: variance in seaweed
- allelopathy, coral susceptibility, and potential effects on coral resilience. PloS One.2014;9.
- 522 52. Brooker RM, Brandl SJ, Dixson DL. Cryptic effects of habitat declines: coral-
- associated fishes avoid coral-seaweed interactions due to visual and chemical cues.Sci Rep. 2016;6: 18842.

53. Brooker RM, Sih TL, Dixson DL. Contact with seaweed alters prey selectivity in
a coral-feeding reef fish. Mar Ecol Prog Ser. 2017;580: 239-244.

527 54. Alvarez-Filip L, Dulvy NK, Gill JA, Cote IM, Watkinson AR. Flattening of

528 Caribbean coral reefs: region-wide declines in architectural complexity. Proc Biol Sci.529 2009;276: 3019-3025.

55. Thomsen MS, Hildebrand T, South PM, Foster T, Siciliano A, Oldach E, et al. A
sixth-level habitat cascade increases biodiversity in an intertidal estuary. Ecol Evol.
2016;6: 8291-8303.

56. Marzinelli EM, Burrows MT, Jackson AC, Mayer-Pinto M. Positive and negative
effects of habitat-forming algae on survival, growth and intra-specific competition of
limpets. PloS One. 2012;7: e51601.

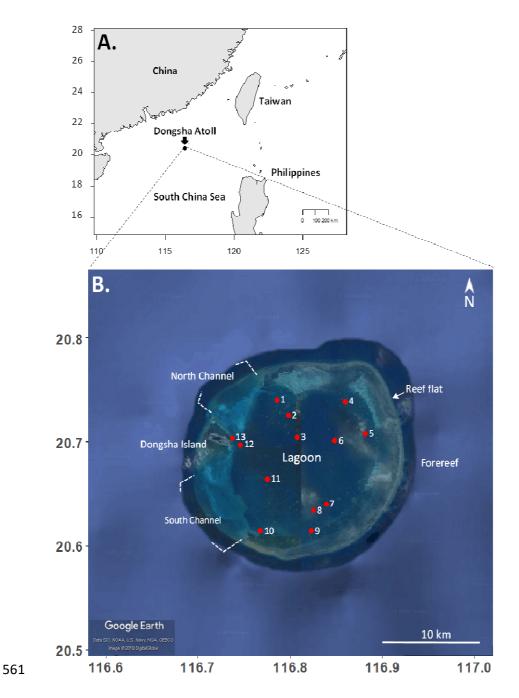
- 536 57. Loffler Z, Bellwood D, Hoey A. Associations among coral reef macroalgae
- influence feeding by herbivorous fishes. Coral Reefs. 2015;34: 51-55.
- 538 58. Hay ME. Associational plant defenses and the maintenance of species diversity:
 539 turning competitors into accomplices. Am Nat. 1986;128: 617-641.
- 540 59. Briggs CJ, Adam TC, Holbrook SJ, Schmitt RJ. Macroalgae size refuge from
 541 herbivory promotes alternative stable states on coral reefs. PloS One. 2018;13:
 60202273.
- 543 60. Paul VJ, Kuffner IB, Walters LJ, Ritson-Williams R, Beach KS, Becerro MA.
- 544 Chemically mediated interactions between macroalgae *Dictyota* spp. and multiple

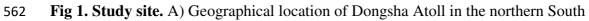
- 545 life-history stages of the coral *Porites astreoides*. Mar Ecol Prog Ser. 2011;426: 161-546 170.
- 547 61. Vieira C, Thomas OP, Culioli G, Genta-Jouve G, Houlbreque F, Gaubert J, et al.
- 548 Allelopathic interactions between the brown algal genus *Lobophora* (Dictyotales,
- 549 Phaeophyceae) and scleractinian corals. Sci Rep. 2016;6: 18637.
- 550 62. Goldberg W. Atolls of the world: revisiting the original checklist. Atoll Res Bull
- 551 No. 610. Washington, D.C.: Smithsonian Institution Scholarly Press; 2016.
- 552 63. Altieri AH, Gedan KB. Climate change and dead zones. Global Change Biol.
- 553 2015;21: 1395-1406.

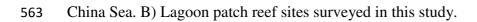
bioRxiv preprint doi: https://doi.org/10.1101/363796; this version posted December 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

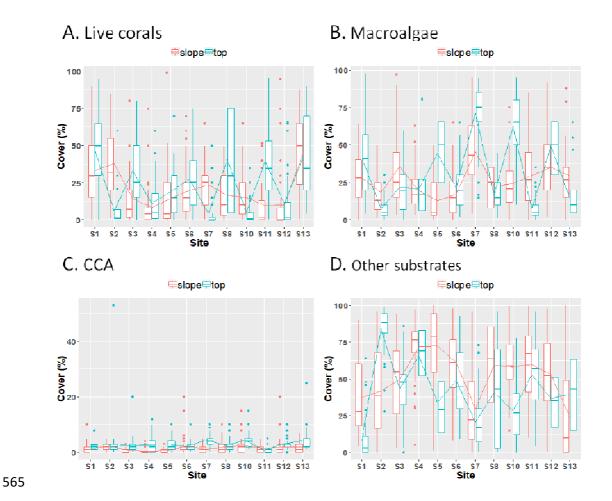
555 Table 1. Occurrence frequency (%) of epiphytic macroalgae on *Galaxaura divaricata*

556 from the slope area of site 7.

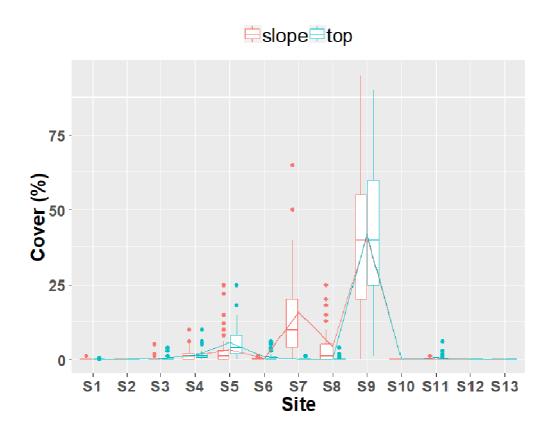

Epiphyte taxon	Phylum	Occurrence frequency (%)
Acanthophora spicifera ^a	Red	3
<i>Ceramium dawsonii</i> (MH048927) ^b	Red	43
Coelothrix irregularis (MH048928)	Red	87
Dichotomaria obtusata	Red	3
Gelidiales	Red	27
Gracilaria spp.	Red	7
<i>Hypnea caespitosa</i> (МН048929, МН048930, МН048931)	Red	100
<i>Hypnea</i> sp. (MH048932)	Red	30
Laurencia dendroidea	Red	13
Laurencia spp.	Red	20
Dictyota bartayresiana	Brown	30
Dictyota spp.	Brown	13
<i>Lobophora</i> sp28 ^c (MH048934, MH048935, MH048936, MH048937)	Brown	57
<i>Padina</i> sp5 ^d _(MH048933)	Brown	53
Sargassum spp.	Brown	3
Boodlea composita	Green	20
Caulerpa chemnitzia (MH048959)	Green	27
Derbesia marina	Green	37
Phyllodictyon anastomosans	Green	10
Valonia ventricosa	Green	10
Cyanobacteria (filamentous > 1cm)	Cyanobacteria	17


^aIdentification of species and taxonomic groups according to [18].


^bGenBank number in parentheses based on species identifications through DNA barcoding.


^cDenomination according to [32].

^dDenomination according to [33].

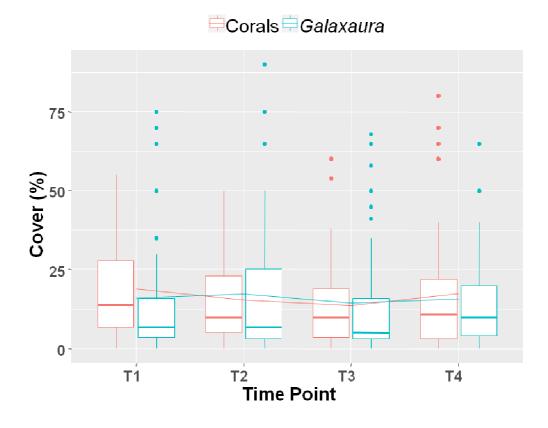

566 Fig 2. Spatial variation in benthic categories in the Dongsha lagoon. Variation in

567 the cover of (A) live corals, (B) total macroalgae (upright and crustose non-coralline

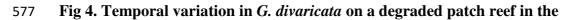
seaweeds, and turf), (C) crustose coralline algae (CCA), and (D) other substrates

569 (dead coral skeletons, rubble, and rocks) between two reef areas (top and slope)

among 12 sites.



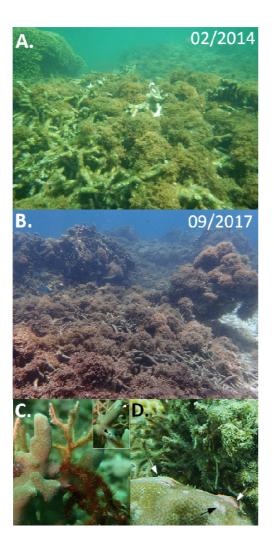
572


573 Fig 3. Spatial variation in *G. divaricata* in the Dongsha lagoon. Variation in the

574 cover of *G. divaricata* between two reef areas (top and slope) among 13 sites.

bioRxiv preprint doi: https://doi.org/10.1101/363796; this version posted December 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

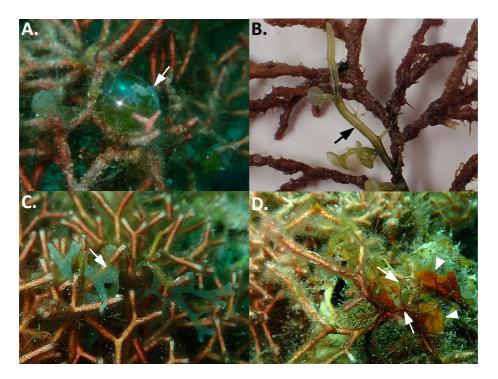
576


578 southeast Dongsha lagoon. Variation in the percent cover of two major benthic

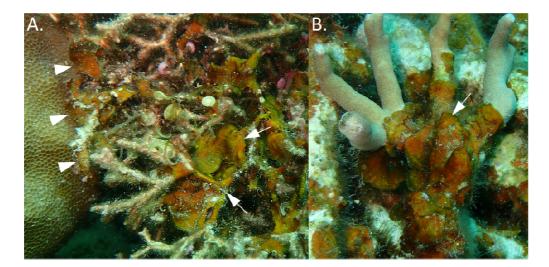
579 categories (live corals and *G. divaricata*) among four time points (T1: April 2016, T2:

July 2016, T3: September 2016, and T4: September 2017) over a period of 17 months

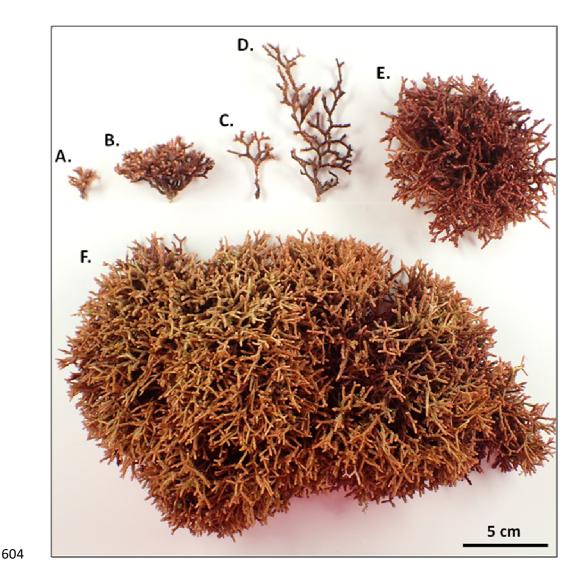
581 (about 5 m depth at site 7).


bioRxiv preprint doi: https://doi.org/10.1101/363796; this version posted December 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

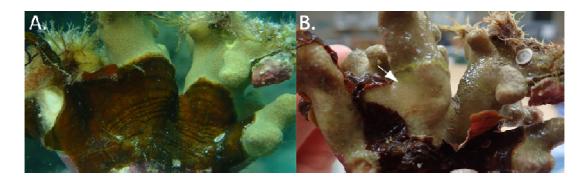
583


584 Fig 5. Observational photo-evidence of a prolonged *Galaxaura* overgrowth. A-B)

585	A degraded patch reef in the southeast lagoon of Dongsha Atoll has been overgrown
586	by <i>G. divaricata</i> for at last 3.5 years (3-5 m depth at site 9). Photos were taken in A)
587	February 2014, with water temperature = 22.5° C; and B) in September 2017 with
588	water temperature = 29° C. The holdfast of <i>G. divaricata</i> penetrates a branching
589	Porites coral (P. cylindrica), creating small holes (inset). D) Coral (P. solida) tissue
590	discoloration and bleaching (arrows) following direct contact with G. divaricata,
591	potentially caused by allelopathic chemicals.


594 Fig 6. Examples showing epiphytic macroalgae that frequently grow on *G*.

- *divaricata*. A) Valonia ventricosa, B) Caulerpa chemnitzia, C) Dictyota sp., D)
- *Lobophora* sp. (arrowhead), and *Hypnea caespitosa* (arrow).


599 Fig 7. Coral overgrowth by *Lobophora* sp28. A) Example showing *Lobophora* sp28

- 600 growing on *Galaxaura divaricata* (arrows), and in contact with coral (*Porites solida*)
- 601 (arrowheads). B) Coral overgrowth (*Porites cylindrica* in this case) by *Lobophora*
- 602 sp28 is widespread in the shallow lagoon of Dongsha Atoll.

S1 Fig. Various sizes and thallus shapes of *Galaxaura divaricata* from different
locations in the lagoon of Dongsha Atoll. A-B) Small, ball-shaped thalli, and C-D)
small, slender thalli were dominant on patch reefs in the north and northeast lagoon. E)
Medium, ball-shaped thalli, and F) large carpet-like thalli were exclusively present in
the southeast section of the lagoon.

bioRxiv preprint doi: https://doi.org/10.1101/363796; this version posted December 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 611
- 612 S2 Fig. Coral overgrowth by *Lobophora* sp28. A) Coral overgrowth (*Porites*
- 613 *cylindrica* in this case) by *Lobophora* sp28 is wide spread in the lagoon of Dongsha
- Atoll. B) The same coral showing dead tissue (arrow) after the removal of the algae.
- 615

bioRxiv preprint doi: https://doi.org/10.1101/363796; this version posted December 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

616 S1 Table. GPS coordinates of patch reef survey sites in the lagoon of Dongsha Atoll,

617 South China Sea (Taiwan).

Site	Latitude	Longitude
1	20°44'26.28''	116°47'8.879''
2	20°43'31.62"	116°47'52.679"
3	20°42'16.14"	116°48'27.419"
4	20°44'20.52"	116°51'35.699"
5	20°42'29.88"	116°52'54.599"
6	20°42'6.72"	116°50'53.279"
7	20°38'24"	116°50'20.999"
8	20°38'3.12"	116°49'30.479"
9	20°36'52.86"	116°49'24.179"
10	20°36'53.4"	116°46'2.399"
11	20°39'52.2"	116°46'32.159"
12	20°41'49.2"	116°44'45.659"
13	20°42'12.36"	116°44'14.639"

618

Species	Phylum	Voucher#	Date	Site	Area	Substrate	Marker	GenBank#
Ceramium dawsonii	Red	KO208	Oct-16	7	slope	G. divaricata	rbcL	MH048927
Coelothrix irregularis	Red	K0206	Oct-16	7	slope	G. divaricata	rbcL	MH048928
Hypnea caespitosa	Red	K0204	Oct-16	7	slope	G. divaricata	rbcL	MH048929
Hypnea caespitosa	Red	K0203	Oct-16	7	slope	G. divaricata	rbcL	MH048930
Hypnea caespitosa	Red	SD17120	Aug-17	7	slope	G. divaricata	rbcL	MH048931
<i>Hypnea</i> sp.	Red	K0205	Oct-16	7	slope	G. divaricata	<i>rbc</i> L	MH048932
Lobophora sp28 ^a	Brown	SD17023	Aug-17	7	slope	G. divaricata	rbcL	MH048934
Lobophora sp28	Brown	SD17021	Aug-17	7	slope	G. divaricata	rbcL	MH048935
Lobophora sp28	Brown	SD17019	Aug-17	7	slope	G. divaricata	rbcL	MH048936
Lobophora sp28	Brown	SD17017	Aug-17	7	slope	G. divaricata	rbcL	MH048937
Lobophora sp28	Brown	K0173	Apr-16	7	slope	Coral	rbcL	MH048940
Lobophora sp28	Brown	SD17058	Aug-17	9	slope	Coral	<i>rbc</i> L	MH048941
Padina sp5 ^b	Brown	SD17114	Aug-17	7	slope	G. divaricata	<i>rbc</i> L	MH048933
Caulerpa chemnitzia	Green	SD17117	Aug-17	7	slope	G. divaricata	tufA	MH048959

620 S2 Table. Information and Genbank numbers of macroalgae samples used for DNA barcoding in this study.

^aDenomination according to [1].

^bDenomination according to [2].

Species	Voucher#	Date	Site	Area	Substrate	Thallus size	Marker	GenBank#
G. divaricata	K0210	Apr-16	7	slope	rock	medium	<i>rbc</i> L	MH048946
G. divaricata	R90B12	Feb-14	9	top	rock	large	<i>rbc</i> L	MH048942
G. divaricata	SD17048	Aug-17	9	slope	rubble	large	<i>rbc</i> L	MH048957
G. divaricata	SD17098	Aug-17	6	top	rock	small	<i>rbc</i> L	MH048943
G. divaricata	SD17099	Aug-17	1	top	rock	small	<i>rbc</i> L	MH048956
G. divaricata	SD17100	Aug-17	5	top	rock	small	<i>rbc</i> L	MH048955
G. divaricata	SD17101	Aug-17	5	top	rock	small	<i>rbc</i> L	MH048958
G. divaricata	SD17102	Aug-17	5	slope	rock	medium	<i>rbc</i> L	MH048954
G. divaricata	SD17103	Aug-17	1	slope	rock	small	<i>rbc</i> L	MH048953
G. divaricata	SD17104	Aug-17	6	slope	rock	medium	<i>rbc</i> L	MH048952
G. divaricata	SD17105	Aug-17	5	slope	rock	medium	<i>rbc</i> L	MH048951
G. divaricata	SD17106	Aug-17	6	slope	rock	small	<i>rbc</i> L	MH048950
G. divaricata	SD17107	Aug-17	6	slope	rock	small	<i>rbc</i> L	MH048944
G. divaricata	SD17110	Aug-17	6	top	coral	medium	<i>rbc</i> L	MH048949
G. divaricata	SD17112	Aug-17	4	slope	rock	medium	<i>rbc</i> L	MH048948
G. divaricata	SD17113	Aug-17	4	slope	rock	small	<i>rbc</i> L	MH048947

- 624 S3 Table. Information and Genbank numbers of *Galaxaura divaricata* samples from various locations in the lagoon of Dongsha Atoll that were used
- 625 for DNA barcoding in this study.

629	S4 Table. Statistics summary of 2-way ANOVA of major benthic categories (live corals, total
630	macroalgae, CCA, and other substrates) between two reef areas among 12 sites.

Source of variation	df	Mean Sq	F	Р
Corals	•	-		
area (top $>$ slope; dif: 3.15)	1	2673	6.617	0.0102*
site	11	11036	27.321	<2e-16*
area \times site	11	7110	17.601	<2e-16*
error	1056	404		
Total macroalgae				
area (top > slope; dif: 5.03)	1	6835	20.68	6.07e-06*
site	11	16025	48.48	<2e-16*
area \times site	11	8684	26.27	<2e-16*
error	1056	331		
Crustose coralline algae (CCA)				
area (top > slope; dif: 1.36)	1	500.2	62.725	5.99e-15*
site	11	44.0	5.514	1.29e-08*
area × Site	11	28.8	3.616	4.88e-05*
error	1056	8.0		
Other substrates				
area (top < slope; dif: 9.54)	1	24548	41.30	1.97e-10*
site	11	18205	30.63	<2e-16*
area \times site	11	10405	17.51	<2e-16*
error	1056	594		

631 *Asterisk indicates a statistically significance at the p value < 0.05.

633 S5 Table. Statistics summary of 2-way ANOVA of the *G. divaricata* percent cover between two reef 634 areas among 13 sites.

Source of variation	df	Mean Sq	F	Р
G. divaricata				
area (top < slope; dif: 1.20)	1	423	6.574	0.0105*
site	12	11536	179.278	<2e-16*
area \times site	12	480	7.460	2.28e-13*
error	1144	64		

*Asterisk indicates a statistically significance at the p value < 0.05.

Site	Location	Pat	Cover rank	
	Location	Top (1-5 m)	Slope (5-10 m)	
1	North	0.02 ± 0.08^{a}	0.02 <u>+</u> 0.15	very low
2	North	0	0	very low
3	North	0.27 <u>+</u> 0.78	0.31 <u>+</u> 0.9	very low
4	Northeast	1.52 <u>+</u> 1.9	1.47 <u>+</u> 1.95	very low - low
5	Northeast	5.69 <u>+</u> 5.47	3.37 <u>+</u> 5.62	low - moderate
6	Northeast	0.79 <u>+</u> 1.36	0.21 <u>+</u> 0.34	very low
7	Southeast	0.02 <u>+</u> 0.15	15.86 <u>+</u> 17	very low - high
8	Southeast	0.17 <u>+</u> 0.67	4.31 <u>+</u> 6.67	very low - low
9	Southeast	41.87 <u>+</u> 24.73	40.87 <u>+</u> 25.58	high
10	South	0	0	very low
11	Center	0.46 <u>+</u> 1.41	0.02 <u>+</u> 0.15	very low
12	West	0	0	very low
13	West	0	0	very low

637 S6 Table. Percent cover of *Galaxaura divaricata* on 13 patch reef sites in the lagoon of Dongsha 638 Atoll, South China Sea.

 a Data are relative cover expressed as mean <u>+</u> SD (%) of 45 replicate quadrats for reef top and reef slope.

641 S7 Table. Statistics summary of 2-way ANOVA of the percent cover in two major benthic 642 categories (*G. divaricata* and corals) over time.

Source of variation	df	Mean Sq	F	Р
Two benthic categories				
benthic category	1	26.84	0.086	0.770
time	3	197.58	0.632	0.595
benthic category \times time	3	113.44	0.363	0.780
error	352	312.61		

643

Macrobenthic fauna	Count	Density (individual/100 m ²)
Diadema savignyi	3	0.03
Diadema setosum	1	0.01
Echinometra mathaei	126	1.26
Echinothrix calamaris	3	0.03
Tripneustes gratilla	4	0.04
Culcita novaeguineae	54	0.54
Echinaster luzonicus	2	0.02
Fromia spp.	8	0.08
Linckia multifora	15	0.15
Holothuria	0	0
Cypraea tigris	3	0.03
Giant clam	34	0.34
Lambis spp.	3	0.03
Lobster	0	0

645 S8 Table. Paucity of macrobenthic invertebrates in the Dongsha lagoon.

646 Data derived from a belt transect survey of 13 patch reefs and seven seagrass beds $(10,000 \text{ m}^2 \text{ total area}$ 647 surveyed) across the lagoon of Dongsha Atoll in September 2017.

648