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Abstract  20 

The existence of phylogenetic covariation in base-pairing is strong evidence for functional 21 

elements of RNA structure, although available tools for identifying covariation are limited. R-22 

scape is a recently developed program for prediction of covariation from sequence alignments, 23 

but it has limited utility on long RNAs, especially those of eukaryotic origin. Here we show that 24 

R-scape can be adapted for powerful prediction of covariation in long RNA molecules, including 25 

mammalian lncRNAs.  26 
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Main  27 

Long non-coding RNAs (lncRNAs) are well accepted as crucial regulators of gene 28 

expression and disease progression1. Despite the ubiquity and significance of lncRNAs, our 29 

understanding of structure-function relationships within this class of molecules is extremely 30 

limited2. Studies of ribozymes, riboswitches, viral RNAs, mRNA UTRs and even coding 31 

sequences have shown that conserved RNA secondary and tertiary structures are vital for RNA 32 

function3, 4.  It has therefore been of interest to determine whether lncRNA molecules contain 33 

regions of functional structure and whether these structures are conserved5-7.  If conservation in 34 

base-pairing could be established, it would provide powerful evidence that RNA structure plays a 35 

role in aspects of lncRNA function. Several empirical studies have demonstrated the existence of 36 

structured regions within lncRNAs, and conventional phylogenetic covariation analyses were 37 

found to support the empirically-determined structures8-10.  Indeed in at least two cases, these 38 

modules of RNA structure were flanked by highly conserved sequences that are consistent with a 39 

biological role for lncRNA substructures9, 10.    40 

However, a powerful new method for stringent determination of nucleotide covariation, 41 

known as R-scape, failed to support the existence of conserved base-pairings in well-studied 42 

functional lncRNAs such as Xist and HOTAIR11.  On the basis of these findings, it was 43 

concluded that those lncRNAs do not contain conserved structure and are therefore unlikely to 44 

contain functional elements of discrete structure.  Like many tools for phylogenetic analysis, R-45 

scape was developed for application to small, highly structured RNA molecules for which many 46 

sequences are available (such as bacterial riboswitches).  We reasoned that, at least in its current 47 

form, R-scape might not be equipped to confront the challenges posed by large, multidomain 48 

eukaryotic RNA molecules.  We therefore set out to test the limitations of R-scape covariation 49 
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analysis and to determine whether the approach could actually be modified in order to 50 

successfully identify conservation of structures in mammalian lncRNAs.     51 

A major challenge for the analysis of eukaryotic lncRNAs is the severe limitation in 52 

available sequences12.  We reasoned that this limitation, rather than any inherent lack of evidence 53 

for lncRNA structure, might explain the reported inability of R-scape to identify conserved 54 

structure in mammalian lncRNAs. To test this hypothesis, we analyzed the ability of R-scape to 55 

detect basepair covariation in seven well-characterized, highly structured RNA molecules (tRNA, 56 

5S ribosomal RNA, 5.8S ribosomal RNA, eukaryotic RNase P, U2 snRNA, U5 snRNA and the 57 

eukaryotic small subunit ribosomal RNA) using input alignments that were restricted in three 58 

different ways:  1) Inclusion of the original RFAM seed alignment 2) Sub-sampled alignments 59 

and 3) Restriction to mammalian sequences. In the sub-sampled RFAM alignments, we limited 60 

the number of sequences and the average pairwise identity to control for effects arising solely 61 

from restrictions in these parameters (See Methods, Figure 1). The alignments restricted to 62 

mammalian sequences represent the currently available alignments that have been built for most 63 

lncRNAs.  Not surprisingly, there is a precipitous drop in covariation support for most of these 64 

test RNAs in both the ‘sub-sampled’ and ‘mammalian sequence’ conditions.   Eukaryotic RNase 65 

P (> 300 nt) is the most dramatic example, as only 13% of the base pairs can be flagged as 66 

covariant by R-scape in the sub-sampling analysis (Figure 1). It is also worth highlighting the 67 

particular case of 5.8S rRNA, for which the RFAM seed alignment already has a relatively high 68 

pairwise sequence identity (~68%).  Predictably, R-scape finds covariation support for only 44% 69 

of the base pairs in the 5.8S rRNA structure, and no support (0%) upon restriction of the analysis 70 

to mammalian sequences. In fact, with the exception of tRNA, for which even mammalian 71 

sequences have high nucleotide diversity, R-scape was unable to detect the majority of covarying 72 
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base pairings in these model RNAs when the input alignments were limited to mammals. These 73 

results indicate that R-scape fails to detect covariation not just in lncRNAs, but in most of the 74 

structurally complex, well-characterized functional RNA molecules that have been tested.   75 

It is important to note that RFAM alignments are hand-curated and refined13, therefore, 76 

deviations from RFAM’s ideal heuristics may bias R-scape results. This phenomenon was shown 77 

to be true for other covariance prediction algorithms when RFAM alignments were compared to 78 

emulated genomic alignments as inputs14. Multiple sequence-based alignments from datasets like 79 

the TBA/Multiz (UCSC genome browser) can be used to build covariation models and generate 80 

structural alignments for lncRNAs, but these alignments lack the quality of RFAM alignments, 81 

which can then affect R-scape prediction sensitivity. Finally, since genomic alignments may not 82 

accurately reflect the regions of lncRNA loci that are actively expressed, there is a consistent 83 

need for direct characterization and annotation of lncRNA transcripts across species in order to 84 

improve identification of conserved sequence and structure motifs, as described elsewhere15, 16.   85 

There is accumulating evidence that lncRNAs possess local modules of RNA structure 86 

and that they can contain both structured and unstructured regions8, 10.  Given that R-scape uses 87 

the entire length of an RNA sequence for analysis, it is possible that the presence of unstructured 88 

regions negatively impacts the ability of R-scape to identify structural conservation. To test this, 89 

we analyzed the ability of R-scape to predict covariation when unstructured regions are included 90 

in an alignment.  R-scape is reported to perform well on riboswitches, using sequences that are 91 

restricted to the functional, structured region of the molecule.  We therefore chose the SAM-I 92 

riboswitch (RF00162) as an example, but we now included the surrounding mRNA regions from 93 

the alignment. The mRNA regions were aligned using MAFFT17, and the alignment for the 94 

SAM-I riboswitch region was kept the same as in the RFAM alignment. We then compared R-95 
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scape predictions by varying the number of sequences in the alignment. In the case of the SAM-I 96 

riboswitch alone, R-scape predicted significant covariation even with only 40 sequences in the 97 

alignment (Figure 2A), as reported previously. However, inclusion of the flanking mRNA in the 98 

alignment resulted in a notable decrease in R-scape performance:  Even when 60 sequences are 99 

included in the alignment, R-scape could identify covarying base pairs in only one helix (Figure 100 

2B), indicating that the presence of unstructured RNA regions has a strong influence on R-scape 101 

analysis output. However, as the number of sequences in the alignment increases, R-scape can 102 

identify more covarying base pairs, even when unstructured regions are included. This suggests 103 

that R-scape may ultimately become a powerful tool for identifying covarying base-pairs when a 104 

sufficient number of sequences are provided (> 90 for SAM-I riboswitch). However, since the 105 

alignments for most human lncRNAs are currently limited to 30-60 mammalian sequences, R-106 

scape default settings should not be applied to lncRNA covariation analysis.  107 

Another feature that is expected to influence the performance of any covariation analysis 108 

is the length of an RNA molecule and of its corresponding structural alignment.  LncRNAs are 109 

typically very large and many exceed 1kb18. However, R-scape was benchmarked with a test set 110 

consisting predominantly of small RNAs.  Of the 104 RNAs in that test set11, there are only 21 111 

RNAs with an average length greater than 200 nts and only seven that exceed 1kb, and all the 112 

seven are ribosomal RNAs.  It is therefore unlikely that the R-scape default parameters are 113 

appropriate for analysis of large RNAs. To test this, we asked whether R-scape performs better 114 

when the analysis is broken down in short overlapping windows tiling the entire RNA rather than 115 

when given a long whole-length alignment. We examined alignments (see methods) of two long 116 

RNAs in sliding windows: 1) 7SK RNA (RFAM ID:00100) and 2) Aphthovirus internal 117 

ribosome entry site (RFAM ID: 00210). For both RNAs, R-scape was able to identify more 118 
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covarying base-pairs when the analysis was run with sliding windows than when given the full-119 

length alignment (Fig. 3), indicating that the R-scape default parameters work better on short 120 

alignments, either as aligned sequences of inherently small RNAs or long RNA alignments that 121 

have been analyzed in a set of sliding windows.  122 

Taken together (Figures 1-3), these results suggest that one might be able to increase the 123 

signal-to-noise ratio for predicting lncRNA covariations by maximizing the number of sequences 124 

(increasing alignment depth) and running R-scape analysis in short windows. Here, we applied 125 

both conditions to analyze the RepA region of lncRNA Xist. In a previous study, R-scape 126 

identified no significant base pair covariation in RepA structure11. However, the input alignment 127 

in that study was limited to ten sequences, which was beneath an empirical threshold value (~40 128 

sequences) suggested in the very same paper. We therefore reanalyzed RepA using a recent, 129 

experimentally determined secondary structure10 and we included significantly more sequences 130 

in the alignment. As expected, just by adding more sequences we were able to identify 131 

covariation in RepA, but it was limited to a single base pair. Interestingly, this base pair is 132 

located within the functionally important repeat-five region19. To further improve the signal-to-133 

noise ratio, we ran R-scape on short (500-nt) overlapping windows, tiling the entire RNA. Using 134 

this procedure, R-scape identified five statistically significant covariant base pairs: two in 135 

domain I and three in domain II of the lncRNA RepA (Figure 4). Importantly, each of the 136 

covariant base pairs detected are in the regions of high structural confidence (low Shannon 137 

entropy, see Liu et al.,10 and Supplementary figure 2). It is also worth highlighting that the three 138 

base pairs in domain II identified by R-scape are in proximity to long-range crosslink sites 139 

identified by Liu et al. 201710, and to a stretch of conserved base sequence, suggesting that even 140 
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though R-scape identified only five base pairs, they are consistent with experimental studies and 141 

are likely to be functionally important. 142 

Up to this point, our analysis suggests that the default parameters in R-scape are 143 

exceedingly stringent and that they may not be sufficiently sensitive to predict covariation with 144 

reduced alignment depth and low phylogenetic diversity, which are features inherent to most 145 

current lncRNA alignments (Xist, HOTAIR, SRA, etc). Most telling, R-scape failed to detect 146 

significant covariation when faced with similar alignments even for well-structured RNAs such 147 

as ribosomal RNAs, snRNAs and the eukaryotic ribozyme RNAseP, suggesting that more 148 

sequencing data is required to provide sufficient alignment depth for lncRNA structural 149 

conservation analysis on R-scape. Given the plethora of lncRNA genes and their implicated roles 150 

in human diseases, there is an urgent need for better tools and metrics to identify conserved 151 

structures and associated functions of these giant molecules.  152 

We therefore asked whether other metrics could improve the performance of R-scape on 153 

long RNA molecules. RNAalifold with stacking20 (Bs
i,j renamed in Rivas et al., as RAFS) was 154 

previously shown to be among the best performing covariation metric available and it has been 155 

extensively validated in several RNA structure prediction platforms, where it is frequently 156 

combined with structural stability metrics21-23. However, Rivas et al11 have argued that the G-test 157 

statistic (GT) performs better than RAFS in terms of positive predictive value (PPV) and thus 158 

would be less prone to false positive discovery. To get a sense of the tradeoff between sensitivity 159 

and PPV within these two metrics, we reanalyzed the original R-scape test set (104 RFAM 160 

alignments) with default parameters. We used average product correction (APC) as it was shown 161 

to improve the performance of both GT and RAFS (both renamed, then, as APC-GT and APC-162 

RAFS)11. First, we measured the difference in sensitivity and PPV of these two metrics by 163 
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varying the E-value threshold (Supplementary Figure 3). The PPV value for APC-RAFS gets 164 

worse than APC-GT (> 5%) only for relatively high E-values (> 0.1).  However, at the default E-165 

value threshold of 0.05, APC-RAFS resulted in much higher sensitivity (~84%) relative to APC-166 

GT (~64%), with a PPV compromise of less than 4%, suggesting that APC-RAFS is in fact a 167 

more robust metric than APC-GT.  168 

Next, we tested the performance of these two metrics by varying the number of 169 

sequences in the input alignment (Supplementary Figure 3). Most strikingly, APC-RAFS 170 

achieved 63% sensitivity with only 20 sequences in the alignment compared to APC-GT, which 171 

resulted in only 40% sensitivity with the same input. We then used APC-RAFS to score the same 172 

alignments from Figure 1 (Supplementary Figs. 4 and 5) and observed a significant improvement 173 

in covariation detection under restricted conditions (fewer sequences, increased average pairwise 174 

identity and decreased phylogenetic diversity), relative to the original analysis using APC-GT. 175 

Remarkably, the eukaryotic RNAseP case showed a dramatic 45% sensitivity increase upon 176 

subsampled alignment analysis with APC-RAFS relative to APC-GT, and an even higher 177 

improvement (49%) on the mammalian sequence alignment. In all cases, the use of APC-RAFS 178 

on restricted alignments improved the overall covariation output when compared to APC-GT 179 

with no compromise to specificity as given by PPV (Supplementary Fig. 5), indicating that APC-180 

RAFS is able to at least partly overcome the negative effects of lncRNA-like restrictions on R-181 

scape predictive power while preserving statistical rigor. All these observations suggest that 182 

APC-RAFS is a highly robust metric for RNA covariation analysis with R-scape (null-model 183 

based analysis) and, most importantly, the most suitable method for alignments with the 184 

restrictions normally found in lncRNAs. 185 
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Based on the above observations, we utilized APC-RAFS to analyze the published 186 

structural alignments for full-length lncRNA-RepA and Domain I of lncRNA-HOTAIR9 (Fig. 5) 187 

and found that R-scape is now able to support covariation of numerous base pairs in both RNAs. 188 

We identified 16 covariant base pairs within the full-length lncRNA-RepA when the alignment 189 

was analyzed in overlapping 500-nt windows tiling the RNA every 100 nt.  In this case, 9 out of 190 

10 helical motifs with covariant base pairs flagged by R-scape/APC-RAFS were also suggested 191 

to be conserved in previous empirical studies10.   Within HOTAIR domain I, 24 base pairs were 192 

flagged as covariant by R-scape/APC-RAFS in 10 helical segments of this region. Also, in this 193 

case, most helices where APC-RAFS found covariant base pairs overlapped with helices 194 

previously suggested as structurally conserved in domain I of HOTAIR9. These results strongly 195 

suggest that APC-RAFS can be used within R-scape to improve covariation analysis of lncRNA 196 

structure, confirming the conclusions from previous studies and highlighting the presence of 197 

conserved structured regions in lncRNAs HOTAIR and RepA.  198 

In conclusion, we show that R-scape default parameters are not applicable to lncRNAs, 199 

but that R-scape is capable of identifying covariation when appropriately parameterized. We 200 

suggest that increased alignment depth, sliding windows approach and a more sensitive statistical 201 

metric, the APC-RAFS, are parameters that may help R-scape to identify conserved structural 202 

elements in large molecules such as lncRNAs. By combining these approaches, we were able to 203 

detect significant covarying base pairs in the experimental structures of lncRNAs HOTAIR and 204 

RepA.  We hope that the results and approaches reported here provide improved tools for 205 

meeting the challenges inherent to studying lncRNA molecules and that they facilitate future 206 

studies and method development.  207 

 208 
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Methods 209 

R-scape analysis  210 

Seed alignments for tRNA, 5S ribosomal RNA, 5.8S ribosomal RNA, eukaryotic RNase P, 211 

U2 snRNA, U5 snRNA, small subunit ribosomal RNA (SS rRNA), 7SK, Aphthovirus IRES and 212 

SAM-I Riboswitch were downloaded from the RFAM database (RFAM v13.0). To obtain 213 

alignments restricted to mammals, mammalian sequences were manually extracted from each 214 

RNA family in the Rfam database and then aligned using Infernal (version 1.1.2). Sub-sampling 215 

analysis was performed by randomly selecting sequences using the ‘submsa’ option. The average 216 

pairwise identity (figure 1) was controlled using the ‘maxid’ option. The parameters and RFAM 217 

family IDs for all original and derived alignments are listed in Supplementary Figure 1. All 218 

analyses using R-scape were carried out at the default E-value (0.05), unless otherwise specified 219 

in the text. 220 

Sliding window analyses were carried out with the "window" and "slide" options on R-221 

scape, to define window size and sliding step of the R-scape search, respectively. Window size 222 

was varied between 50 - 500 nt, depending on the RNA length and structure, thereby ensuring 223 

that intact helices could be contained within the chosen window size.   224 

The original R-scape test set was downloaded from the Eddy lab website 225 

(http://eddylab.org/R-scape/). The average product corrected RNAalifold with stacking (APC-226 

RAFS) and G-test (APC-GT) statistics were compared using the "RAFSp" and "GTp" options 227 

respectively, by varying E-value thresholds and the number of sequences in the alignment.   228 

 229 

  230 
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Figure 4 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2018. ; https://doi.org/10.1101/364109doi: bioRxiv preprint 

https://doi.org/10.1101/364109
http://creativecommons.org/licenses/by-nd/4.0/


 

18 
 

Figure 5 330 
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Figure legends 332 

Figure 1 333 

Restriction in alignment characteristics (number of sequences, average pairwise sequence 334 

identity and phylogenetic diversity) significantly impair R-scape’s ability to detect covariation in 335 

highly conserved structured RNAs. The percentage of covariant basepairs flagged by R-scape is 336 

shown in the graph for each tested RNA alignment.  337 

Figure 2  338 

R-scape analysis on the SAM-I riboswitch (RF00162) with and without unstructured mRNA 339 

regions in the alignment. (a) Sensitivity of R-scape to the presence of adjacent unstructured 340 

regions, as a function of the number of sequences in the alignment. (b) Influence of an adjacent 341 

unstructured region on predicted covariation in the SAM-I riboswitch, using 60 sequences in the 342 

alignment. The figure shows the graphical output of each analysis generated by R-scape using 343 

R2R drawing notation. Green boxes indicate covariant basepairs. Consensus nucleotide letters 344 

are colored according to their sequence conservation in the alignment as given by percent 345 

identity thresholds (75% identity in gray; 90% identity in black; 97% identity in red). Individual 346 

nucleotides are represented in circles according to their positional conservation in the alignment 347 

corresponding to percent occupancy thresholds (50% occupancy in white; 75% occupancy in 348 

gray; 90% occupancy in black; 97% occupancy in red). 349 

Figure 3 350 

Sliding windows analysis improves R-scape performance on long alignments. In both model 351 

cases tested in this study, 7SK RNA (a) and Aphthovirus IRES (b), R-scape identified four 352 

additional base-pairs when the analysis was run in sliding windows.  The consensus secondary 353 
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structure of each RNA is shown in the cartoon form below, and insets above show the 354 

covariation predictions for specific domains.  Predicted covariant base pairs are highlighted in 355 

green. 356 

Figure 4 357 

R-scape analysis on lncRNA RepA’s recently published structure (Liu et al. 2017). The use of an 358 

alignment containing 57 sequences was coupled with a sliding windows approach in order to 359 

improve covariation analysis on R-scape. The experimentally determined secondary structure of 360 

the lncRNA is represented in the figure with insets showing the covariant basepairs (green 361 

boxes) identified by R-scape on specific motifs of domain I and domain II of RepA (left and 362 

right insets, respectively).  363 

Figure 5  364 

R-scape analysis on lncRNAs RepA and HOTAIR using APC-RAFS as the covariation metric. 365 

(a) The experimental secondary structure map of full-length lncRNA RepA is shown and 366 

covariant basepairs identified on specific motifs by R-scape using APC-RAFS are indicated in 367 

green boxes. (b) The experimental secondary structure of domain I of HOTAIR is represented in 368 

the figure and the covariant basepairs identified by R-scape using APC-RAFS are shown in 369 

green boxes. 370 
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Supplementary Figure 1  375 
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Supplementary Figure 2 394 
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Supplementary Figure 3 402 
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Supplementary Figure 4 409 
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Supplementary Figure 5 431 
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Supplementary figure legends 433 

Supplementary Figure 1  434 

Parameters of structural alignments used for the R-scape analysis presented in Figure 1.  RFAM 435 

IDs are indicated for each RNA family and the number of sequences and average pairwise 436 

sequence identity of each individual alignment (seed alignment, sub-sampled and mammalian 437 

sequences) are listed. 438 

Supplementary Figure 2 439 

Shannon entropy values mapped onto the experimental secondary structure map of lncRNA-440 

RepA (Adapted from Liu et al. 2017). Nucleotides with high Shannon entropy values are 441 

represented in red (> 0.5) circles; those with medium values (0.2-0.5) are represented in yellow 442 

circles. Nucleotides with low Shannon entropy (< 0.2) are not highlighted in the map. 443 

Supplementary Figure 3  444 

Comparison between the APC-GT and APC-RAFS covariation statistics currently implemented 445 

in R-scape. (a) Difference in Sensitivity (Sen) and Positive Predictive Value (PPV) between 446 

APC-GT and APC-RAFS at various E-value thresholds. At the R-scape default E-value, APC-447 

RAFS shows much better sensitivity over APC-GT. (b) Same analysis as in (a), now varying the 448 

number of sequences in the alignments to include a range more commonly found in lncRNA 449 

alignments. At a fixed E-value threshold (0.05), APC-RAFS results in superior sensitivity even 450 

with 10 sequences in the alignment.  451 
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Supplementary Figure 4  454 

R-scape analysis using APC-RAFS as the covariation method on the same alignments used in 455 

Figure 1 of the main text. The percentage of covariant basepairs flagged by R-scape as 456 

statistically significant is shown in the graph for each tested RNA alignment.  457 

Supplementary Figure 5  458 

R-scape search parameters for the alignments referred to in Figure 1 and Supplementary Figure 1, 459 

comparing APC-GT and APC-RAFS covariation statistics. RFAM IDs are indicated for each 460 

RNA family. The percent values of sensitivity, positive predictive value and F-measure of each 461 

R-scape search were obtained from the analysis output for each alignment (seed alignment, sub-462 

sampled and mammalian sequences) using both covariation methods, APC-GT (R-scape’s 463 

default) and APC-RAFS. 464 
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