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ABSTRACT 13 
 14 
Placental dysfunction is implicated in many pregnancy complications, including preeclampsia and 15 
preterm birth (PTB). While both these syndromes are influenced by environmental risk factors, they also 16 
have a substantial genetic component that is not well understood. Precisely controlled gene expression 17 
during development is crucial to proper placental function and often mediated through gene regulatory 18 
enhancers. However, we lack accurate maps of placental enhancer activity due to the challenges of 19 
assaying the placenta and the difficulty of comprehensively identifying enhancers. To address the gap in 20 
our knowledge of gene regulatory elements in the placenta, we used a two-step machine learning pipeline 21 
to synthesize existing functional genomics studies, transcription factor (TF) binding patterns, and 22 
evolutionary information to predict placental enhancers. The trained classifiers accurately distinguish 23 
enhancers from the genomic background and placental enhancers from enhancers active in other tissues. 24 
Genomic features collected from tissues and cell lines involved in pregnancy are the most predictive of 25 
placental regulatory activity. Applying the classifiers genome-wide enabled us to create a map of 33,010 26 
predicted placental enhancers, including 4,562 high-confidence enhancer predictions. The genome-wide 27 
placental enhancers are significantly enriched nearby genes associated with placental development and 28 
birth disorders and for SNPs associated with gestational age. These genome-wide predicted placental 29 
enhancers provide candidate regions for further testing in vitro, will assist in guiding future studies of 30 
genetic associations with pregnancy phenotypes, and aid interpretation of potential mechanisms of action 31 
for variants found through genetic studies.  32 
 33 
  34 
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INTRODUCTION 35 
The placenta is a complex temporary organ, essential for successful pregnancy. The placenta performs 36 
many vital functions including transfer of nutrients to the developing fetus and protection against 37 
infectious agents [1]. Placental dysfunction has been connected to pregnancy complications, such as 38 
preeclampsia and preterm birth (PTB) [2–5]. PTB and preeclampsia both have environmental risk factors 39 
as well as a genetic component that is not well understood. Family and pedigree studies of PTB and 40 
preeclampsia suggest strong genetic components, but heritability estimates for both vary considerably 41 
[5,6], and genetic associations found through genome-wide association studies (GWAS) of these and 42 
other disorders of pregnancy have been difficult to regulate [7,8]. Though a recent study of more than 43 
43,000 women has identified and replicated several loci associated with gestational duration and preterm 44 
birth [9]. 45 

Precisely controlled gene expression during pregnancy is crucial to proper development, and 46 
these gene regulatory “programs” are mediated by enhancers, gene regulatory elements that play a large 47 
role in development and thus disease [10–12]. Disruption of enhancers and gene regulation have been 48 
shown to influence risk for many complex diseases [10,13]. Thus, mapping the enhancer landscape is a 49 
common step in the search for and interpretation of genetic associations. As is common for complex 50 
diseases, the genetic variants that have been implicated in PTB risk by GWAS are non-coding and thus 51 
difficult to interpret. Typical enhancer identification methods are impractical in early placental stages for 52 
many reasons, but perhaps most importantly because sampling the placenta increases risk of pregnancy 53 
loss [14]. In vivo studies in model organisms have lent insight to early placental development, but the 54 
rapid evolution of pregnancy across taxa often limits the translatability of this work [15].  55 

To address the challenge of mapping gene regulatory elements active in the placenta, we used the 56 
EnhancerFinder [16] machine learning approach to predict placental enhancers. Using computational 57 
methods to synthesize existing functional studies, transcription factor (TF) binding, and evolutionary 58 
information to identify enhancers avoids many of the difficulties of studying the placenta discussed above. 59 
Indeed, such methods have historically been successful in identifying and interpreting regulatory regions 60 
[16–18]. We present a set of 4,562 placental enhancers predicted genome-wide. These putative enhancers 61 
show clear relevance to placental biology; they are located near many genes involved in placental 62 
function and development and are significantly enriched for genetic variants associated with pregnancy 63 
phenotypes and complications. These predicted enhancers provide candidate regions for researchers to 64 
test in vitro, and propose mechanisms of action for variants found through GWAS. To facilitate their use, 65 
all the enhancer predictions are integrated into GEneSTATION (v2.0) [19]. 66 

 67 
  68 
RESULTS 69 
A two-step machine-learning framework for placental enhancer prediction 70 
To predict placental enhancers, we used the EnhancerFinder algorithm, which integrates sequence, 71 
evolutionary, and functional properties of known enhancers to build statistical models that enable the 72 
identification of new enhancers [16]. This approach proceeds in two steps. First, a model is built to 73 
distinguish known enhancers active in any cellular context from regions from the genomic background 74 
(Step 1). Then, models for classifying enhancers active in particular tissues are trained by comparing 75 
enhancers active in a tissue of interest to enhancers only active in other tissues (Step 2). This two-step 76 
approach yields more specific predictions than a single step approach [16]. 77 
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  We trained our classifiers using enhancers defined by cap analysis of gene expression (CAGE) 78 
from the FANTOM5 Transcribed Enhancer Atlas [20]. Analyzing 411 different tissues and cell lines, they 79 
identified 38,538 robust human enhancers, of which 748 were active in the human placenta. We 80 
characterized each enhancer by its DNA sequence properties, evolutionary conservation, and chromatin 81 
state. Each region’s DNA sequence composition was quantified by counting the occurrence of all five-82 
nucleotide-long (5-mer) DNA sequences within the region. Evolutionary conservation was quantified 83 
using mammalian conserved elements from phastCons [21]. Finally, we used functional genomics data 84 
from the Roadmap Epigenomics Project [22], including histone modifications and DNaseI 85 
hypersensitivity data from hundreds of cellular contexts, to quantify the chromatin state of the region. 86 
(See the Methods for a complete description of the features.).  87 

Then, using these features, we trained a multi-kernel support vector machine (SVM) classifier—88 
with one kernel for each of the three data types—to distinguish robust enhancers from random, length-89 
matched non-enhancer regions from the genomic background (Fig 1; Step 1). For Step 2, we trained a 90 
placental enhancer classifier using the 748 known placental enhancers as positives and a random subset of 91 
2,000 robust non-placental enhancers as the negatives (Fig 1). 92 
 93 
Fig 1. Schematic of the placental enhancer prediction pipeline. First, we associated known enhancers 94 
from diverse tissues (+) and non-enhancer regions from the genomic background (–) with a range of 95 
informative features including their DNA sequence patterns, functional genomics data, and evolutionary 96 
conservation across species. Second, we trained a multi-kernel support vector machine to distinguish the 97 
enhancers from regions without enhancer activity using the associated features. We evaluated the 98 
performance of trained classifiers using 10-fold cross validation. Finally, we applied a classifier trained to 99 
distinguish enhancers from non-enhancers to all sequences in the human genome (Step 1). Then we 100 
applied a second classifier trained to distinguish placental enhancers from enhancers active in other 101 
tissues (Step 2). This produced an accurate set of genome-wide placental enhancer predictions. 102 
 103 
Accurate prediction of known placental enhancers 104 
To assess the performance of our trained classifiers, we used 10-fold cross validation to compute average 105 
receiver operating characteristic (ROC) curve and precision-recall (PR) curves. In 10-fold cross validation, 106 
ten models are trained using a different 90% of the positive and negative training regions, and then each 107 
model is evaluated on remaining 10% of the regions. We quantified our method’s overall performance by 108 
the average area under the curve (AUC) over the 10 runs. 109 
 The trained Step 1 classifier performs very well at identifying FANTOM enhancers from 110 
genomic background (Fig 2A; ROC AUC=0.93, PR AUC=0.78). The classifier trained to distinguish 111 
placental enhancers from enhancers active in other contexts (Step 2) also has strong performance (Fig 2B; 112 
ROC AUC=0.84, PR AUC=0.70). While distinguishing enhancers active in the placenta from enhancers 113 
active in other tissues is more challenging than generally distinguishing enhancers from the genomic 114 
background, our approach still performs well at this task. 115 
 116 
 117 
 118 
 119 
 120 
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Fig 2. The trained classifiers accurately identify placental enhancers. Receiver operating 121 
characteristic (ROC) curves for the classifiers trained to distinguish enhancers from non-enhancers (A, 122 
Step 1) and placental enhancers from enhancers active in other tissues (B, Step 2). Both perform 123 
significantly better than expected by chance with areas under the ROC curve (AUC) of 0.93 and 0.84 124 
respectively. The shaded region represents the performance range observed over the 10 cross validation 125 
runs. The diagonal line represents chance performance. The corresponding Precision-Recall curve AUCs 126 
are 0.78 and 0.70, respectively. 127 
 128 
Functional genomics data from pregnancy-related tissues are the most informative for 129 
distinguishing placental enhancers from other enhancers 130 
To investigate the genomic attributes most useful to the placental enhancer classifier, we examined the 131 
individual feature weights the algorithm assigned in the functional genomics kernel after Step 2 training. 132 
A positive feature weight indicates association with placental enhancer activity, while a negative feature 133 
weight is associated with enhancer activity in another context. The most informative contexts (i.e., the 134 
contexts whose histone modification features had the largest absolute weights) within the kernel were 135 
from placental and related tissues (trophoblast cells, amnion, and endometrial stromal cells), and the least 136 
informative features came from cellular contexts unrelated to pregnancy (Fig 3). 137 
 138 
Fig 3. Functional genomics data from pregnancy-related tissues are highly weighted by the 139 
placental enhancer classifier. The absolute value of the weight assigned to each functional genomics 140 
feature in the SVM is plotted (positive weight: blue, negative weight: white, mean of absolute weights: 141 
black X). The absolute weights on the functional genomics features from the other 117 contexts were 142 
collapsed into one box plot (outliers are plotted as gray diamonds). 143 
 144 
A genome-wide map of regions with potential placental regulatory activity 145 
To identify genomic regions with potential placental regulatory activity genome-wide, we applied our 146 
trained classifiers to the human genome by tiling all human chromosomes into regions the length of an 147 
average FANTOM5 placental enhancer (400 bp) overlapping by 200 bp. We filtered out tiles that 148 
overlapped gaps in the genome assembly, exons, and likely promoter regions (5 kb region upstream of 149 
each transcription start site). Tiles assigned to both the enhancer and placental enhancer by the SVM 150 
classifiers were considered putative placental enhancer. Those with strong predictions in both classifiers 151 
(SVM score > 1) were considered high confidence putative placental enhancers. Merging overlapping 152 
tiles yielded 4,562 high-confidence placental enhancers, covering 3,475,438 bp of the genome, and 153 
33,010 putative enhancers, covering 38,893,990 bp of the genome (Table 1). 154 
 155 
 156 
Fig 4. High-confidence predicted placental enhancers are found across the human genome. The 157 
black lines indicate the locations of a high-confidence predicted placental enhancer on the human 158 
chromosomes. We predicted 4,562 high confidence placental enhancers and 33,010 potential placental 159 
enhancers (Supplementary Files 1 and 2).  160 
 161 
 162 
 163 
 164 
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Table 1. Statistical summary of genome-wide placental enhancer predictions. 165 

Enhancer set Count Mean length (bp) 
Genome 

Coverage (bp) 
High Confidence 

Placental Enhancers 
4,562 762 3,475,438 

Potential Placental 
Enhancers 33,010 846 38,893,990 

 166 
 167 
Predicted placental enhancers are enriched near genes with placental functions 168 
To evaluate the relevance of our high-confidence predicted placental enhancers to placental biology and 169 
pregnancy, we examined nearby genes in the context of known gene annotations. Using the functional 170 
enrichment analysis tool GREAT [23], we mapped each region to putative gene targets and then tested for 171 
the enrichment of relevant Gene Ontology (GO) functional annotations. We found significant enrichment 172 
for many relevant terms such as “placenta development” and “decreased placental labyrinth size” 173 
(selected terms: Table 2, full list: Supplementary Table 1).  174 
 175 
Table 2. Placenta-relevant functions significantly enriched among genes near high-confidence predicted 176 
placental enhancers. GO BP = Gene Ontology Biological Process. 177 
 
Ontology 

 
Term 

Binomial Fold 
Enrichment 

Binomial FDR 
Q-value 

GO BP Placenta development 2.0 6.6e–13 
GO BP Embryonic placenta development 2.2 1.0e–12 
Mouse Phenotype Decreased placental labyrinth size 4.8 2.9e–33 
Mouse Phenotype Abnormal placenta labyrinth morphology 2.4 1.5e–28 
MGI Expression TS4 Zona Pellucida 2.1 3.9e–64 
Disease Ontology Neoplasm of body of uterus 2.7 3.5e–24 
Disease Ontology Persistent fetal circulation syndrome 4.8 1.7e–06 
Disease Ontology Newborn respiratory distress syndrome 2.6 3.2e–06 
 178 
 179 
Predicted placental enhancers are enriched for regions associated with gestational age and preterm 180 
birth 181 
To assess the biological importance of our high-confidence placental enhancers, we tested for enrichment 182 
of regions associated with gestational age and preterm birth in a recent genome-wide association study 183 
(GWAS) [9].  Forty-three of our predicted enhancers overlapped 12 out of 14 GWAS regions. To 184 
interpret this, we compared the observed overlap to the number of overlaps found for 10,000 randomly 185 
generated sets of genomic regions length- and chromosome-matched to our predictions and excluding 186 
genomic gaps. Our putative enhancers were significantly enriched for relevant GWAS catalogued regions 187 
associated with preterm birth and gestational age (P < 0.0001) with a calculated fold enrichment of 2.69 188 
(relative to the mean of the randomized sets).  189 
 To compare the high-confidence placental enhancer set to the candidate placental enhancer set, 190 
we tested the enrichment for specific functions near the candidate regions using GREAT and for overlap 191 
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with the pregnancy-related GWAS regions. We found similar placenta-related GO terms enriched near the 192 
larger candidate placental enhancer set, for example: with GO terms such as “placenta development” (P = 193 
3.80e–147) and “embryonic placenta development” (P = 3.82e–99). The candidate enhancers were also 194 
enriched for GWAS regions associated with preterm birth and gestational age (relative fold enrichment: 195 
2.23, P < 0.0001). Thus, there is evidence to suggest that additional regulatory regions relevant to 196 
placental biology are present in the candidate set. 197 
 198 
Predicted placental enhancers expand previously published placental enhancer datasets 199 
We further compared our placental enhancer predictions to a recently published set of 2,216 200 
computationally predicted placental enhancers [17]. These candidates were identified by identifying TFs 201 
implicated in placental and trophoblast function by GREAT and then predicting enhancer activity based 202 
on clustering of TF binding sites (TFBS) in the mouse genome. We will refer to these putative enhancers 203 
as “TFBS clusters.” 204 
 We calculated the overlap between the TFBS clusters that mapped to human genome and did not 205 
overlap exons or a 5kb region upstream of TSSs (1,044 TFBS clusters) and our high-confidence placental 206 
enhancers. We found 82 elements (20,154 bp) overlapped between the two sets. Because the biological 207 
information used to define enhancers differed between the sets, it is not surprising that our predictions and 208 
the TFBS clusters identify largely distinct regions of the genome.  209 

To evaluate the functional relevance of the TFBS clusters, we tested for enriched relevant 210 
functions using GREAT and for enrichment in overlap with preterm birth and gestational age GWAS 211 
regions. We examined the GO biological process terms “placenta development” and “embryonic placental 212 
development” and both were comparably enriched among genes near the TFBS clusters (P = 2.95e–15 213 
and P = 2.33e–17, respectively) as among our predicted enhancers. The results were similar for 214 
enrichment for pregnancy-related GWAS regions. While 43 of our placental enhancers fell within a 215 
GWAS region associated with preterm birth and gestational age with a calculated fold enrichment of 2.69 216 
(P < 0.0001), the TFBS clusters overlapped 13 elements had a fold enrichment of 3.07 (P < 0.0006). 217 
Overall, comparing the significant functional annotations of the TFBS clusters with our predicted 218 
placental enhancers revealed similar levels of enrichment for relevant functional terms. 219 
 220 
Placental enhancers are enriched for ancient transposable elements 221 
Transposable elements (TEs) often create regulatory elements in pregnancy-related tissues [24–26]. We 222 
calculated the enrichment of the FANTOM placental enhancers as well as both predicted sets for overlap 223 
with TEs. Overall, as expected due to the silencing of TEs across the genome, each set is significantly 224 
depleted of TEs (P < 0.001, randomization test) compared to the genomic expectation. However, the age 225 
distribution of TEs present in the placental enhancers compared to TEs overlapped by permuted enhancer 226 
sets is significantly enriched for TEs originating in the common ancestor of theria or before (Fig 5; P < 227 
0.001, randomization test). The enrichment for ancient TEs and depletion of more recent TEs is a 228 
common pattern across validated enhancers [27], and thus the similar observation across our predicted 229 
enhancers lends support to their enhancer activity. 230 
 231 
 232 
 233 
 234 
 235 
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Fig 5: Validated and predicted placental enhancers are enriched for ancient transposable elements. 236 
We computed the enrichment for overlap of transposable elements (TEs) with origins on different 237 
lineages for experimentally validated and predicted enhancer sets. The enrichment was computed in 238 
reference to the mean of the genome-wide overlap observed in 1,000 (predicted) or 10,000 (FANTOM5) 239 
permuted enhancer sets. The log2 of the relative change is given for each comparison. Asterisks indicate 240 
significant enrichment (P < 0.05, randomization test). Empty gray boxes indicate there were not enough 241 
enhancers to test for enrichment. 242 
 243 

DISCUSSION 244 

Using an established machine learning framework, we identified 4,562 high-confidence placental 245 

enhancers, as well as an expanded set of 33,010 candidate placental enhancers. These putative regulatory 246 

regions are enriched near genes relevant to pregnancy, are enriched for overlap with variants associated 247 

with diseases of pregnancy, and have similar transposable element profiles as validated enhancers. In 248 

addition, the predicted enhancers significantly expand previously published sets of placental enhancers, 249 

and thus provide greater power to interpret genetic associations with diseases influenced by the placenta. 250 

For example, the fact that 12 out of 14 regions associated pregnancy complications in a recent GWAS are 251 

in high linkage disequilibrium with a predicted enhancer underscores the utility of these genome-wide 252 

enhancer maps. These candidates suggest targeted regions for testing when seeking the causal variants in 253 

these regions and dissecting how they influence pregnancy. More accurate interpretation of these and 254 

future GWAS hits is necessary for understanding the complex biology of pregnancy and eventually 255 

improving the identification and prevention of disorders such as preterm birth. To facilitate the use of our 256 

enhancer maps, they are now integrated into the GEneSTATION web platform for studying pregnancy 257 

and preterm birth [19]. 258 

Our predicted enhancer maps can be improved in several dimensions. First, they are undoubtedly 259 

incomplete. Enhancer activity is highly context and stimulus dependent. Due to the paucity of training 260 

data from diverse contexts, we have focused on identifying a set of candidate regions that have hallmarks 261 

of potential regulatory activity in the placenta broadly without making specific contextual predictions. 262 

Furthermore, the patterns learned by our machine learning classifier generalize existing patterns in the 263 

evolution, sequence, and functional genomics of known placental enhancers, but are constrained by what 264 

is currently known. Finally, there is heterogeneity in the cellular makeup of the placenta and existing data 265 

do not enable cell-specific predictions. As more enhancer data become available from relevant cellular 266 

contexts, we will continue to refine our predictions and integrate them with other annotations. 267 

While the costs and technical difficulties of agnostically identifying enhancers are decreasing, 268 

many tissues and cell types remain difficult to assay due to biological constraints and ethical 269 

considerations. These challenges are compounded for tissues like the placenta that are rapidly evolving 270 
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between species, limiting the utility of information garnered through the study of model organisms. 271 

Computational approaches, such as those presented here, paired with growing collections of 272 

experimentally validated regulatory regions provide a promising avenue for enabling researchers to 273 

interrogate the gene regulatory architecture of the placenta and other tissues that are difficult to assay. 274 

 275 

 276 

METHODS 277 

Genome-wide placental enhancer predictions.  278 

We based our approach on the EnhancerFinder two-step machine learning algorithm for predicting 279 

enhancers and their tissues of activity. We first trained an SVM classifier based on diverse sequence, 280 

evolutionary, and functional genomics features to distinguish known enhancers active in a range of tissues 281 

from the genomic background. Then in the second step, additional classifiers were trained to distinguish 282 

enhancers active in different tissues from one another. In this step, all enhancers active in a tissue of 283 

interest (placenta) are used as positive training examples and all enhancers not active in the tissue are 284 

treated as negatives. 285 

 286 

 Training regions. We downloaded the hg19 genomic locations of all 38,538 robust human enhancers 287 

identified by CAGE from the FANTOM5 Transcribed Enhancer Atlas. The data included 748 human 288 

placental enhancers. The average length of a FANTOM5 placental enhancer is 400 bp.  289 

 To train the enhancer classifier (step 1), the positive set consisted of a random subset of 385 290 

robust human enhancers (fixed to a length of 400 bp at the center of any enhancer). Our negative set 291 

consisted of 2,000 random genomic regions matched to the length and chromosome distribution of the 292 

positive set and excluding FANTOM5 enhancers and hg19 genome assembly gaps. The random genomic 293 

regions were generated using shuffleBed [28]. To train the placental enhancer classifier (step 2), we used 294 

the 748 human placental enhancers (fixed at a length of 400 bp from each enhancer center) as positives. 295 

The negative set consisted of a random subset of 2,000 robust human enhancers, excluding placental 296 

enhancers. All analyses in this paper were performed in reference to the UCSC Genome Browser 297 

February 2009 assembly of the human genome (GRCh37/hg19). Any dataset not in this build was 298 

mapped over to hg19 coordinates using the liftOver tool from the UCSC Kent tools with default 299 

parameters [29]. 300 

 301 

Feature data. Three types of data were used as features in the MKL algorithm: functional genomics, 302 

evolutionary conservation, and DNA sequence motifs. Each type of data was assigned to its own kernel. 303 

Following the approach used in previous applications of EnhancerFinder [16], we used linear kernels, 304 
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consisting of computed dot products of feature vectors, for the functional genomics and evolutionary 305 

conservation data. For the DNA sequence-based features we used a 5-spectrum kernel. The MKL 306 

algorithm combines the three kernels by learning weights to assign to each kernel from the training set  307 

[16].  308 

For the functional genomics kernel, we obtained 980 histone modification datasets (H3K27ac, 309 

H3K4me1, H3K4me4, etc.) and 39 DNase datasets from 128 cellular contexts in the Human Epigenome 310 

Atlas [22], as well as H3K27ac, H3K4me3, and DNaseI peaks identified in decidualized endometrial 311 

stromal cells from Lynch et al [24]. Feature vectors were constructed by overlapping genomic regions in 312 

the training set with each functional genomics dataset. Each region was associated with a binary vector 313 

that represented the presence or absence of overlap with each feature dataset. We took evolutionary 314 

conservation scores from the UCSC Genome Browser phastConsElements46way tracks for placental 315 

mammals, primates, and vertebrates. Each genomic region was assigned the highest conservation score of 316 

any overlapping phastCons element. Genomic regions not overlapping a phastCons element were 317 

assigned a score of zero. To quantify the DNA sequence of a region of interest, we counted the 318 

occurrence of all possible length 5 bp DNA sequence motifs (5-mers) within genomic regions of interest.  319 

 320 

Classifier training and prediction. All classifiers were trained using the Multiple Kernel Learning (MKL) 321 

functionalities of the SHOGUN Machine Learning Toolbox [30]. The algorithm uses features of the 322 

training set to learn a linear function that separates positives from negatives. Genomic regions can then be 323 

assigned a score based on their position relative to the separating hyperplane learned by the SVM. A 324 

positive score indicates that the region belongs to the positive set, while a negative score indicates 325 

membership in the negative set. The magnitude of the score indicates the confidence the algorithm places 326 

on its prediction.  Only regions that are predicted to be positives by both classifiers are considered 327 

candidate placental enhancers.  328 

 329 

Classifier evaluation. We evaluated the performance of our trained classifiers using 10-fold cross 330 

validation and computing ROC curves and precision-recall (PR) curves averaged over folds. In a 10-fold 331 

cross validation, the training data are partitioned into 10 equal subsets, and the classifier is trained 10 332 

times. Each time, only 9 of the 10 subsets are used to train the classifier. The trained classifier is then 333 

applied to the held-out subset and evaluated based on the true status of these regions. The performance of 334 

the classifier is then quantified using ROC AUC and a PR AUC.  335 

 336 

Interpreting Algorithm Weights for the Functional Genomics Kernel. Based on positive and negative 337 

training data, our algorithm reports the kernel and feature weights learned during training. The total 338 
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kernel weight is computed along with the weight for each individual feature weight within that kernel. 339 

Positive values are assigned to features associated with the positive input set and features associated with 340 

the negative input set score more negatively. After training our placental enhancer classifier (Step 2), we 341 

examined the individual weights within its functional genomics kernel to determine whether placenta-342 

related histone modifications were weighted higher than histone modifications found in other cellular 343 

contexts. In this case, positive weights are associated with placental enhancer activity and negative 344 

weights are associated with enhancer activity in other cellular contexts.  345 

 346 

Genome-wide Placental Enhancer Prediction. To predict placental enhancers genome-wide, we tiled 347 

each autosome into 400 bp regions (the average length of a FANTOM placental enhancer) in overlapping 348 

increments of 200 bp. We omitted the sex chromosomes from our analyses. These regions were filtered to 349 

remove any tiles that overlapped an exon or fell within 5 kb of a transcription start site (TSS) to minimize 350 

association with promoter regions. Coordinates for exons and TSSs were downloaded from the Ensembl 351 

GRCh37 Feb 2014 [31] using the Biomart archive. We applied the trained enhancer and placental 352 

enhancer classifiers to all remaining tiles. We merged all overlapping regions that received scores greater 353 

than zero from both the enhancer and placental enhancer classifiers. The resulting 33,010 merged regions 354 

are our candidate placental enhancer set. To obtain a refined list of predicted regions, we fixed a 355 

minimum threshold score of greater than one from both of our trained classifiers. After merging 356 

overlapping regions that met our criteria, a subset of 4,562 candidate placental enhancers remained and 357 

became our high-confidence placental enhancer set. 358 

 359 

Analysis of genome-wide placental enhancer predictions 360 

Gene ontology annotation enrichment. To identify the functional annotations, phenotypes, and pathways 361 

enriched among genes nearby the predicted placental enhancers, we used GREAT with the default 362 

settings. GREAT is a web tool that takes a set of genomic regions and associates them with their putative 363 

target genes and target gene annotations [23]. GREAT calculates the enrichment of annotations within the 364 

input regions and returns the terms that are significantly enriched near the input regions. We submitted 365 

our candidate placental enhancer set as well as our high confidence placental enhancer set to GREAT, 366 

using the default entire human genome as the background. 367 

 368 

Enrichment for regions relevant to pregnancy. We calculated the enrichment for GWAS SNPs in our 369 

candidate placental enhancer set and high-confidence placental enhancer set. We obtained 14 preterm 370 

birth and gestational age GWAS regions (omitting 3 regions on the X chromosome) from a recent GWAS 371 

[9]. For each set of enrichment analyses, we generated 10,000 sets of random genomic regions that were 372 
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matched to the predicted enhancer set based on the length and chromosome distribution. Then, we 373 

computed the overlap of each of the 10,000 random region sets with each set of regions of interest. 374 

Enrichment was calculated by dividing the overlap of our predicted set with the mean overlap of the 375 

10,000 randomly generated sets, and an empirical p-value was obtained by counting the number of 376 

random sets for which as much or more overlap with the regions of interest is observed.  377 

 378 

Comparison to previous placental enhancer predictions. We downloaded a set of 2,216 placental 379 

enhancers defined using transcription factor binding site (TFBS) clusters related to placental function 380 

from supplementary material of Tuteja et. al [17]. Of the 2,216 TFBS clusters whose build was of the 381 

UCSC Genome Browser July 2007 assembly of the mouse genome (NCBI37/mm9), 2,207 TFBS clusters 382 

mapped into hg19 using liftOver [29]. From these TFBS clusters, we generated a subset of 1,044 regions 383 

by filtering out regions overlapping exons and regions within 5 kb of a transcription start site (TSS). The 384 

motivation for generating a smaller subset of TFBS clusters comes from our concern that predicted 385 

placental enhancers defined by TFBSs nearby TSSs may have an increased chance of being associated 386 

with promoters rather than enhancers. All enrichment tests were calculated on both the larger and smaller 387 

subset of TFBS clusters. Both sets of TFBS clusters had comparable enrichments. We report them for the 388 

smaller set that is more comparable to our enhancer sets here. 389 

 390 

Transposable element enrichment analysis. TE genomic locations were retrieved from RepeatMasker 391 

v4.0.5 [32]. The clades in which each TE is present were taken from Dfam v1.4 [33]. In situations where 392 

Dfam provided multiple clades, the clade of the most recent common ancestor was designated as the 393 

origin. We collapsed all TEs originating in the last common ancestor of amniota or before into one 394 

category. 395 

 For both the FANTOM5 placental enhancers and the high-confidence predicted placental 396 

enhancers, we used shuffleBed [28] to shuffle enhancer regions around the genome. We constrained the 397 

shuffled regions to the chromosome of the corresponding observed region and did not allow shuffled 398 

regions overlap one another, gaps in the genome assembly, or ENCODE blacklist regions [34]. For the 399 

FANTOM5 enhancers, we created 10,000 sets of shuffled regions. For the predicted enhancers, we 400 

created 1,000 sets of shuffled regions separately for the high-confidence and candidate sets. We 401 

calculated the permutation-based p-value for each lineage of origin for all TEs by calculating the number 402 

of permuted sets that overlapped more or the same amount of TEs appearing on a given lineage. Tests 403 

were only performed if at least 10 enhancers overlapped a TE of the given lineage. 404 

 405 

 406 
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