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Abstract
Extreme engineering of an organism’s genetic code could impart true genetic incompatibility, even 

blocking effects of horizontal gene transfer and viral infection. Recent experiments exploring this 

possibility demonstrate that such radical genome engineering achievements are plausible. However, it is 

unclear when the modifications will compromise the fitness of an organism. Efforts to reformat an entire 

genome are difficult and expensive; computational methods predicting fruitful experimental trajectories 

could play a pivotal role in advancing such efforts. We present a framework for building in silico models 

to assist genome-scale engineering.  Genetic code engineering requires choosing from many possible 

codon-usage schemes, to find a design that is viable and effective. We use machine learning to identify 

which alternative codon-usage schemes are likely to result in no observed viable cells. Our data-driven 

approach employs observations of how modifying codon usage in individual genes impacted observed 

viability in E. coli, revealing salient features for early identification of problematic genetic code 

designs. We achieved an average area under the receiver operating characteristic of 0.72 on out-of-

sample data.

Author Summary

As machine learning and artificial intelligence play an increasingly central role in science and 

engineering, it will be important to establish standardized techniques that facilitate the dialogue between 

experimentation and modeling. Biological experimental techniques are concurrently evolving at a rapid 

pace, providing unique opportunities to collect high-quality, novel information that was previously 

unobtainable. This work navigates the landscape of this vast, new territory, identifies interesting 

landmarks for exploration and posits new approaches towards advancing our research efforts in these 

areas.  In this work, we show that, using a small dataset of 47 observations and rigorous nested cross 
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validation techniques, we can build a model that makes better-than-random predictions of how codon 

usage changes in essential genes influence viability in E. coli. These predictions can be used to inform 

experimental trajectories in both genetic code and codon optimization experiments. We discuss ways to 

improve this model, iteratively, by performing high value experiments that decrease uncertainty in 

predictions and extrapolation error.  Finally, we present novel visualization methods to aid in developing 

intuitions for how re-coding impacts groups of genes.  These methods are also useful tools in building 

important insights into how well machine learning algorithms can generalize to new data. 

Introduction

With the advent of new in vivo DNA editing techniques, engineering at the genome scale is not 

only achievable but an increasingly inevitable trajectory.  In particular, the emerging discipline of genetic 

code engineering promises novel and far reaching applications in genetic containment, synthesis of 

proteins incorporating novel amino acids, and immunity to viral infection.  Genetic code engineers seek 

to implement genome-scale changes algorithmically by modifying the rules underlying the genetic code 

(recoding) and implementing non-natural codes in particular organisms. These changes ultimately result 

in fundamentally altering how certain codons are recognized during translation.  Such “global” changes 

offer unprecedented opportunities to explore the effect genetic information has on an organism’s specific 

phenotypes.  The first organism recoded genome-wide, C321.A (nicknamed rE. coli 1.0), has been 

engineered by completely removing one of the 64 codons from the genetic code of E. coli MG1655 [1,2]. 

The de-assigned codon has shown facility for being re-assigned to non-standard amino acids [2], for 

improving resistance to infection by bacteriophage [2] and for providing improved intrinsic 

biocontainment for engineered microbes [3,4].
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Notably, changes to codon usage throughout the DNA of an entire genome are not sufficient to 

completely implement the desired new genetic code—the gene(s) for the corresponding translation 

machinery must also be engineered. In this particular case of genome-wide codon removal, deletion of 

the gene prfA (encoding the release factor protein RF1) was sufficient. 

In general, engineering a genetic code genome-wide requires two major steps: 1) completely 

altering the usage of one or more of the 64 codons throughout the genome, and 2) altering the associated 

translation machinery to interpret those codons differently.  For engineering rE. coli 1.0, step 1 required 

changing the stop codon UAG in all 321 known instances to UAA, a synonymous stop codon, in order to 

remove the UAG codon from usage throughout the entire genome.  Step 2 required deletion of the gene 

encoding RF1 (release factor 1), removing the cell’s ability to recognize the UAG codon at all.  

To perform a similar process with a sense codon, one might alter all instances of the codon GUC 

(encoding the amino acid valine) to GUG (also encoding valine) and then delete the genes valV and valW, 

encoding the tRNAs that recognize the GUC codon. These are both examples of a reductionist genetic, i.e. 

where codons have been cleanly removed from the genetic code. In such cases, further effort would allow 

the removed codons to be re-assigned to a different amino acid, which again requires engineering both 

codon usage and the corresponding translation machinery.  Importantly, either step 1 or step 2 may result 

in a growth defect, or lack of any observed growth, in the organism.  Choosing codes that minimize this 

risk is essential when undertaking the long and difficult process of testing a code genome-wide, in vivo.

 Lajoie et al. [5] experimentally explored the impact of step 1 on single genes in E. coli.  42 highly 

expressed genes were redesigned according to a new genetic code that disallowed the use of 13 codons. 

Individually, each redesigned gene was produced synthetically, inserted into the cell to replace the wild- 

type version, and doubling time was measured. These redesigned gene sequences also featured 

substitutions of one allowed synonymous codon for another.  For example, instances of the forbidden 
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AUA Isoleucine codon could be replaced with either of the allowed synonyms AUC or AUU, while AUC 

would be replaced by the only other remaining allowed synonym AUU, because AUA is forbidden. If no 

colony formation was observed with the altered genes, the impact of changing codon usage in the gene 

was tested further in vivo using alternative designs that departed less drastically from wild-type codon 

usages.

The experiments in [5] provide an important window into the effects on viability of changing 

codon usage in highly expressed genes. Other notable efforts by Ostorov et al. in [6] are pursuing the 

removal of a different, smaller subset of codons throughout the entire E. coli genome.  This resulting 

strain, called rE. coli-57, would use 57 of the 64 canonical codons genome-wide and may demonstrate 

increased genetic containment and viral resistance relative to rE. coli-1.0, in which just one codon was 

removed genome-wide.  Yet the degree of extensive genome engineering required to fully confer genetic 

containment and viral immunity remains unknown.  Identifying the code(s) meeting these objectives—

and that can be feasibly engineered while maintaining cell viability—is an extremely complex challenge. 

The number of codes to test seems unapproachably vast if one considers all possible permutations of 

codons for each amino acid.  Furthermore, modeling the complex mapping of genotype to phenotype is 

currently limited by incomplete information.  Even powerful technologies such as DNA synthesis, MAGE, 

and CRISPR enabling genetic-code engineering experiments are unlikely to reduce costs in the foreseeable 

future to the point that all genetic code designs of interest can be evaluated in the laboratory.  Under 

these circumstances, computational methods can play in an important role in establishing an ongoing 

dialogue between experiment and theory.  Results from in silico predictive models can be used to identify 

promising and feasible in vitro and in vivo experiments.  Results from experiments can then be leveraged 

to increase fidelity and to test accuracy and precision of in silico simulations, cf. Figure 1.
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In silico methods that can predict design failures in step 1 of genetic code engineering would be 

broadly useful in many genome engineering endeavors.  The state of the art in biological computational 

modeling and analysis, though brimming with promise for explanatory purposes, to our knowledge, lacks 

the predictive capabilities necessary to address this particular need in genetic code engineering, however.   

As a baseline, models predicting whether changing codon usage designs in specific genes fail (in the sense 

that they are associated with no observed growth) in E. coli will be particularly useful for saving time and 

cost entailed in implementing difficult, genome-wide experiments with code designs that are likely 

compromise its viability.  No existing models we know of have this specific capability.  

Karr et al. recently published in [7] an in silico, whole-cell model of M. genitallium.  While this type 

of model may provide useful insights into the effects of changing codon usage in step 1 of recoding, a 

similar model of E. coli is not currently available.  Thiele et al. in [8] published a stoichiometric model of E. 

coli’s transcription and translation machinery.  This model, however, is not resolved to account for the 

codon-specific influences in transcription and translation necessary to understand the effects of step 1 on

Figure 1.  The envisioned tight coupling of information flows among in silico, in vitro and in vivo experiments.

these processes.  Lerman et al. in [9] combined the model from [8] with a metabolic model for E. coli to 

capture the influence of genetic information on both metabolism and transcription and translation and, 

through these processes, phenotype.  While this model captures the important influence of metabolism 
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on phenotype, because it uses the transcription and translation model from [8], it lacks the codon-specific 

resolution necessary to make inferences about phenotypic responses to changes in codon usage entailed 

by step 1 in the recoding process.  

The in silico modeling and analysis approaches described above center on digital representations 

of biochemical and biophysical mechanisms in the cell.  An alternative approach involves abstracting the 

genetic code in terms of its role in information storage and transmission in the cell.  With this approach, 

established physical and mathematical models can be leveraged to explore questions about the driving 

forces that might have led to the code’s specific topology, defined by its mapping of 61 codons to 20 

amino acids.  Tulsty et al. model the genetic code as a noisy communication channel and use rate-

distortion theory to describe how the code might have evolved to balance the rate and distortion of the 

channel [10]. Constraints on the code as an information channel, such as “error-load” and amino acid 

“diversity” (both mapping to the “distortion” of the code “channel”), and the “cost” to the cell of specific 

binding between codons and anticodons to reduce translation errors (the “rate” of the code “channel”), 

are likely to influence which genetic code engineering trajectories maintain viability.  However, this model 

does not address factors such as observed organism-specific (e.g. E. coli vs. Plasmodium) [11] and 

category-of-gene specific (e.g. highly expressed vs. not highly expressed) [12, 13] codon biases that are 

impacted when synonymous codons are substituted in step 1 of the recoding process.  Modifications in 

step 1 that alter these biases are also likely to influence the viability of an organism.

To address this capability gap in the state of the art of in silico modeling, we developed a 

phenomenological model specifically to predict the consequences of different codon-usage changes on 

observed cell growth (one measure of a design success or failure).  For the set of individual, highly-

expressed, essential genes used in [5], we computed a set of features that address both physio-chemical 

and information-theoretic characteristics of each gene’s DNA sequence.  From these, leveraging 

accompanying observations of colony formation from [5] in binary form (i.e. {yes, no}), we determined a 
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salient subset of features and learned a statistical model that predicts whether changing codon usage in 

a gene will impact E. coli’s ability to form observable colonies when grown on agar plates.  To assess 

generalizable performance of a model trained with this relatively small dataset, we devised a performance 

evaluation method using nested cross validation (CV) with random subsampling.  The best model yielded 

an average AUC of 0.72 and a mean sensitivity of 0.80.

We used this model to make design success/failure predictions for E. coli genes with codon usage 

altered in silico according to several alternative, novel algorithms. The algorithms we chose incorporate 

domain knowledge about interesting edge-cases in possible genetic code designs.  This model predicted 

that two out of nine re-coding algorithms are likely to fail upon in vivo implementation.  The classifier 

provided information about the effects of changes in codon usage in individual genes on cell viability.  To 

gain insights into the effects of algorithmically modifying codon usage in sets of genes, we produced 

scatter-plots of salient features computed for the genes, bounded by convex hulls.  This visual 

representation provides a gestalt view of how different algorithms impact the same group of genes.  It is 

possible with this technique to visually gauge similarity between algorithms in terms of how close their 

convex hulls are in the feature space and whether these convex hulls are similar in shape and size.  With 

these plots, we also arrived at a qualitative representation of expected extrapolation error from models 

learned on the Lajoie gene/code dataset in [3]. 

Results 

Nested CV results

The average AUC, sensitivity and specificity over the 1000 trials for the GC and SVM classifiers 

appear in Table 4.  Thresholds determining sensitivity and specificity were learned on out of sample data 

from the inner CV loop.  The AUC of the GC classifier, AUC = 0.72, was significantly better than that of the 
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SVM, AUC = 0.68, at the 5% level.  Both AUC values were significantly better than random, at the 5% level.  

The sensitivity of the GC classifier was 0.8; that of the SVM, 0.76.  Specificity of the SVM was higher, 0.52, 

than that of the GC, 0.48.  Given the problem space we are addressing with this model, the GC appears to 

be a better choice for discriminating design success/failure than the SVM because it has a higher true 

positive rate.  We wanted to minimize the false negative rate (1 - true positive rate), e.g. falsely classifying 

a modification that would result in design failure as a modification the would result in a successful design, 

because in vivo experiments are expensive and only modifications with a high probability of viability are 

likely to be good candidates for full, in vivo, recoding experiments.  

Classifying the effect of the nine new codon-usage algorithms on the 40 genes in vivo

Figure 7 shows split bean plots of the features with the strongest Cohen’s d selected using the 

uncorrelated feature selection method on the entire FCS and FC dataset, as described above.  

Table 4.   Performance metrics along with 95% confidence intervals for the SVM and GC classifiers. These 
results demonstrated that there was information in the selected features to predict design success/failure 
due to codon-usage modifications from the FCS and FC algorithms.  Furthermore, at the 5% significance 
level, the GC AUC was better than that of the SVM with a linear kernel.

Classifier
Mean
Sensitivity
[95% CI]

Mean
Specificity
[95% CI]

Mean
AUC
[95% CI]

SVM 0.76
[0.48 0.93]

0.52
[0.33 0.70]

0.68
[0.51 0.85]

GC 0.80
[0.54 0.95]

0.48
[0.30 0.67]

0.72
[0.55 0.88]

Cyan and yellow lines indicate the log of the computed feature values, blue and orange contours are 

kernel density estimates of the log feature observations, dark blue and light brown solid lines indicate 

mean log feature values associated with design success and design failure, respectively, and the black 

dotted line indicates a grand mean over all log feature values plotted.  For the SVM LPOCV parameter 

selection step, we achieved the best predictive performance using five uncorrelated features selected 
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based on the magnitude of their Cohen’s d, as opposed to using all features, including correlated ones. 

For the GC, five features chosen from all features, including correlated features, performed best in the 

LPOCV.  Three of the five features selected for the GC were the same as those selected for the SVM: the 

Hamming distance between the base pair distribution of the WT and modified sequence (HammingBPS), 

Figure 4.  Split bean plots of the five uncorrelated features selected for the SVM classifier.  Three of the 
five, the Hamming distance between the base pair distribution of the WT and modified sequence 
(HammingBPS), the KL divergence between the codon distribution of the WT and modified sequence 
(KLdivCodons) and the ratio of CAI from the 31st codon to the final codon before the stop codon 
(ratioCAIend30codonsPlus), were also selected for the GC correlated feature set.  The other two features 
selected for the GC classifier are highly correlated with the CAIend30codonsPlus, have similar feature 
histograms and are therefore not shown.  The blue envelope is the kernel density estimation of the feature 
histograms for the modified genes that resulted in a successful design while orange is that of the modified 
genes that did not.  Cyan and yellow lines signify the log of feature values for the two classes of features, 
respectively.  Dark blue and brown long lines indicate mean log values for features associated with design 
success and failure, respectively. 

the KL divergence between the codon distribution of the WT and modified sequence (KLdivCodons) and 

the ratio of CAI from the 31st codon to the final codon before the stop codon (ratioCAIend30codonsPlus).  
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The remaining two CAI features selected for the GC were highly correlated with ratioCAIend30codonsPlus, 

had very similar bean plots and are therefore not shown.

Since the magnitude of the Cohen’s d was used to select features, features with, on average, very 

different values for the design success/failure classes, and small, pooled standard deviation, were likely 

to be selected.  In Figure 4, it is clear that the large mean difference between the ratioRNAFoldRBS30 of 

the two classes is offset by the large pooled standard deviation, making the magnitude of Cohen’s d for 

this feature one of the lowest in the five selected features.  This feature, as well as normMICodons, was 

not selected in the GC correlated variable feature selection routine.  In contrast, ratioCAIend30codonsPlus 

has a large mean difference between the two classes paired with a relatively small, pooled standard 

deviation, making it the feature with the strongest Cohen’s d of the five. The ratioCAIend30codonsPlus is 

the codon adaptation index ratio for the part of the gene following what has been called a “codon ramp” 

[19], the beginning of the gene characterized by, on average, codons that are translated more slowly.  It 

is not clear why the CAI from the latter part of the gene was more discriminatory for design success 

classifcation in the FC and FCS modified dataset.

The Hamming distance for the base pair distribution and the KL divergence for the codon 

distribution were also selected in both the GC and SVM feature selection methods.  The Hamming distance 

between base-pair distributions measures the minimum number of base pair substitutions that would be 

required to change the modified sequence back to the wild-type sequence.  Modifications that failed had, 

on average, more base pair substitutions than modifications succeeded.  KL divergence can be interpreted 

as measuring the difference between two sets of observed data by quantifying the amount of extra 

information required to compress the information in one set using a scheme based on the generating 

distribution of the other set [31].  It is not a symmetric measure and therefore not a proper distance. The 

KL divergence between the codon histogram of the wild-type codon frequencies and the codon histogram 
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of the modified gene codon frequencies is therefore the amount of extra information required to 

compress the codon frequency information from the wild-type sequence using a scheme optimized for 

the modified sequence.  The strong, positive Cohen’s d for this feature in this dataset entails that design 

failure is correlated with a higher wild-type KL divergence from modified versions of a gene.  Thus, the 

amount of extra information required to compress the codon frequency information from the wild-type 

sequence using a scheme optimized for the modified sequence was higher on average in modified genes 

associated with design failure relative to modified genes associated design success. 

In Table 5., the designed genes predicted by the SVM and/or the GC to fail are shown.  Of the nine 

algorithms, implementation of two were predicted to fail for one or more modified genes.  The Minweak 

algorithm had the biggest impact on viability- twenty-eight out of the forty genes modified with this 

algorithm were predicted using either the GC or SVM to fail.   tRNAsub2 was similarly predicted to fail for 

eleven out of forty genes.  Sub-11 is not predicted to result in a design failure by either classifier for any 

of the forty genes.  The codons removed in rE. coli-57 are a subset of those removed in Sub-11 [6].  It is 

worth noting therefore that, when implemented individually in the forty genes in this study, the 

alternative genetic code in [6] would also be predicted by our models to succeed.  Ostrov et al. plan to 

remove seven codons (cf. Table 3) from the entire E. coli genome, simultaneously.  If there is no observed 

colony formation in rE. coli-57, our results suggest that this may to be due to interactions between the 

recoded genes and/or the individual effects of recoding genes not included in our study.  

The GC is more conservative than the SVM in classifying failed modifications for this new set of 

algorithms.  It performed significantly better, using the AUC metric, than the SVM in the nested cross-

validation study on the FC + FCS dataset (Table 4).  Although the two classifiers agree that many of the 

Minweak modified genes will fail, there are discrepancies as well.  All but two of the modified genes 

classified as failing under the GC were classified similarly by the SVM.  Notably, rplL was the only gene 

modified with tRNAsub2 that was classified as failing by the GC.  This gene was not classified similarly by the 
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SVM when modified by any of the algorithms we tested.  Though the GC performs significantly better than 

the SVM in the validation results, the SVM still performs significantly better than random.  Therefore, the 

SVM may provide complimentary information to the GC and the results from the two classifiers could be 

combined to provide more robust discrimination.

Existing methods could be applied to automatically combine classifier predictions.  For example, 

a majority-rule-like, classifier combination could be defined such that, if the GC and the SVM each classify 

at least one gene as preventing colonies from forming for any algorithm, that algorithm should be 

eliminated from the suite of potential algorithms to test in vivo.  This rule would eliminate both the Minweak 

and the tRNAsub2 algorithms as candidates for in vivo genetic code engineering experiments.  Such a rule 

could be honed to weigh the decision rule to throw-out a potential algorithms to test in vivo more heavily 

if multiple genes are classified by each classifier as failing for a given algorithm.  Although not shown in 

Table 4., we tested random forest, gradient boosting and extra trees classifiers from Scikit Learn on this 

dataset as well.  None of these approaches outperformed the SVM and GC classifiers, implemented in 

Matlab.  In principle, however, with further parameter tuning, performance with these techniques might 

be improved and results combined with the SVM and GC classification outputs to further improve 

performance.  

In the absence of an explicit model combining the predictions of the two classifiers there is enough 

consensus between them to suggest strongly that tRNAsub2 and Minweak should be eliminated as candidate 

algorithms to be used in genetic code engineering experiments.  Although extreme algorithms such as 

Minweak and tRNAsub2 might confer strong viral resistance and genetic isolation to engineered organisms, 

they don’t perform well in the colony-formation dimension of the multi-objective optimization genetic 

code engineering attempts to solve.  Observed colony formation is a necessary condition that must be 

met before other dimensions in the problem space defining optimal algorithms, such as viral resistance, 

genetic isolation and non-natural amino acid and protein generation can be examined. 
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In Table 5., we also gain insights into which genes are most likely fail in E. coli when modified with any 

algorithm.  We call these types of genes “bellwether genes” in reference to the idea that one or a few 

sensitive genes could be used as a first pass to evaluate algorithms in vivo before undertaking more 

comprehensive, expensive genome-scale modifications.  If a modified bellwether gene fails when 

implemented in vivo, the algorithm can be discarded, if not, the algorithm can be evaluated further for 

suitability.  rplB, rpsC, rplO, and rpsA appear to be promising “bellwether gene” candidates since changes 

to them are notably predicted to fail for tRNAsub2, by the SVM, and Minweak, by the SVM and GC.   These 

genes are also from the set that resulted in no colony formation in vivo when modified with the FCS 

algorithm.  Increasingly comprehensive models trained with more data will enable us to define this set 

with more confidence.   

Visualizing effects of changing codon usage on sets of genes

In Figure 5, we present an example of a new visualization technique we developed to facilitate gestalt 

understanding the effects of algorithms used for genetic code engineering on groups of genes.  The axes 

of the plots used in the visualization can be any features determined to be salient in genetic code or 

genome engineering.  For this work, we focus on features useful for design success/failure classification, 

as measured by observation/no observation of colony growth, discovered using our feature selection 

routine described above.  Two of the five selected features serve as axes in Figure 5.  These two features 

can be plotted for each gene from the set of 40 genes in Table 1. modified with any number, N, of codon-

usage algorithms, resulting in N points per gene, 40 points per algorithm and N*40 points in all.  To reduce 

complexity as we describe components of the visualization, we show only features from genes modified 

with two of the nine novel algorithms presented above, Minweak and tRNAsub1.  The 40 points from each 

algorithm are bound by line segments defining the convex hull (yellow for Minweak and blue for tRNAsub1)
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Table 5. Genes modified with particular codes that 
were classified as design failures using our model 
trained on the 40 genes modified with the FC and 
FCS algorithms.  Of the nine algorithms we tested, 
only two are predicted fail, tRNAsub2 and Minweak.  
Minweak was the most disruptive to colony 
formation, according to our model, since many 
genes modified with this algorithm were classified 
as failing by both the GC and SVM.  Several genes 
(highlighted in blue) appear to be more sensitive 
being modified than others.  These genes are 
predicted to result in a design failure under both 
tRNAsub2 and Minweak for the SVM and are classified 
failing by the GC under Minweak. They also resulted 
in a design failure when modified with the FCS 
algorithm and implemented in vivo in [3].   These 
may be good “bellwether” gene candidates in the 
sense that different modifications to them appear 
more likely to fail.

 

tRNAsub2 Minweak:Gene
Name SVM GC SVM GC
rpmH ✔ ✔
rpsR ✔
rpmB ✔
rpsP ✔
rpmA ✔ ✔
rplU ✔
rpsJ ✔
rplS ✔ ✔
rplT ✔
rplN ✔
rpsK ✔ ✔ ✔
rpsI ✔ ✔
rpsH ✔ ✔
rplP ✔ ✔
rpsE ✔
rplE ✔
rpsD ✔ ✔
rplC ✔ ✔
rpsB ✔
prfB ✔ ✔ ✔
rplB ✔ ✔ ✔
rpsC ✔ ✔ ✔
rpsL ✔ ✔
rplD ✔ ✔
rplO ✔ ✔ ✔
rpsA ✔ ✔ ✔
rplQ ✔ ✔
rplL ✔
rplW ✔
rplF ✔ ✔
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in order to visually group the influence of each algorithm on the set of genes in the salient feature space.  

Generally, the convex hull of a set of points in a Euclidean space is defined as the smallest convex set that 

contains that set.

This visualization approach contains several benchmarks to orient investigators to important 

features of the algorithms.  First, a “wild-type” origin is depicted as a cyan triangle in each pairwise plot.  

This represents the feature values that an unmodified gene would have and can be used to measure

how distant algorithms are from wild-type configurations.  Because most of the features we used in this 

work are ratios or normalized distances, the “wild-type origin” for any given feature is 1 or 0.  Because all 

of our features were distances or ratios, the wild-type origin is the same for every gene and can be 

represented as one point in the pairwise feature space.  In Figure 5, the Minweak algorithm, in which 43 

codons are removed from the code, moves the set of 40 genes far from the wild-type origin at (1,0), 

whereas the same set modified with the less extreme tRNAsub1 algorithm, in which 28 codons are removed, 

is relatively much closer to the origin.

Second, relevant groups of the training data are plotted using dashed convex hulls- one in red, to 

indicate examples resulting in design failure, the other in black, indicating examples of successful designs.  

These convex hulls demonstrate where in the feature space the model had information about colony 

formation from which to learn classifier-model parameters.  Using this information, areas of the feature 

space lacking training examples can be identified and strategically populated with data in future 

experiments specifically designed to make the model more robust and comprehensive. Predictions for 

new examples far from the training data will likely have more extrapolation error and should be treated 

with more skepticism.  

Third, feature landscapes of how modifications effected colony formation are defined with the 

dashed convex hulls, allowing investigators to immediately identify algorithms likely to result in a design 
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failure by sight.  In Figure 5, the Minweak convex hull is close in the feature space to the red, dashed convex 

hull bounding the examples that resulted in a design failure in the training set.  This was the novel 

algorithm predicted to fail in the greatest number of genes from the set of 40.  On the other hand, the 

tRNAsub1 algorithm convex hull lies far from that bounding the training examples associated with no 

observed colonies.  

Finally, the relative placement and size of the convex hulls of different algorithms are also

informative.  In Figure 5, the convex hull defining the features from the Minweak algorithm is quite far from 

that defining features from tRNAsub1, consistent with the fact that the two are different “types” of

Figure 5.  A data visualization method using convex hull plots in salient feature dimensions.  Here, we 
show convex hulls circumscribing the feature values from 40 genes from Table 1, modified with two of 
the novel algorithms, Minweak and tRNAsub1. The features are two of the five selected in the feature 
selelction routine for design success/failure prediction.  This visualization has two benchmarks to orient 
investigators- the “wild-type origin” and the convex hull plots of features for the the “failed” (red dashed) 
and “successful” (black dashed) training samples.  The wild-type origin shows the feature value a gene 
would have if it was not modified.  The amount the feature of an modified gene deviates from the wild-
type origin provides insights into how “different“ an modified gene is from the wild-type sequence.  The 
training data convex hull plots show what parts of the feature space are inhabited by observations of 
successful and failed designs. If genes modified with a new algorithm have features near the training 
examples that resulted in a design failure, they have the potential to result in a design failure as well. 
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algorithms in the sense that they change the features of the same set of genes differently.  Algorithms 

can also be distinguished by the sizes of their convex hulls.  That of the Minweak algorithms is small 

compared to the convex hulls bounding the training data associated with observed colonies and  the 

tRNAsub1 algorithm.  This means that, even though the Minweak algorithm is extreme in the number of

      
a          b

c

Figures 6 a-c.  Pairwise convex hull plots in three feature dimensions selected in both the GC and SVM 
feature selection routines.  Each convex hull circumscribes the same 40 genes but modified with each of 
the nine, novel algorithms.  Note that the two algorithms predicted to fail when implemented in particular 
genes (bolded convex hulls), Minweak and tRNAsub2, have similar feature values for this set of genes.  Also 
note that the more extreme the algorithm, the more features deviate from WT features (cyan triangles).  
In general, predictions for unseen data far from the data on which the model was learned (in the dashed 
convex hulls), should be treated with more caution than those for unobserved data in the domain of the 
training data.  Note in 9a that rpsG is an extreme outlier for all algorithms in the KLdivCodon dimension 
(point in each algorithm’s convex hull with largest KLdivCodon).
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codons it excludes, it changes all 40 genes away from wild-type configurations “in the same way” in the 

salient feature space.  tRNAsub2, though less extreme, influences the genes in the set “in different ways” 

in the feature space, leading to more dispersion and a larger convex hull.  In Figure 6a-c, we plot the 

convex hulls of all 9 algorithms applied to the set of 40 genes from Table 1.  As would be expected, the 

convex hulls of the features of the forty genes recoded with the Minweak algorithm lies closest to the red, 

dashed convex hull bounding the examples from the FC algorithm that resulted in design failure in all 

three pairwise feature plots.  Also, as would be expected, the convex hull bounding the gene set recoded 

with tRNAsub2 inhabits parts of the feature space close to those inhabited by the genes recoded with 

Minweak.  The convex hulls of these algorithms are plotted with thicker lines to indicate that they are 

predicted to fail if implemented in one or more of the genes.  In particular, both of these algorithms result 

in a ratioCAIend30Plus less than 1 for all 40 genes, and less than 0.5 for most of the genes, indicating the 

CAIend30Plus for the modified genes is much reduced relative to that of the wild-type genes.  Since the 

reference set for the CAI consists of highly expressed genes, the higher the CAI, the more likely it is that a 

gene is highly expressed.  This set of 40 genes was selected based on the fact that they were essential and 

highly expressed.  Therefore, the Minweak and tRNAsub2 changed the codon composition of these highly-

expressed genes in the wild-type organism so that their codon composition was more similar to that of 

poorly expressed genes, a change that would be intuitively be expected to fail.  Furthermore, it is worth 

noting that the ratioCAIend30Plus had a higher Cohen’s d than the ratioCAI, computed over the entire 

gene.  While more data are needed to confirm this with significance, these results suggest that eliminating 

the “codon ramp” from the CAI computation may lead to a more sensitive metric for predicting design 

success.

The algorithms span a spectrum of extremity from Sub-11 in which only 11 codons are eliminated, 

to tRNAsub1, in which 28 codons are eliminated, to Min-GCmax and Minweak, in which 43 codons are 

eliminated.  The extremity of the codon changes induced by the algorithms is reflected most in the convex 
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hull’s distance from the wild-type origin.  As with Minweak and tRNAsub2, the extreme algorithms that are 

not predicted fail also have convex hulls similar to each other in the feature space. Because they all 

eliminate more than half of the available pool of codons, their convex hulls are farther 

Figures 7 a-c.  Pairwise convex hull plots (blue) in the three feature dimensions, selected in both the GC 
and SVM feature selection routines, circumscribing the entire data set of 360 modifications of 40 genes 
(i.e. modified with the nine, novel algorithms). Features from rplU, rpsG, and rpsR, modified with the 
Minweak algorithm, and rplQ, modified with the Min-classII algorithm, lie at the corners of the convex hull 
bounding the data that requires predictions.  In vivo experiments with E. coli to determine whether these 
genes with these changes impactimpact colony formation would provide new training data for the 
classifier that would span the feature domain more comprehensively and decrease extrapolation error for 
predictions made on this data set.
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away from the wild-type origin than the less extreme algorithms.  These extreme codes have, on average, 

a lower KLdivCodons and a higher ratioCAIend30CodonsPlus, compared to the codes that are predicted 

to result in design failure.  It is also interesting that one gene, rpsG, disproportionately impacts the shape 

of the convex hull plots for all algorithms when KLdivCodons is plotted (i.e. it is an outlier).  The 

KLdivCodons of rpsG is much higher for each algorithm than any other modified gene.  While changes to 

rpsG from the nine codes are not predicted to fail, according to our classifier, it is important to note that 

the area of the feature space occupied by these modifications of rpsG is distant from that occupied by the 

training set, implying increased likelihood of extrapolation error for these predictions.  Better predictions 

for these modifications of rpsG might be obtained if the classifier’s training set is expanded to include 

colony formation data in the area of the feature space its modifications occupy.  

Conducting in vivo experiments to collect more training data is not a trivial endeavor, however.  

The in vivo experiments in [5] which produced the data used to train the classifiers in this work, though 

less difficult and expensive than full, genetic-code engineering in vivo experiments, were challenging and 

time consuming.  In this context, discovering a minimal set of “high-value,” new examples that can be 

used to improve the model would be advantageous.  Figures 10 a-c. are pairwise convex hull plots (blue) 

in the three feature dimensions, selected in both the GC and SVM feature selection routines, 

circumscribing the entire data set of 360 modifications of 40 genes (i.e. modified with the nine, novel 

algorithms).  Features from rplU, rpsG, and rpsR, modified with the Minweak algorithm, and rplQ, modified 

with the Min-classII algorithm, lie at the corners of the convex hull bounding the data that requires 

predictions.  In vivo experiments with E. coli to determine whether these genes with these changes 

impactimpact colony formation would provide new training data for the classifier that would span the 

feature domain more comprehensively and decrease extrapolation error for predictions made on this data 

set.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2018. ; https://doi.org/10.1101/363812doi: bioRxiv preprint 

https://doi.org/10.1101/363812
http://creativecommons.org/licenses/by/4.0/


22

These convex hull visualizations intuitively determine and display minimal sets of informative data 

that expand the domain of the feature space covered by the training data.  Other more commonly used 

metrics for determining valuable data to collect to improve classifier performance, such as uncertainty 

sampling and expected error reduction [32], could also be used in this visualization to improve 

researchers’ intuition about where valuable data defined by this metric lives in the feature space.  In 

principal, this technique can be used to display good training data for any classifier and any set of genes 

modified under any set of algorithms.

In general, all of these visualizations can be used to gain a synoptic view of the impact of modifying 

codon-usage with different algorithms in large groups of genes.  In particular, these plots can be used to 

answer the following questions:  How do algorithms differ relative to each other in terms of size, shape, 

position of and data spread within their convex hulls?  How different, on average for a large set of genes 

of interest, is a sequence modified with a particular algorithm from the wild-type sequence?  Is the 

algorithm and set of genes we are interested in gauging close to or far away from the data used to train 

the design success/failure classification model (i.e. how good will model predictions be for a given 

algorithm implemented on a given set of genes)?  What are the most valuable experiments to conduct to 

obtain training data that will improve model predictions?  Answers to these questions augment and 

complement the information obtained in a binary classification based on codon modifications in a single 

gene.  These plots can thus be used in tandem with the classification models to flesh-out the landscape of 

how different genetic code algorithms influence large numbers of salient genes in the genome.

Discussion

With a small dataset of 47 experimental examples, we have developed classifier models that 

estimate which re-coding algorithms, applied to a highly expressed, essential genes, will result in a design 
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failure.  These results are significantly better than random guessing at the 5% level.  Furthermore, the AUC 

values were determined using a nested cross validation approach to maximize generalizability to unseen 

data.  Given the extensive resources required for in vivo recoding experiments, we will now use results 

from this simple model to help eliminate problematic experimental trajectories.  

We anticipate that this model will improve as more in vivo data is collected for training. Future 

work will involve iteratively conducting promising experiments, based on model predictions, and using 

this data to train better models for predicting the next round of experiments.  In particular, our training 

set was biased by the fact that only the FCS and FC algorithms were used on a set of 40 highly expressed, 

essential genes.  In addition, data from different algorithms needs to be collected and used to make a 

more robust model.  While data from the genes used here are likely to prove useful in determining 

whether a recoding algorithm is problematic, other highly expressed and/or essential genes should also 

be tested. Feature engineering efforts to develope new, promising features is expected to improve results 

as well.  

Our classification methods predict effects of modifying codon usage on a gene-by-gene basis.  It 

is possible that characteristics of the convex hulls plotted in Figures 9. and 10. could yield insights into 

how modifications in multiple genes in vivo would combine to impactimpact viability.  To verify this, we 

will need in vivo data in which such multi-gene modifications have been engineered.  Such experiments 

are ongoing in other research groups [6].  Finally, the other dimensions in the multi-objective optimization 

promised by genetic code engineering remain to be explored.  How different does a recoded organism 

have to be to confer genetic isolation and viral resistance?  What are the bounds on incorporating non-

natural amino acids into an organism’s protein repertoire?   And, can the principles of recoding be 

successful in more complex organisms with much larger genomes?
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Materials and Methods

Model Testing and Training Data

The modeling and performance evaluation methodology when building predictive models differ 

from that involved in constructing explanatory/causal models [14].  We make no claims in this paper about 

causality or identifying mechanisms.  The scope of the modeling in this work is focused on the pragmatic 

goal of building an in silico pipeline to help predict design success or failure, as a binary yes/no variable, 

when the codon usage in single genes is changed according to a specific recoding algorithm.  In this sense, 

the tools we present here are decision-support tools for genetic code engineers.  The intention of this 

work is not to build upon or infer biological mechanisms- it is to facilitate and inform the scientific 

experimentation process in genetic code engineering. This specific goal informed the types of features we 

examined, the validation methodology we used to estimate the performance of our model and our 

approach to correlated variables in the model.  

When choosing the features we tested for predictive power, our focus was on whether the 

features were measurable and had predictive potential, rather than on whether such features described 

possible causal mechanisms derived from theory.  Additionally, our validation metrics were empirically 

derived through nested cross-validation, instead of theoretically derived metrics of goodness-of-fit that 

are used for regression models when the magnitude and confidence of feature weights in the model are 

used to infer causal relationships.  Finally, correlated predictors do not present the same problems in 

prediction as they do in explanatory modeling, where understanding the causal strength of a predictor is 

impacted if other variables being inspected are correlated with it [14,15].  As a consequence, we did not 

preclude correlated features in our model; rather, we examined whether their presence had a consistent, 

significant effect on classifier performance. 
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For feature selection, model training and cross-validation, we used a dataset consisting of 

sequence data from altered genes, tested in vivo, and the associated observations of colony formation 

(e.g. failed or succeeded), from the experiments as described in [5].  16 of 42 modified genes implemented 

in vivo in the experiments in [5] resulted in no observed colonies.  As a result, a more conservative codon-

usage algorithm was tested for these genes in which the 51 allowed codons remain unchanged in the 

coding sequence.  Furthermore, any synonym that enabled successful colony formation from the allowed, 

synonymous codons was used to replace forbidden codons when sampled synonyms resulted in failed 

colony formation [5].  This codon-usage algorithm is referred to as the “The Forbidden Codon” (FC) 

algorithm in this work.  All in vivo implementations of FC algorithm were viable.  

Information was not available to us for all modified genes in [5]; therefore, data in our in silico 

work consists of a subset of the genes (40 out of 42) described in [5].  In this subset, forty of the modified 

genes were changed according to FCS algorithm in Figure 2.  These genes are listed in Table 1. in regular 

type (e.g. not bolded).  Of these, sixteen failed to produce colonies after in vivo implementation in [3], cf. 

Design Failure row in Table 1.  Twenty-four resulted in successful colony formation, cf. Design Success 

row, regular type in Table 1.  Seven of the sixteen genes in our dataset that were changed with the FCS 

algorithm and resulted in failure, were modified instead with the more conservative “Forbidden Codon” 

(FC) algorithm, in which only forbidden codons are replaced in subsets to test for viability, and 

implemented in vivo [3].  Modifications in this set of seven genes resulted in successful colony formation 

under the FC algorithm but failed colony formation under the FCS algorithm, which is why they appear in 

both the Design Failure and Design Success rows in Table 1.

To minimize potential sources of extrapolation error, we modified, in silico, the same set of forty 

genes with our nine, novel codon-usage algorithms.  The sequence data for wild-type sequences that we 

used for our features was obtained from EcoCyc, an E. coli Database [16].  Because interactions between 

the initial protein coding sequence and the ribosomal binding site (RBS) in genes with modified codon 
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usage could potentially influence viability, we included 19 base pairs prior to each start codon.  We 

appended these sequences to the wild-type and codon-modified protein-coding sequences of all genes to 

compute features using these extended sequences.  

Table 1. Genes used in this work for model development and performance evaluation and for recoding with nine 
novel codes and generating predictions and visualizations with sequence data from [3] and EcoCyc.  Genes in 
represented in bold, in the Design Success row, resulted in no observed colonies when modified with the FCS 
algorithm and implemented in E. coli, but resulted in observed colonies when modified with the less extreme FC 
algorithm [3].  These genes also appear in the Design Failure row, but in normal type.  Normal type designates genes 
modified with the FCS algorithm, bold, genes modified with the FC algorithm.  Genes represented in bold are in both 
the successful and failed design datasets because they were modified with two different algorithms in [3].  

Design Success rplL, rplT, rpmH, rpsB, rpsD, rpsP, rpsR, rpmD, rpmC, rpmB, 

rpsQ, rpmA, rpsS, rplW, rplU, rpsJ, rplX, rplV, rplS, rplR, rplN, 

rpsK, rpsI, rpsH, rplM, rplP, rpsE, rplF, rplE, rplC, prfB

Design Failure rplL, rplT, rpmH, rpsB, rpsD, rpsP, rpsR, rplJ, rpsL, rplQ, rplO, 

rplD, rpsC, rplB, rpsA, rpsG

Feature Selection, Model Learning and Validation Methodology  

We computed twenty-two features for each wild-type and codon-modified (e.g. by the FC, FCS, 

and the nine novel codes) sequence.  We chose several features quantifying codon bias and mRNA folding 

free energy based on observed physiochemical consequences and proposed mechanisms identifying the 

role of synonymous codon changes in translation [13,17-22].  These features were further partitioned and 

computed for salient subsets of codons in the genes.  For example, several studies identify the first 30-60 

base pairs of the coding sequence as a slowly-translated “codon ramp” relative to the remainder of the 

gene [13,17-22].  Based on this information, we computed codon adaptation indices (CAI) for the first 30 

codons of each gene and all subsequent codons prior to the stop codon, each as independent features.  

Since the estimated interval of codons included in this ramp is not precise and there are possibly other 
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salient codon subsets within the gene, we also computed CAI for the 21st codon (including start) to the 

21st codon before the stop codon and for the 13th codon (including start) to the codon before the stop 

codon.    We choose these intervals to explore the influences of groups of codons approximately in the 

middle and at the end of the genes.  A sliding window approach was leveraged in [23] to explore gene 

subsets for these types of features more comprehensively.  To keep our feature space small, given our 

small dataset, we did not use the same approach here.  Future studies with more data will be able to 

accommodate similar, more comprehensive feature spaces.  Several reports, [3,22-24], discuss the 

influences of mRNA structure around the ribosome binding site and the beginning of the codon sequence 

on gene-expression levels.  Based on these results, we also computed mRNA folding free energy for the 

coding sequence alone, the coding sequence plus the RBS and the RBS plus the first ten codons in the 

coding sequence.  

Other features were theoretical metrics of information changes in the modified genes, where information 

is measured using alphabets of codons or base pairs, relative to the wild-type gene sequence.  Feature 

abbreviations and descriptions are given in Table 2.  The KL divergence computations on codon histograms 

from each gene were computed using additive (Laplace) smoothing [25-27] to address the fact that not 

all possible codons were observed in every gene.  All features, other than those comparing codon and 

base pair frequencies in the genes, were computed as a ratio of the feature from the modified sequence 

divided by the feature computed for the wild-type sequence.  This was done to assure all features spanned 

a similar range.  Dividing by the length of the gene normalized the Hamming distance and we used a 

normalized mutual information metric that bounds the values within [0 1].  KL divergence values remained 

within [0 3] for all genes changed with all codon-usage algorithms.  Normalization was unnecessary for 

this feature.
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Table 2.  Feature descriptions.  * CAI features are computed for subsets of the gene informed by observations of a 
“codon-ramp” about 30-60 base pairs into the coding sequence [13,17-22] and by possibility of other salient 
subsequences.  ** mRNA folding free energy features are computed for subsets of the genes informed by 
observations of the influence of secondary structure between the RBS and different parts of the coding sequence 
on expression levels and translation rates [22-24]. 

Information Theoretic/Statistical Features

name description

normMIBPS normalized mutual information between the base pair counts in the wild-type coding sequence and the modified 
coding sequence interpreted where the base pair names are interpreted as four exchangeable cluster labels

normMICodons normalized mutual information between the codon counts in the wild-type coding sequence and the modified 
coding sequence interpreted where the codon names are interpreted as 61 exchangeable cluster labels

entBPS entropy of the base pair counts in the coding sequence

entCodons entropy of the codon counts in the coding sequence

KLdivBPS KL-divergence between the wild-type and modified base pair distribution of base pairs in the coding sequence

KLdivCodons KL-divergence between the wild-type and modified codon distribution of base pairs in the coding sequence

HammingBPS Hamming distance between the wild-type and modified base pair distribution of base pairs in the coding sequence

HammingCodon Hamming distance between the wild-type and modified codon distribution of base pairs in the coding sequence

countA count of adenine in protein coding sequence

countC count of cytosine in protein coding sequence

countG count of guanine in protein coding sequence

countU count of uracil in protein coding sequence

countAplusU count of uracil and adenine in protein coding sequence

countGplusC count of guanine and cytosine in protein coding sequence

CAI codon adaptation index (CAI) for the entire gene

CAIbeg* CAI for codons in the first 30 codons in the gene (excluding the start codon)

CAIend30codonsPlus* CAI for codons from the 31st codon to the final codon (before the stop codon)

CAImid* CAI for codons from the 21st codon (including start) to the codon 21 codons before the final codon (before the stop 
codon)

CAIend* CAI for the 13th codon to the last (before the stop codon)

Physiochemical Features

name description

RNA mRNA folding free energy for the protein coding sequence

RNARBS** mRNA folding free energy for the protein coding sequence and the ribosomal binding site

RNAFoldRBS30** 19 base pairs before the start codon plus the first 30 base pairs of the coding sequence
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To maximize generalizability of our performance estimates, we implemented a nested cross-

validation (CV) involving two tiers (cf. Figure 2 and Figure 3).  In the outer tier, depicted in blue in both 

figures, a test set of ten was selected randomly without replacement from an exhaustive set of all unique 

combinations of ten observations including five sequence changes associated with a design failure and 

five sequence changes associated with a design success.  This left thirty-seven observations for training 

the model in the outer tier and for use in an inner CV tier, green and gray in both figures, to learn optimal 

parameters for the model (meta-learning).  The inner tier consisted of exhaustive leave-pair-out cross

Figure 2. Depiction of data partitions for the nested cross-validation developed for the Gaussian and SVM 
classifiers. Two partitioning steps occur for each of the 1000 cross validation trials. The first one randomly 
selects a set of ten hold-out observations (five with no observed colonies, five with observed colonies) 
from the total set of 47 (blue dots in the diagram), without replacement.  Next, from the remaining 37 
data points, two are randomly selected, also without replacement, as an inner test sample (one with no 
observed colony, one with an observed colony) for exhaustive leave-pair-out cross-validation (LPOCV), 
depicted as green dots in the diagram. The other 35 (gray dots) are used for training the models in the 
LPOCV loop.  This leave-pair-out cross validation is done to learn the optimal number of features allowed 
in the feature selection process {4, 5, 6, 7}, a classification threshold and whether to include correlated 
features.  The number of features that produces the best AUC from the inner LPOCV is the number of 
features selected for training a model with the outer CV training set.  For details about the nested CV 
pipeline, see Figure 3.
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Figure 3.  Process diagram of the nested cross validation approach. Block colors correspond to data-type 
colors in Figure 2 and mean the action described in the block pertains to that subset of data.  The inner 
CV loop chooses the optimal number of features, M, to be used in the outer CV feature selection, which 
is done on outer CV training data only.  Feature selection follows the rubric of choosing the M features 
with the largest magnitude Cohen’s D effect size for discriminating feature distribution associated with 
observed and no observed colonies.  The inner loop is also used to estimate a classification threshold and 
whether to include correlated features in the model.  These features are then used to train a Gaussian 
classifier and an SVM.  The resulting model is used to predict the class of the held-out ten observations.  
The outer loop executes 1000 times, resulting in 1000 area-under-the-ROC-curve estimates. To get an 
estimate of performance, we take the mean of the AUC distribution. KEY: {FS := feature selection, ROC := 
Receiver operating characteristic, AUC := area under the ROC curve, GC := Gaussian Classifier, SVM := 
support vector machine}.

validation (LPOCV), holding out one observation with a design success and one with a design failure, on 

each iteration.  This CV tier was used to optimize three meta-parameters: the number of features {4,5,6,7} 

to be included in the model, the threshold on the soft classification for binary design success/failure 

prediction and whether to include correlated features in the selected set or not.  
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To eliminate correlated features when testing whether their presence impactimpacts classifier 

performance, if two feature had a Spearman’s correlation higher than |0.6|, we removed the feature with 

the smallest Cohen’s d value from the set of features used in the feature selection process.  Sets of four 

to seven features with the largest magnitude Cohen’s d effect size in design success/failure discrimination 

were selected for each inner CV training set of 35 and the test pair was classified using selected features.  

The number of features with the best area under the ROC curve (AUC) from the LPOCV was used as the 

number of features to be selected in the outer CV step using the training set of 37.  

Finally, from the ROC curve produced from the inner CV loop with the best AUC, we also identified 

a classification threshold.  We chose this threshold to occur at the operating point at which we reach 90% 

sensitivity with the fewest possible false alarms.  We chose this point because this tool is intended to 

decrease the risk of running genetic code experiments with codon-usage modifications likely to result in 

design failure.  Misclassifying a significant number of codes that would result design success as resulting 

in design failure does not entail as much risk in terms of lost time and money.  In other words, type II 

errors are costlier than type I errors in this domain and the classification threshold was set to account for 

the asymmetric risk.   

A Gaussian classifier and a soft-margin SVM with a linear kernel were trained using these data and 

these features.  We chose simple classifiers because our dataset was small and complex classifiers are 

more likely to over-fit to spurious patterns in the training data.  These models were then used to predict 

the classes of the ten held-out data points in the outer CV loop.  This loop was iterated 1000 times for 

1000 different subsets of 10 held-out observations.  AUC, sensitivity and specificity was computed for 

each of the 1000 iterations and averages over each metric estimate overall performance of the SVM and 

GC on this dataset.  The complexity and rigor of this validation methodology was necessary to achieve 

generalizable performance estimates with our small dataset.
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Definition of Nine Novel Codon-Usage Algorithms 

As mentioned above, we used our model to predict E. coli viability when the set of forty genes 

from Table 1. were modified with nine novel codon-usage algorithms.  All of the algorithms presented 

here are reductionist algorithms, i.e. some codon assignments to amino acids have been removed, leaving 

those codons blank—unassigned to any amino acid.  In contrast, a reconfigured algorithm would change 

the assignment from one amino acid to another.  We consider reductionist algorithms an important step 

toward implementing more complex reconfigured algorithms in living cells.

Previous efforts [1,2] reported the removal of one codon throughout the entire genome of 

MG1655, called the rE. coli  algorithms.  The algorithms designed and evaluated here sample greater 

extremes, from an intermediate number of changes (removing 11 codons) to bare minimum codes 

(leaving only one codon for each amino acid, removing roughly two-thirds of the natural 64 codons). 

Sub11: This set subtracts 11 codons from the canonical genetic code. These codons are used at low 

frequencies within MG1655 genes. We hypothesize that this set would remove enough codons to provide 

benefits such as strong resistance to bacteriophage infection, while still providing enough choices of 

synonymous codons to retain flexibility for troubleshooting emergent challenges with genome design and 

implementation. Modification of the codon usage in the genome combined with deletion of the 

corresponding tRNA genes is expected to be sufficient for the genomic installation of this code.

tRNAsub1: One version of a code that seeks to minimize the number of naturally-occurring tRNAs retained 

in the design. With 28 forbidden codons (i.e. 36 natural assignments retained) each amino acid is encoded 

by one or two codons.

tRNAsub2: A stricter version of a code that minimizes the number of naturally-occurring tRNAs required to 

represent each amino acid. With 36 forbidden codons (i.e. 28 natural assignments retained) each amino 

acid is encoded by one or two codons (more often one codon, compared to tRNAsub1).
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Mincurated: The first of several designed codes that theoretically only use one codon to represent each of 

the standard 20 amino acids.  In all such minimal codes (“mincodes”) 43 codons are forbidden (21 codons 

remaining, i.e. for natural amino acids plus one stop codon). The mincodes are thus deterministic in the 

sense that once a gene product is defined at the amino acid sequence, the DNA sequence for the gene is 

definitively known.  Leaving the genome engineer with no choices of DNA sequence flexibility is a 

considerable drawback for any eventual troubleshooting processes. In this report, all mincodes described 

are subtractive, only removing codon assignments, not reassigning or re-organizing. The primary means 

to implement this code would be to extensively modify codon usage in the genome, followed by deleting 

a large proportion of tRNA genes to be used no longer. However, in order to cleanly remove all forbidden 

codons from the genetic code, the remaining tRNA genes would also have to be significantly engineered 

to recognize exactly one codon each (instead of two or three each, which is most typical). This first 

mincode, Mincurated, is labeled “curated” to denote that several different design principles were considered 

and integrated by the designer. First, the most commonly used codons in MG1655 were emphasized, with 

the intent of not disrupting translation of highly expressed essential genes. Several decisions were also 

made for the purpose of making this code more facile to implement using synthetic DNA. To minimize 

runs of homopolymers that can be more challenging for DNA synthesis and high throughput sequencing, 

codons TTT, CCC, and GGG were forbidden. Pairs of codons that could give rise to palindromic repeats 

were also minimized, to reduce unintended RNA secondary structures as well as to avoid mispriming 

events during de novo DNA synthesis.

MinclassII: The 21 codons retained in this mincode are those defined as most utilized in highly expressed E. 

coli genes, as categorized by Hénaut and Danchin (“Class II”) [28].

Minsparse: 43 codons are forbidden, with the remaining allowed codon assignments chosen specifically to 

maximize the genetic distance between codons. Put another way, most single base mutations give rise to 
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a forbidden codon. For example with the allowed alanine codon (GCG) only one of the possible nine single 

mutations gives rise to another allowed codon (to CCG, proline). Thus, the majority of  spontaneous single-

base mutations that arise would be expect to yield a null (i.e. unassigned) codon, disrupting translation 

and giving rise to defective protein products.

MinATmax: The 21 codons of this mincode were chosen in order to yield the highest possible content of A:T 

base pairs. This design principle was chosen in order to explore one extreme of thermodynamics (e.g. self-

folding energies)

MinGCmax: The 21 codons of this mincode were chosen in order to yield the highest possible content of G:C 

base pairs. This design principle was chosen in order to explore the other extreme of thermodynamics 

(e.g. self-folding energies)

Minweak: The 21 codons of this mincode were chosen according to the codons least used in MG1655 for 

each amino acid. Thus genes modified according to Minweak are expected to require the most extensive 

degree of change from the wild-type sequence. 

To be fully implemented in living cells, all minimal algorithms would also require extensive 

engineering not only of genome-wide codon usage in protein-coding reading frames, but also of the tRNAs 

that recognize these codons. Otherwise many forbidden codons would still be recognizable by the 

remaining tRNAs due to wobble base-pairing between codons and anticodons.  See Table 3. for a synoptic 

depiction of these nine codes as well as the FC, FCS and rE. coli codes.  

Next, we learned a model trained on the entire FC and FCS dataset to be used to classify the new 

data from the nine codes described above.  We determined which features were most predictive design 

success/failure classification and trained SVM and GC classifiers.  Model parameters, including the number 
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Table 3.   Depiction of the nine, novel codes as well as the rE. coli-1.0, rE. coli-57 , FC and FCS codes.  Blacked out boxes indicate disallowed codons 
for a given amino acid and codes are shown in descending order, from the fewest to the most codons removed.  Standard symbols for amino acids 
are used.

Base1 T T T T T T T T T T T T T T T T C C C C C C C C C C C C C C C C A A A A A A A A A A A A A A A A G G G G G G G G G G G G G G G G
Base2 T T T T C C C C A A A A G G G G T T T T C C C C A A A A G G G G T T T T C C C C A A A A G G G G T T T T C C C C A A A A G G G G
Base3 T C A G T C A G T C A G T C A G T C A G T C A G T C A G T C A G T C A G T C A G T C A G T C A G T C A G T C A G T C A G T C A G

rE. coli-1.0 F F L L S S S S Y Y * C C * W L L L L P P P P H H Q Q R R R R I I I M T T T T N N K K S S R R V V V V A A A A D D E E G G G G
rE. coli-57 F F L L S S S S Y Y * C C * W L L L L P P P P H H Q Q R R R R I I I M T T T T N N K K S S R R V V V V A A A A D D E E G G G G
Sub-11 F F S S S S Y Y * * C C * W L L L L P P P P H H Q Q R R R R I I M T T T T N N K K S S R R V V V V A A A A D D E E G G G G
FC/FCS F F L L S S S S Y Y * C C * W L L L P P P P H H Q Q R R R R I I I M T T T T N N K K S S R R V V V V A A A A D D E E G G G G
tRNA-sub1 F F L L S S S S Y Y * * C C * W L L L L P P P P H H Q Q R R R R I I I M T T T T N N K K S S R R V V V V A A A A D D E E G G G G
tRNA-sub2 F F L L S S S S Y Y * C C * W L L L L P P P P H H Q Q R R R R I I I M T T T T N N K K S S R R V V V V A A A A D D E E G G G G
Min-classII F F L L S S S S Y Y * C C * W L L L L P P P P H H Q Q R R R R I I I M T T T T N N K K S S R R V V V V A A A A D D E E G G G G
Min-curated F F L L S S S S Y Y * C C * W L L L L P P P P H H Q Q R R R R I I I M T T T T N N K K S S R R V V V V A A A A D D E E G G G G
Min-sparse F F L L S S S S Y Y * C C * W L L L L P P P P H H Q Q R R R R I I I M T T T T N N K K S S R R V V V V A A A A D D E E G G G G
Min-GCmax F F L L S S S S Y Y * C C * W L L L L P P P P H H Q Q R R R R I I I M T T T T N N K K S S R R V V V V A A A A D D E E G G G G
Min-ATmax F F L L S S S S Y Y * C C * W L L L L P P P P H H Q Q R R R R I I I M T T T T N N K K S S R R V V V V A A A A D D E E G G G G
Min-weak F F L L S S S S Y Y * C C * W L L L L P P P P H H Q Q R R R R I I I M T T T T N N K K S S R R V V V V A A A A D D E E G G G G
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of features to used for classification, whether to include correlated predictors or not and the classification 

threshold, were learned using a LPOCV, as in the nested cross-validation study described above.

Software/Hardware

We performed in silico codon usage modifications for the nine novel codes and most feature 

computations with scripts written in Python and packages from Scikit Learn 

(normalized_mutual_info_score) and Scipy (stats). To compute the mRNA folding free energy features, 

we used an open-source package called The Vienna RNA Package [29].  To efficiently implement the 

expensive nested cross validation pipeline for the SVM and GC, we used Matlab code and pMatlab [30], a 

capability enabling Matlab parallel processing across hundreds of cores, and the MIT/MIT Lincoln Lab 

supercomputing facilities at Holyoke, MA.  
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Appendix

Figure S1.  Convex hull plots for four of the nine novel codes we defined and investigated as possible candidates for genetic code engineering.  All five features 
selected in the uncorrelated feature selection routine for the SVM are plotted pairwise.  Note that the convex hulls of the genes recoded with the tRNA-sub2 
algorithm, one of the two algorithms predicted to result in a design failure by the two classifiers, are consistently closest to the lethal training examples.  Min-
GCMax and Min-classII convex hulls overlap significantly in these plots, indicating that the two algorithms effect the forty genes similarly in the feature space 
salient for design failure prediction.  The Sub-11 convex hull is separate from those of the other codes and closest to the wild type origin.  It is also the smallest 
convex hull in all feature plots, signifying that all forty genes are similarly influenced by this code.  
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Figure S2.  Convex hull plots for the five of the nine novel codes not depicted in Figure S1.  The Min-weak convex hull is closest to the lethal training examples 
and is the smallest in most of the feature plots.  This indicates that, when recoded with this code, the forty genes are effected similarly each other and to the 
lethal training examples that were recoded using the FCS algorithm.  There is significant overlap among the Min-sparse and Min-curated convex hulls.  These 
codes effected the forty genes similarly in the salient feature space, both in terms of the absolute placement and of the size and shape of the convex hulls.  
Min-ATmax effects the genes in a somewhat similar fashion but, on average, has a smaller convex hull in the pair wise plots, indicating that the genes were 
more consistently effected in the same way relative to wild-type with this code.  tRNA-sub1, the code with the fewest disallowed codons, is always the closest 
to the wild-type origin, relative to the other convex hull plots.
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