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Abstract:  

Introduction: Recurrent urinary tract infections have been linked to increased risk of bladder 
cancer, suggesting a potential role of the urinary microbiome in bladder cancer pathogenesis.  
 

Objective: Compare the urinary microbiomes in mice with and without bladder. 
 

Methods: Longitudinal study of mice exposed to a dilute bladder-specific carcinogen (0.05% n-
butyl-n-(4-hydroxybutyl) nitrosamine, BBN mice, n=10), and control mice (n=10). Urine was 
sampled monthly from individual mice for 4 months. Microbial DNA was extracted from the 
urine, and the V4 region of the 16S rRNA gene sequenced. Animals were sacrificed and their 
bladders harvested for histopathology. Bladder sections were graded by a blinded pathologist. 
The composition and diversity of the urinary microbiome were compared between the BBN and 
control mice. Metabolic pathway analysis was completed using PICRUST. 
 

Results: Bladder histology in the BBN group showed normal tissue with inflammation (BBN-
normal, n=5), precancerous pathologies, (BBN-precancerous, n=3), and invasive cancer (BBN-
cancer, n=2). Alpha diversity did not differ between the mice exposed to BBN and the control 
mice at any timepoint. There were no differences in the urinary microbiomes between the BBN 
and control mice at baseline. At month 4, mice exposed to BBN had higher proportion of both 
Gardnerella and Bifidobacterium compared to control mice. There were no differences in 
proportions of specific bacteria between either the BBN-precancer or BBN-cancer and controls 
at month 4. However, the BBN-normal mice had higher proportions of Gardnerella, 
Haemophilus, Bifidobacterium, and Ureaplasma Actinobaculum, and lower proportions of 
Actinomyces, compared to control mice at month 4. Functional pathway analysis demonstrated 
increases in genes related to purine metabolism, phosphotransferase systems, peptidases, 
protein folding, and bacterial toxins in the BBN-mice compared to control mice at month 4. 
 
Conclusion: Mice exposed to 4 months of BBN, a bladder-specific carcinogen, have distinct 
urine microbial profiles compared to control mice.  
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Introduction: Bladder cancer is the 4th most common malignancy among men in the U.S. [1] 

However, despite the high prevalence of bladder cancer, death rates from this neoplasm have 

decreased only slightly for women and not at all for men. These mortality rates are in part driven by 

late initial diagnosis of advanced bladder cancer, and poor ability to predict which patients with 

originally non-muscle-invasive cancer will progress to muscle-invasive disease. The ability to 

identify patients who are at risk for cancer, or progression of disease, through non-invasive means 

would have a significant impact in this population.  

A number of risk factors for the development of bladder cancer have been identified, including 

an association between urinary tract infections (UTI) and bladder cancer. While there is a well-

established causative relationship between infections with the urogenital parasite Schistosoma 

haematobium and bladder cancer,[5] [6] the association between bacterial urinary tract infections 

and bladder cancer is less clear. Data from large epidemiological studies suggest that an 

association may be present,[7][8] with other work suggesting that recurrent UTIs may be a 

particular risk factor for squamous cell carcinoma of the bladder [11].  However, other work has 

not found such an relationship between UTI and bladder cancer.[9][10] Conversely, the 

presence of asymptomatic bacteriuria has been associated with lower recurrence rate and 

longer disease-free survival in patients with non-muscle invasive bladder cancer.[12] The 

hypothesis behind this observed protective effect of asymptomatic bacteriuria is that activation 

of the immune system as a result of bacteriuria inhibits tumor formation.[13] Taken together, this 

suggests that immune responses to bacteria within the bladder may play a role in bladder 

oncogenesis.  

Although urine has been classically considered to be sterile, technological advances have led to 

identification of a diverse community of bacteria within the bladder, known as the urinary 

microbiome [16–18]. Given the potential immune-associated effect of bacteriuria on bladder 

oncogenesis, we postulated that there may be specific patterns within the urinary microbiome 
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that would exert either a protective or harmful effect on tumor development in those at risk for 

bladder cancer. Indeed, prior work focusing on the microbiomes of other organ systems have 

documented microbial changes in the setting of cancer, including oral squamous cell 

carcinoma,[19] cervical cancer,[20] and colon cancer.[21] Therefore, we sought to determine 

whether there were changes in the urinary microbiome in an experimental mouse model of 

bladder cancer, and whether we could identify distinct profiles associated with specific lesions 

along the spectrum of bladder oncogenesis. To test our hypothesis that mice with bladder 

cancer would harbor a distinct urinary “oncobiome”, we used an established model in which a 

dilute bladder-specific carcinogen (n-butyl-n-(4-hydroxybutyl) nitrosamine, BBN) is administered 

to mice in their drinking water. The BBN model, a widely used and well-established model of 

bladder carcinogenesis, [22,23] reliably leads to tumor formation in both mice and rats. Although 

the incidence of cancer is not 100%, this can be seen as an advantage given that an array of 

pathologies are obtained. Work by our group and others has shown that BBN-induced bladder 

cancers in mice closely resemble human cancers, both histologically [24], and by gene 

expression analysis, with a particular resemblance to muscle-invasive disease noted by several 

groups [25–27]. 

 

 

 
Methods:  
 
Mice: Twenty female C57BL/6 mice (received at 5 weeks of age from Jackson Laboratories, Bar 

Harbor, ME) were used in this work. Ten mice were treated with the bladder-specific carcinogen 

BBN (n-butyl-n-(4-hydroxybutyl) nitrosamine, Sigma-Aldrich, St. Louis, MO) at 0.05% in their 

drinking water ad libitum (tap water filtered through a Milli-Q Academic system, MilliporeSigma, 

Burlington, MA) over a period of five months, and ten mice were given unmanipulated tap water 

(municipal water supply, Rockville, MD). All ten BBN-treated mice were housed together in a 
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single cage, as were the ten control mice. The bedding (Aspen Chip®, Northeast Products 

Corporation, Warrensburg, NY) and chow (LabDiet® Prolab® RMH 1000, PMI Nutrition, 

Brentwood, MO) were the same between the two groups. Mice were housed in adjacent cages 

in the same holding room of the animal facility. 

 
 
Urine Collection: Urine samples were collected at baseline, beginning 1 week after arrival to 

allow for acclimation to our facility, and then at monthly intervals following the initiation of 

exposure to BBN. At each time point, urine samples were collected from individual mice over 

the course of three days. At each time point, urine samples ranging from 10 – 100 µl were 

collected from each mouse. Parafilm® (Bemis Company, Inc., Oshkosh, WI) was used to cover 

a tube rack such that the sterile surface of the parafilm was exposed. Mice were then placed on 

the sterile surface and pressure was placed on the lower abdominal area until urination 

occurred. Mice were limited from walking around to avoid contamination of the parafilm, and any 

samples contaminated with feces were discarded. Urine was collected from the clean areas of 

the parafilm using a sterile barrier tip. Following collection, samples were stored at -80 °C until 

the completion of the study, at which point all the samples were processed as a single batch.   

 

Microbiome Analysis: DNA was isolated from mouse urine using Qiagen DNeasy Powersoil Kit 

(Hilden, Germany); bacterial DNA in each sample was quantified using Femto Bacterial DNA 

Quantification kits (Zymo Research, Irvine, CA) to determine the fraction of bacterial DNA in 

each DNA sample. V4 regions of 16S rRNA genes were amplified using primers 5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA-3’ and 5’-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTWTCTAAT-3’ (IDT 

DNA, Coralville, IA) and the following reagent concentrations: 600 mM Tris-SO4 (pH 8.9), 180 

mM (NH4)2 SO4, 20 mM MgSO4, 2mM dGTP,2mM dTTP, 2nM dCTP, 10% glycerol, and 

thermostable AccuPrime protein (Thermo Fisher Scientific, Waltham, MA) and 25 ng of template 
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DNA in 20 µl total volume. Amplification conditions were 2 minutes at 95ºC initial denaturation 

followed by 28 cycles of 20 seconds denaturation at 95ºC, 15 seconds annealing at 55ºC and a 

5-minute extension at 72ºC, and a 5-minute final extension at 72ºC. Amplification products were 

purified with the AMPure XP system (Beckman Coulter Life Sciences Division, Indianapolis, IN) 

and quantified by a Qubit dsDNA assay (Thermo Fisher Scientific). Quality and size of 

amplification products were also verified with an Agilent 2100 Bioanalyzer kit (Agilent 

Technologies, Santa Clara, CA). Indexing and pooling of amplification products were carried out 

according to Illumina’s 16S Metagenomic Sequencing Library Preparation protocol. The 

resulting library was sequenced using Illumina MiSeq Reagent Kits v2 (500 cycles) at the 

Georgetown University Genomics and Epigenomics Shared Resource (Georgetown University, 

Washington, DC). 

 
 
Histology: Bladders were harvested from all BBN-exposed mice and two randomly chosen 

control mice after five months. Bladders were prepared for sectioning and staining by standard 

methods, briefly summarized here. Tissues were fixed in 10% formalin, dehydrated through a 

graded series of alcohols, embedded in paraffin, and stained with haematoxylin and eosin. 

Tissue sectioning and staining was performed by the Research Pathology Core Laboratory at 

the George Washington University (Washington, DC). Bladders were analyzed by a pathologist 

trained in bladder biology (OH), who assessed them in a blinded fashion. 

 
 
Statistical Analysis: After removing primer sequences present from FASTQ files using CutAdapt 

[28], these files were processed using Mothur [29]. In brief, the paired-end FASTQ reads were 

combined, after which ambiguous reads as well as reads longer than 275 bp were removed.  

We followed this step by merging all duplicate reads. These sequences were then aligned to the 

V4 region of the Silva reference database. Specifically, we used release 132 of the Silva 

reference database. The Silva file can be downloaded at this link: 
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https://www.mothur.org/w/images/3/32/Silva.nr_v132.tgz 

Chimeric sequences were then removed using the  VSEARCH command [30]. Finally, our  

sequences were clustered using the opticlust algorithm [31]. The operational taxonomic units 

(OTUs) generated were then classified taxonomically. We followed the Miseq protocol available 

on https://www.mothur.org/wiki/MiSeq_SOP.   

 

For further analysis, we used STAMP [32]. The groups were primarily compared in a pairwise 

manner, using the Bonferroni correction for multiple comparisons. For statistical significance, we 

used Welch’s two-sided t-test and confidence intervals of 95%. Principal component analysis 

(PCA) plots along with extended error bar plots were generated using STAMP. We also used 

Phyloseq for further analysis[33]. Specifically, principal coordinate analysis (PCoA) plots were 

generated using Phyloseq and ggplot2[34].  For functional analysis, we used PICRUSt [35]. 

Data generated by PICRUSt was then loaded to STAMP for statistical analysis and chart 

generation. 

 
 
Results: 
 
In the BBN-treated group, a range of pathologies were observed. Of the ten mice who received 

BBN, five did not develop cancer, and had histology consistent with inflammation (“normal-

like”),(Figure 1, panel b)  three had either urothelial dysplasia, hyperplasia, or carcinoma in situ 

on histology (“precancer”),(Figure 1, panel c)  and two developed invasive urothelial carcinomas 

(“cancer”), one of which had features of a squamous cell carcinoma.(Figure 1, panel d) The 

bladders of the control mice showed normal histology, as expected.(Figure 1, panel a) 

 

There was no significant difference in either the Shannon diversity index or the chao1 index 

between the aggregate BBN-treated mice and the control mice at either month 0 or month 4 

(Figure 2A). There was also no difference in either the Shannon diversity index or the chao1 
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index between mice in either the BBN-normal, BBN-precancer, or BBN-cancer and the control 

mice at month 0 (Figure 2B) or month 4. (Figure 2C). Similarly, there was no change in either 

the Shannon diversity or Chao1 index for the between control mice at month 0 and month 4. 

 

Principal component analysis (PCA) demonstrated clustering of the microbiome for most mice at 

month 0, while there was divergence at month 4 between the BBN-treated mice and the controls 

(Figure 3). However, separate clusters correlating to histology was not observed. Of note, the 

one major outlier at month 0 went on to develop invasive carcinoma. The urinary microbiome of 

that mouse at month 0 was composed of different bacteria than the other mice in this work 

(Figure 4A).  The most prevalent bacteria in the urinary microbiome of the outlying mouse were: 

Rubellimicrobium, Escherichia, Roseococcus, Roseomonas, Kaistobacter, and Sphingomonas 

(Figure 4B).  Comparatively, the most common bacteria in the remaining urinary microbiomes 

were: Escherichia, Prevotella, Veillonella, Streptococcus, Staphyloccoccus, and Neisseria.  

 

There were no significant differences in proportions of specific bacteria at months 0 through 

month 3 between the aggregate BBN-treated (regardless of histology) and control mice.  

However, at month 4, the aggregate BBN-treated mice had significantly higher proportion of 

Gardnerella (corrected p-value = 0.047) and Bifidobacterium (corrected p-value 0.045) 

compared to the control mice. (Figure 5A) The corresponding functional analysis by PICRUST 

demonstrated that the urinary microbiome in the BBN-treated mice at month 4 had increases in 

multiple pathways compared to the control mice at month 4. A total of 44 pathways were 

differentially expressed, including: purine metabolism, phosphotransferase systems, peptidases, 

protein folding, and bacterial toxins. (Figure 6) There were no other differences noted in the 

functional analysis between any other months. 
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When comparing control mice to the individual BBN sub-divisions, there were no differences in 

the relative abundance of microbial groups between the control and either BBN-precancer or 

BBN-cancer at any time point. However, BBN-normal mice had significantly higher proportions 

of Gardnerella, Haemophilus, Bifidiobacterium, and Ureaplasma, and significantly lower 

proportions of Actinomyces compared to the control mice at month 4. (Figure 5B) PCA plots 

demonstrated clustering of both the BBN-normal, BBN-precancer and the BBN-cancer group at 

month 4, which is distinct from their respective baseline urinary microbiomes. The control mice 

have urinary microbiomes at both month 0 and month 4 that cluster together, which is disparate 

from the month 4 cluster of the BBN mice. (Figure 3) There were no differences between 

controls and any individual BBN sub-division by PICRUSt analysis. 

 

 

Discussion:   

Here, we show that there are distinct urinary microbial profiles in mice exposed to 4 months of 

BBN compared to control mice. We report significant differences in several bacteria between the 

BBN-treated mice and control mice at month 4, but not in previous months. Further, we 

demonstrate stability in the urinary microbiome of control mice over a 4-month period. 

 

 While the overall shift in the composition of the microbial community is likely significant, there 

are also implications stemming from the specific bacterial operational taxonomic units (OTUs) 

that differ between these two groups. There were significantly higher proportions of Gardnerella 

and Bifidobacterium in the BBN-treated mice compared to control mice at month 4. Gardnerella 

has also been associated with cervical cancer. Women with cervical cancer had a higher 

incidence of Gardnerella in their vaginal flora compared with women with benign gynecological 

disease.[36] Further, there is a correlation between presence of Gardnerella and dysplastic 

changes in women undergoing screening for cervical cancer,[37] although more recent work in 
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women with cervical cancer have not found this association.[38] In addition to Gardnerella, there 

were also significantly higher proportions of Bifidobacterium in the BBN-treated mice at month 4. 

While Gardnerella is associated with the development of cancer, Bifidobacterium has been 

shown to exert antitumor immunity in various mouse models.[39] Further, Bifidobacterium was 

also one of several components of the microbiota in patients with metastatic melanoma who 

responded to immunotherapy.[40] Similarly, patients with an increased risk of advanced 

colorectal cancers demonstrated a significantly lower proportion of Bifidobacterium in their fecal 

microbiota compared to patients with normal risk.[41] The significant increase in proportion of 

Bifidobacterium in the cohort of BBN-treated, but not control, mice suggests its involvement in 

oncogenensis.  However, as we are underpowered to investigate the various sub-groups of 

mice (i.e. pre-cancer versus cancer versus normal), it is possible that the increase in 

Bifidobacterium in the BBN mice is seen only in the mice who were exposed to BBN, but did not 

develop cancer.  Further work is needed to fully investigate the specific role of Bifidobacterium 

in bladder cancer. 

 

We identified differentially increased proportions of bacteria in the BBN-treated mice that had 

histologically normal bladders, but with neither precancer nor cancer. One potential explanation 

is the low numbers of mice in the precancer and cancer sub-groups; Three mice had histology 

consistent with precancerous lesions, and only two mice developed cancer. These numbers 

may be too small to identify a difference in the proportion of individual members of their 

respective microbial communities. However, given the separation of clusters seen on the PCA 

chart, it is likely that we are underpowered to find a difference. Interestingly, one BBN-treated 

mouse with a distinct urinary microbiome at month 0 (Figure 1) went on to develop cancer. The 

predominant organisms in the baseline urinary microbiome of this mouse were largely different 

from those in the remaining mice. The most common organism in the urinary microbiome of the 

outlying mouse was Rubellimicrobium, followed by Escherichia, and then Kaistobacter. 
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Escherichia was highly prevalent in controls and BBN-treated mice, thus its role in this model is 

difficult to discern. In contrast, Rubellimicrobium and Kaistobacter were highly prevalent only in 

the outlier. Rubellimicrobium is a gram negative organism, found mostly in soil.[42] There is little 

in the literature about this organism, with no reports of association with diseases. Similarly, 

Kaistobacter is also found within the soil, with no reported association with specific disease 

states.[43] The implications of the presence of these organisms is unknown given the paucity of 

data within the literature. As this data is from a single mouse, we were not powered to examine 

the effects of alterations in the baseline microbiome with increased risk of bladder cancer. 

However, this hypothesis warrants further exploration in future work. 

 

The proposed role of the urinary microbiome in bladder cancer raises the potential of the utility 

of therapeutic probiotics. However, this is not a novel idea. Indeed, the one of the most effective 

agents used for the management of bladder cancer is the intravesical administration of Bacillus 

Calmette-Guérin (BCG). Although not fully elucidated, the proposed mechanism by which BCG 

exerts an anti-tumor effect is thought to be due to activation of the immune system and immune-

mediated cytotoxicity, as well as potential cytotoxic effects of BCG itself.[44] Other bacterial 

agents have also shown to have therapeutic potential in bladder cancer. Lactobacillus casei, 

Shirota strain, has demonstrated anti-tumor properties in several murine models of 

cancer,[45,46] with comparable effects to BCG. The hypothesized mechanism by which L. casei 

exerts its anti-tumor effect is stimulation of macrophages to produce cytokines with anti-tumor 

properties, such as IL-12 and tumor necrotic factor alpha.[47] The successful use of these 

microbiome-modulating agents in the treatment of bladder cancer provides further support for 

the existence of the bladder oncobiome. 

 

While the role of asymptomatic bacteriuria in the urinary microbiome is unclear, data suggests 

that recurrent asymptomatic bacteriuria offers a protective effect against bladder cancer.[12] 
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The mechanisms by which epithelial cells recognize pathogenic versus commensal organisms 

may offer a partial explanation for this observation, and allow for a more complete 

understanding of the role of the urinary microbiome in the pathogenesis of bladder cancer. The 

epithelial response to commensal organisms includes inhibition of the inflammatory response 

through the NF-ΚB pathway.[48] This anti-inflammatory effect on epithelial tissues has been 

demonstrated by a variety of commensal bacteria, including strains of Lactobacillus,[49] 

Bifidobacterium,[50] and Fusobacterium[51] . Conversely, pathogenic bacteria – specifically 

uropathogenic E. coli (UPEC) – can stimulate the inflammasome in urothelial cells, whereas 

non-pathogenic strains of E. coli do not.[52] Taken together, these data suggest that the 

response of host tissue to specific bacteria within the microbiome may modulate cancer-

associated inflammation. Indeed, dysregulation of the extracellular matrix (ECM), which can 

occur as a result of age or a variety of diseases, plays a critical role in tumorigenesis through 

generation of a tumorigenic environment, including facilitation of angiogenesis and 

inflammation.[53] Further, inflammation induces ECM remodeling and generation of reactive 

oxygen species, leading to DNA damage, mutations, and ultimately oncogenesis.[54] There are, 

however, additional hypotheses as to how the urinary microbiome influences the development 

of bladder cancer.  These include the metabolism of pro-carcinogenic environmental toxins, the 

direct effect of various bacterial virulence factors, and directly genotoxic bacterial metabolites 

(reviewed by Xu et al. [14] and Whiteside et al. [15]). 

 

 

Another potential mechanism through which changes in the microbiome can lead to 

development of cancer is through the presence of biofilms. Biofilms have been implicated in the 

development of colon cancer: Dejea et al. demonstrated an association between colon cancer 

and the presence of dysbiotic biofilms. Their data also suggests that the presence of a biofilm in 

healthy controls is associated with procarcinogenic inflammation.[55] These authors 
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hypothesize that biofilm formation increases permeability of the colonic epithelium that enables 

bacteria to directly interact with the unprotected epithelium surface, which facilitate development 

of procarcinogenic inflammation.[55] Given this hypothesized role of biofilms in colon cancer, 

and the potential association between recurrent UTIs and bladder cancer, it is plausible that 

biofilms also mediate procarcinogenic inflammation in the bladder. Indeed, species of 

Gardnerella, which were significantly increased in BBN-treated mice at month 4 compared to 

controls, can form biofilms,[56] and in this capacity may play a role in oncogenesis. Biofilms are 

also known to occur in the setting of UTI. E. coli forms intracellular biofilms,[57] while other 

bacteria form biofilms associated with indwelling devices, such as urinary catheters.[58] Our 

data provide some support for this: bacterial gene pathways predicted to be significantly 

expressed at increased levels in the urinary microbiota of the BBN mice at 4 months include 

those that would increase inflammation of the epithelium, e.g., peptidase and toxin production.   

 

There are several other examples of cancers associated with changes in their respective 

microbiomes.  Patients with grade 4 oral squamous cell carcinoma have significant differences 

in their oral microbiome compared to healthy controls, with changes in community complexity, 

as well as composition.  Further, the proportion of Fusobacterium increased while the 

proportions of Streptococcus, Haemophilus, Porphyromonas, and Actinomyces  progressively 

decreased with increased disease severity, with the largest differences seen in stage 4 

carcinoma.[59] Similar work has been conducted in cervical cancer, where women with 

increasingly severe grades of carcinoma in situ have decreasing proportions of Lactobacillus in 

their vaginal microbiomes.[60] Patients with cirrhosis who progress to develop hepatocellular 

cancer have different gut microbiomes than those who do not develop cancer.[61] These data 

suggest that altered microbial profiles exist in a variety of oncologic conditions, including bladder 

cancer. 
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Limitations of this study include the small number of mice that developed bladder cancer. 

Further, the exposure to BBN may have affected our results independent of the changes in 

histology. Finally, the use of 16S rRNA sequencing, rather than whole genome sequencing, 

limits our ability to make inferences about the metagenomes in bladder cancer. Most of the 

OTUs we identified in this work were classified to the genus level, and some only to the family 

level. Resolving the data to the species or even strain level would be more informative. Future 

work will include a larger number of mice, the use of additional mouse models of bladder cancer 

to ensure that these results are due to the presence of bladder cancer rather than result of 

exposure to BBN, and use whole genome sequencing.  

 

Conclusion: Mice exposed to 4 months of BBN, a bladder-specific carcinogen, have distinct 

urine microbial profiles compared to control mice. This suggests that there are specific urine 

microbial profiles associated with the development of bladder cancer, which we propose 

represents the existence of a “urinary oncobiome”. 

 

Figure Legends: 

Figure 1. Representative histology from BBN-treated and control mice. Bladders from control or 

BBN-treated mice were harvested after 5 months, and formalin-fixed paraffin-embedded tissue 

sections were stained with hematoxylin and eosin. Compared to the normal urothelium in the 

control mice (A, 100X), the BBN-treated mice exhibited a range of disease states from normal-

like with chronic inflammation (B, 100X) to dysplasia (C, 400X) to invasive bladder cancer with 

features of transitional cell and squamous cell carcinoma (D, 200X). 

 

Figure 2: Comparison of indices of alpha diversity between groups. A) There is no difference in 

either the Shannon Diversity Index or Chao1 Index between mice exposed to BBN (red) and 

control mice (blue) at month 0 or month 4. There is no difference between either the Shannon 
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Diversity Index of the Chao1 Index between control mice (red) and the BBN-normal (green), 

BBN-pre-cancer (blue), or BBN-cancer (purple) at month 0 (panel B) or month 4 (panel C). 

 

 

Figure 3. Principal component analysis (PCA) plots of urine “oncobiomes”. Urine samples were 

collected at baseline and at monthly intervals from control or BBN-treated mice over 4 months 

and the bacterial communities profiled by 16S v4 rRNA gene sequencing. At study completion, 

bladders were harvested and analyzed histologically, indicating a range of pathologies. BBN 

data sets were then subdivided by histological findings [BBN Normal (normal-like with 

inflammation, n = 5), BBN Pre-Ca (precancerous lesions, n = 3), BBN Cancer (invasive cancers, 

n = 2)] for comparison to control samples (n = 6). BBN and control samples largely clustered 

together at baseline (Month 0). However, by month 4, while the control samples still mostly 

clustered with the baseline samples, the BBN samples were predominantly grouped in a distinct 

cluster. An outlier at Month 0 (upper right of plot) later developed invasive carcinoma from BBN 

treatment. Plots were generated using STAMP (STatistical Analysis of Metagenomic Profiles). 

 

Figure 4: Relative abundance charts. A) Relative abundancies of the nine most prevent 

bacteria in the urinary microbiome at month 0. The arrow indicates the mouse whose urinary 

microbiome at month 0 was an outlier on the PCA chart that developed cancer. B) Relative 

abundancy chart  of the eight most common bacteria in the urinary microbiome of the outlying 

mouse at month 0. 

 

Figure 5: Mean proportion charts. A) Mean proportion chart comparing the proportion of the 

bacteria in the urinary microbiome of control (black) versus BBN-exposed (green) mice at month 

4.  Proportions of Gardernella and Bifidobacterium were significantly higher in the BBN-exposed 

month compared to the controls. B) Mean proportion chart comparing the urinary microbiome of 
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BBN-normal versus control mice at month 4, with higher proportions of Gardernella, 

Haemophilus, Bifidobacterium, and Ureaplasma in the BBN-normal mice, and Actinomyces in 

the control mice. 

 

Figure 6: Inferred functional profiles of BBN-treated mice versus control mice at month 4. 

Multiple pathways are inferred to be differentially upregulated in either group. Pathways with 

black point are increased in the control mice, and those with the blue point are increased in the 

BBN-treated mice. 
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Figure 2B. Alpha Diversity at Month 0 Between Sub-Groups

Figure 2C. Alpha Diversity at Month 4 Between Sub-Groups

Figure 2A. Alpha Diversity in BBN-treated and Control Mice
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Figure 4A: Relative Abundance of Bacteria in Urinary Microbiome at Month 0

Figure 4B: Relative Abundance of Bacteria in Urinary Microbiome at Month 0 of 
Outlying Mouse that Developed Bladder Cancer

Outlying mouse that 
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Figure 5A: Mean Proportions Chart of BBN-Treated Versus Control Mice at Month 4

BBN-Normal Control Mice

Figure 5B: Mean Proportions Chart of BBN-Normal Versus Control Mice at Month 4
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Figure 6: Inferred functional profiles of BBN-treated Mice and Control Mice at Month 4
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