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Abstract 

 Analysis of single-cell transcriptomes remains a challenge in that subtle differences of cell 

types are difficult to resolve. Here we present the self-assembling manifolds (SAM) algorithm, 

which dynamically rescales gene expression to amplify differences between cells. We 

demonstrate its advantage over other methods by analyzing stem cells from Schistosoma, a 

parasite that infects >250 million people. Benchmarking on another 47 datasets, SAM 

consistently improves cell clustering and marker gene identification.  
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Text 

 The rise of single-cell RNA sequencing (scRNA-seq) technologies has enabled researchers 

to explore cell types, delineate cell developmental trajectories, and measure molecular responses 

to external perturbations
1-5

. Besides the rapid evolution of experimental techniques, the ever-

increasing wealth of data has spawned numerous analytical methods
6-8

. These methods are often 

optimized for characteristics inherent to particular datasets and may require human inputs to 

select important genes and tune method parameters
9
. An analytical pipeline that is unsupervised 

and universally applicable to different datasets and organisms with little to no a priori 

knowledge remains an open challenge. In particular, robust and unsupervised detection of subtle 

differences in gene expression between cells in a largely homogeneous population is still not 

possible.  

 To address this general challenge, we introduce a fully unsupervised method, the Self-

Assembling Manifold (SAM) algorithm. To demonstrate its utility and flexibility, we applied 

SAM to a difficult test dataset in which we sequenced ~370 stem cells isolated from Schistosoma 

mansoni, one of the most prevalent human parasites
10

. Testing several existing methods on this 

dataset, we found that they yielded poor low-dimensional embeddings that are inconsistent with 

known marker genes
11-13

. We reasoned that amplifying the distance between dissimilar cells may 

help resolve subtle differences between them. To achieve this goal, SAM iteratively rescales 

gene expressions and refines the nearest neighbor graph of cells.  At each iteration, we assign 

more weight to genes that vary spatially across the current graph and feed them into the next 

assignment of neighbors until the graph topology converges to a stable solution.  

 Fig. 1a depicts the algorithm. SAM begins with a random k-nearest neighbor (kNN) graph 

and averages the expression of each cell with its k-nearest neighbors: 𝐶 =
1

𝑘
𝑁𝐸, where 𝑁 is the 
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directed adjacency matrix and 𝐸 is the gene expression matrix. For each gene, SAM computes a 

dispersion factor (Methods) of the averaged expressions 𝐶𝑖 , which measures variation across 

neighborhoods of cells rather than individual cells. These dispersions are used to calculate the 

gene weights, which then rescale the gene expression matrix: 𝐸 = 𝐸𝑊𝐷, where 𝑊𝐷 is a diagonal 

matrix with gene weights along the diagonal. Using the rescaled expressions, we compute a 

pairwise cell distance matrix and update the assignment of each cell’s k-nearest neighbors 

accordingly. This cycle is repeated until the distance matrix converges. 

 Applied to our schistosome stem cell dataset, SAM converges to a universal, stable solution 

independent of initial conditions and across a broad range of parameters (Fig. 1b, and 

Supplementary Fig. 1). Fig. 1c shows the iterative process, through which a kNN graph 

structure self-assembles. Sorting the weights by the final gene rankings demonstrates their 

convergence onto the final weight vector. Only a small fraction of genes (~1%) are significantly 

weighted and useful for separating cell clusters. These differences are too subtle to capture using 

other methods, which typically select a much larger percentage of features (Fig. 2a). As a 

negative control, we show that SAM cannot converge to a universal solution when applied to a 

randomly shuffled expression matrix (Supplementary Fig. 2). 

 Projecting the converged distance matrix onto two dimensions using t-distributed Stochastic 

Neighbor Embedding (t-SNE), we find that cells can be separated into four well-defined groups 

with orthologous gene expression patterns (Fig. 2a). In contrast, other commonly-used methods, 

including principal component analysis (PCA), Seurat
6
, and SIMLR

7
, fail to capture any 

structure. A high dimensional hierarchical representation of the final adjacency matrix is shown 

in Fig. 2b, with edge bundles connecting similar neighborhoods of cells arrayed on the periphery 

of the circle. Additionally, edge bundles connect subpopulations between the major clusters, 
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revealing additional layers of complexity that are difficult to capture in low-dimensional space. 

 The critical difference between SAM and other methods lies in how we assign gene weights. 

SAM prioritizes genes with variable expressions across neighborhoods of cells rather than 

individual cells as in other methods, which often use z-score-standardized dispersions to select 

genes for downstream analysis
6
. Fig. 2c reveals that many genes with high z-scores have low 

SAM weights, whereas high SAM weights generally correlate with high z-scores, indicating that 

SAM narrows the list of highly variable genes to those that are consistent with the long-range 

topological relationships between cells. Other methods (e.g., SC3
8
) identify marker genes based 

on differential gene expression between cell clusters, but this approach could suffer from poor 

cell cluster assignment, especially when discrete cell groups are difficult to separate or not 

present at all. Indeed, we observed little correlation between SC3 scores and SAM rankings for 

the schistosome dataset (Fig. 2c). 

 Fig. 2d and Supplementary Table 1 list the rich panel of cell population-specific genes that 

SAM identifies. Furthermore, Fig. 2e highlights a surprising finding that suggests the current 

molecular definition of schistosome stem cells may also need revision. Expression of an RNA 

binding protein (nanos-2, Smp_051920), homologous fibroblast growth receptors (e.g., fgfrB, 

Smp_157300), and eledh (eled, Smp_041540) are thought to be the most important molecular 

signature for schistosome stem cells
11-13

, but SAM reveals a novel stem cell population 

(arrowheads in Fig. 2e) that do not express any of these genes. Nevertheless, these cells still 

express argonaute2-1 (ago2-1, Smp_179320), cyclin B (Smp_082490) and other cell cycle 

regulators that are ubiquitous stem cells markers
11-13

. They also express another set of cluster-

specific genes including a calcium binding protein (cabp, Smp_005350), an actin protein 

(Smp_161920), an annexin homolog (Smp_074140), a helix-loop-helix transcription factor 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2018. ; https://doi.org/10.1101/364166doi: bioRxiv preprint 

https://doi.org/10.1101/364166
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

(dhand, Smp_062490), and a phosphatase (dusp10, Smp_034500) (Fig. 2d, e). Characterizing 

the function of these novel cell subpopulations and associated genes should become a major 

future direction of schistosome research. Taken together, these results demonstrate that SAM can 

uncover novel biology in a challenging dataset with only subtle differences between cells.  

 To assess the general applicability of SAM, we benchmark its performance against other 

common scRNA-seq analysis methods, including, Seurat
6
, SIMLR

7
, SC3

8
, and PCA on six gold 

standard datasets that contain cells forming well separated clusters with high-confidence 

annotations
8
. For these relatively simple datasets, Supplementary Fig. 3 shows that SAM is 

among the top performers. 

 We then compare SAM to Seurat on another 42 scRNA-seq datasets across a wide range of 

cell types (Fig. 3, Supplementary Fig. 4-6, Supplementary Table 2). Many of these datasets 

were previously analyzed with either manual selection of marker genes or extensive parameter 

optimization
2,5,9,14-18

. In contrast, SAM constructs manifolds consistent with the expressions of 

the identified marker genes and the underlying biological processes without any supervision or 

parameter changes between datasets.   

 Fig. 3a presents two examples to illustrate the strengths of SAM. In the natural killer T cells 

(NKTs) dataset
14

, SAM produces tight clusters and places them in proper topological relations, 

whereas Seurat fails to clearly separate the cell clusters. SAM not only separates the annotated 

populations of the precursor (NKT0), and the mature NKT cells (NKT1, NKT2, and NKT17), 

but also resolves distinct expression patterns consistent with NKT assignments including 

serpinb1a, xcl1, itm2a, il4, and a novel pseudogene gm15428 that is co-expressed with il4 in the 

NKT2 subpopulation (Supplementary Fig. 4a). The proximity between NKT0 with NKT1 and 

NKT2 populations reflects the similarity in their transcriptional profiles, also consistent with 
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previous results
14

. SAM can also capture dynamic trajectories between cells. In the activated 

macrophage dataset
15

, SAM reconstructs a circular trajectory that reflects the oscillatory nature 

of NF-kB activation in macrophages, with lymphoid activation gene pbk, chemokines such as 

ccl3, ccl4, and ccl5, and cholesterol/phospholipids transporter abcg1 locally expressed in distinct 

regions around the circular projection (Supplementary Fig. 4b). Comparisons between SAM 

and Seurat manifolds on other datasets
2,16-19

 highlight SAM’s consistent, superior performance in 

discerning topological structure (Fig. 3b, Supplementary Fig. 5, 6). 

 To understand the conditions in which SAM may outperform other methods, we rank all 

analyzed datasets based on a network sensitivity measure, which quantifies changes in the cell-

to-cell distances when randomly perturbing gene expression matrices (Methods). Datasets with 

higher sensitivity are more difficult to analyze, since changes in the selected features would 

strongly influence the resulting topological network. We use the network average clustering 

coefficient (NACC), which quantifies the degree of clustering
20

, to compare graphs generated by 

different methods (Methods). Graphs characterized by regions of high density separated by 

regions of low density will have high NACC whereas random graphs with no structure will have 

low NACC
20

. We notice that Seurat produces graphs with lower clustering on datasets with high 

inherent sensitivity, with a Pearson correlation coefficient of r
2

 = -0.63. In contrast, SAM’s 

performance is insensitive to the dataset sensitivity (r
2

 = -0.09). As a result, SAM consistently 

produces graphs with more structure across different types of datasets (Fig. 3c). 

 In summary, SAM improves analysis of scRNA-seq data compared to other state-of-the-art 

methods, supported by extensive benchmarking. While SAM performs well on simple datasets 

that contain well-separated cell clusters, SAM is particularly useful in analyzing datasets that 

contain cells in dynamic transitions or cell groups that are only distinguishable through subtle 
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differences in gene expression. Finally, as demonstrated by our work on the schistosome stem 

cells, SAM enables unsupervised analysis of scRNA-seq data from organisms with little to no a 

priori knowledge to gain novel biological insights.  
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Methods 

Data processing 

 Supplementary Table 2 summarizes all datasets used in this study as well as the methods 

used to convert raw sequence read counts to gene expression, such as TPM (transcripts per 

million), CPM (counts per million), RPKM (reads per kilobase per million), or FPKM 

(fragments per kilobase per million). Datasets with asterisks next to their accession numbers in 

Supplementary Table 2 are sourced from the conquer database
21

. Gene expression is measured 

in log space with a pseudocount of 1 (e.g., log2(TPM+1)). Genes expressed (log2(TPM+1)>1) in 

fewer than X = 2% or more than 100 – X = 98% of cells are excluded from downstream analysis 

as these genes lack statistical power. To reduce the influence of technical noise near the 

molecular detection limit, we set gene expression to zero when log2(TPM+1)<1. Supplementary 

Fig. 1 shows that downstream analysis is robust to the data processing. 

 

The SAM algorithm 

 SAM first generates a random kNN adjacency matrix and averages the expression of each 

cell with its k-nearest neighbors: 𝐶 =
1

𝑘
𝑁𝐸, where 𝑁 is the directed adjacency matrix for the 

kNN graph, and 𝐸 is the gene expression matrix. For each gene, SAM computes the Fano factor, 

𝐹𝑖 =
𝜎𝐶𝑖
2

𝜇𝐶𝑖
, of the averaged expressions 𝐶𝑖. The Fano factor compares genes based on their 

variances relative to their average level of expression, which mitigates the inherent differences 

between gene expression distributions. Computing the Fano factors based on the kNN-averaged 

expressions links gene dispersion to the cellular topological structure. Genes that have highly 

variable expressions among individual cells but are homogeneously distributed across the 

topological representation should have small dispersions. We also notice that the kNN-averaging 
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approach reduces the effect of sequencing noise and dropout.  𝑘 determines the topological 

length scale over which variations in gene expression are quantified. We set 𝑘 by default to √𝑛, 

where 𝑛 is the total number of cells in the dataset and 𝑘 is bounded to be at least 10. 

Supplementary Fig. 1 reveals that the downstream analysis is robust to the specific choice of 𝑘. 

Additionally, the choice of 𝑘 does not significantly affect runtime complexity or scalability. 

 SAM multiplies a vector of gene-specific weights calculated from the Fano factors into the 

original expression matrix: 𝐸 = 𝐸𝑊𝐷, where 𝐸 is the rescaled expression matrix and 𝑊𝐷 is a 

diagonal matrix with 𝑊𝑖 = 𝑓(√𝐹𝑖) along the diagonal, and 𝑓 is a function that performs min-

max normalization on the input vector. This matrix multiplication rescales the gene expression 

variances and gene-gene covariances according to their respective weights, reducing the 

influence of genes with low dispersions across neighborhoods. We then normalize the gene 

expression matrix to have unit Euclidean (L2) norm for each cell to prevent cells with large 

variances from dominating downstream analyses. To compute pairwise cell-cell distances, we 

perform PCA on 𝐸. The rescaled expression matrix improves PCA robustness to variations in 

genes that contain little information (i.e. genes with low weights). Furthermore, this weighting 

strategy eliminates the typical requirement of selecting a subset of genes to feed into PCA, which 

often relies on arbitrary thresholds and heuristics. 

 Using the PC matrix (𝑃), SAM computes a pairwise cell-cell Pearson correlation distance 

matrix. While typical dimension reduction approaches select a subset of the PCs, which is mostly 

subjective, we include all PCs and scale their variances by the corresponding normalized 

eigenvalues: 𝑃 = 𝜆𝑃. PCs with small eigenvalues are weighted less in the distance calculation: 

𝐷𝑃𝑖𝑃𝑗 = 1 −
Cov(𝑃𝑖,𝑃𝑗)

𝜎𝑃𝑖𝜎𝑃𝑗
, where 𝐷𝑃𝑖𝑃𝑗 is the Pearson correlation distance between PCs 𝑃𝑖 and 𝑃𝑗,  
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Cov(𝑃𝑖, 𝑃𝑗)is the covariance, and 𝜎𝑃𝑖 is standard deviation of PC 𝑖. Using the distances to define 

the k nearest neighbors for each cell, SAM updates the kNN matrix and repeats the entire 

process. The algorithm continues until convergence, defined as when average correlation 

distance between cells’ vectors of distances in adjacent iterations, 𝑆𝑗,𝑗−1, is smaller than 10
-4

 or 

the maximum number of iterations has been reached (default 20). We define 𝑆𝑗,𝑗−1 =

1

𝑛
∑𝐷 {𝑑𝑖,𝑗, 𝑑𝑖,𝑗−1}, where 𝐷{𝑑𝑖𝑗, 𝑑𝑖𝑘} is the Pearson correlation distance between the distances 

from cell i in distance matrices j and j-1. 

 

Visualization 

 To visualize the topological structure embedded in the output cell-cell distance matrix, we 

fed the distances into sklearn’s implementation of t-SNE using the ‘precomputed’ metric
22

. To 

directly visualize the corresponding kNN matrix (Fig. 1c), we used the Fruchterman-Reingold 

force-directed layout algorithm and drawing tools implemented by the Python package graph-

tool
23

. The circular hierarchical graph in Fig. 2b was generated using the graph_tool package, 

which minimizes a nonparametric, stochastic block model to identify cell clusters and 

hierarchical relationships
23

. 

 

Benchmarking 

 To generate the convergence curves in the top panel of Fig. 1b, we computed the root mean 

square error (RMSE) between the distance matrices, kNN matrices, and weights in adjacent 

iterations, ensemble averaged across parallel runs. To quantify the solution stability of the SAM 

algorithm (bottom panel of Fig. 1b), we computed the RMSE for the distance matrices, kNN 

matrices, and gene weights at each iteration across replicates starting from different randomly 

generated initial graphs. 
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 We evaluated the accuracy of each analysis method on six gold standard datasets 

(Supplementary Fig. 3) using the Adjusted Rand Index (ARI), which measures the accuracy of 

between two cluster assignments 𝑋 and 𝑌 while accounting for randomness in the clustering: 

𝐴𝑅𝐼 =
∑(

𝑛𝑖𝑗
2
)−[∑(

𝑎𝑖
2
)∑(

𝑏𝑗
2
)] (

𝑛
2)⁄

1

2
[∑(

𝑎𝑖
2
)+∑(

𝑏𝑗
2
)]−[∑(

𝑎𝑖
2
)∑(

𝑏𝑗
2
)] (𝑛2)⁄

, where n is the number of cells, and 𝑛𝑖𝑗, 𝑎𝑖, and 𝑏𝑗 are 

elements from a contingency table that summarizes the overlap between the assignments 𝑋 and 

𝑌24
.  𝑛𝑖𝑗 denotes the number of cells assigned to 𝑋𝑖 that are also assigned to 𝑌𝑗 while 𝑎𝑖 and 𝑏𝑗 

are the sums of the ith row jth column of the contingency table, respectively. In assigning 

clusters, we used k-means clustering with the ground truth number of clusters set to be the 

unique number of labels found in the annotated datasets. SAM, SC3, and Seurat were run using 

default parameters. 

 The SIMLR package was implemented in R and run with the normalization parameter set to 

“True”, which mean centers gene expression after normalizing them to be between 0 and 1. 

Seurat was implemented using the Scanpy package in Python
25

. For each gene, the expressions 

were mean-centered and variance normalized prior to PCA. We then performed Louvain 

clustering to assign clusters based on the PCA output and optimize performance by varying the 

number of included genes from 1% to 20% of the top Z-scoring genes with a 1% increment. ARI 

scores are reported based on the best performing parameter for each dataset. 

 To compare the quality of graphs generated by different methods, we use the NACC values 

to quantify the degree of structure in the computed graph topologies
20

. The NACC is the average 

of the local clustering coefficient for each node of a graph. The local clustering coefficient is 

defined as 𝑎𝑖 =
𝐿𝑖

𝑘𝑖(𝑘𝑖−1)
, where 𝐿𝑖 is the number of edges between the 𝑘𝑖 neighbors of node i and 

measures the degree of connectedness in a particular node’s local neighborhood. 
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 To produce the comparisons reported in Fig. 3, we used default parameters for SAM. For 

Seurat, we selected the variable genes according to their standardized dispersions using default 

thresholds
25

 and chose the number of PCs which explain 50% of the variance (bounded between 

6 and 30) for dimensionality reduction. From these PCs, we calculated a cell-cell correlation 

distance matrix. To keep the comparison between SAM and Seurat graphs consistent, this 

distance matrix was converted into a kNN matrix with the value of k used by SAM. The NACC 

was calculated for both graphs using graph-tool’s implementation. 

 To measure the inherent sensitivity of each dataset, we randomly perturbed the gene 

expression matrices by scaling the expressions with a gene weight vector drawn from a uniform 

random distribution. PCA was applied to the perturbed data, where the number of PCs was 

chosen such that they explain greater than 50% of the variance in the data (bounded between 6 

and 30). A correlation distance matrix was calculated from the resulting PCs and perturbations 

were repeated to generate distance matrix replicates. Sensitivity is then defined as the average 

error across all pairwise comparisons between the replicates. The error between two distance 

matrices j and k, 𝑆𝑗𝑘, is defined as the average correlation distance between cells’ vector of 

distances and their corresponding pair from the replicate matrix: 𝑆𝑗𝑘 =
1

𝑛
∑𝐷 {𝑑𝑖𝑗, 𝑑𝑖𝑘} where 

𝐷{𝑑𝑖𝑗, 𝑑𝑖𝑘} is the Pearson correlation distance between the distances from cell i in distance 

matrices j and k. 

 

Parameter sweeps 

 To illustrate the robustness of SAM to its parameters, we ran SAM across a range of values 

for the number of nearest neighbors k, the gene filtering parameter X, and the minimum 

expression value. As mentioned before, k determines the number of nearest neighbors to find 

when computing the kNN matrix. The gene filtering parameter X controls the genes retained in 
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the initial filtering step, keeping genes expressed in greater than X% and less than (100-X)% of 

cells. A gene is considered expressed if its expression is greater than the minimum expression 

value, which is in units of 𝑙𝑜𝑔2(𝑇𝑃𝑀 + 1). We applied SAM with k varied from -10 to +10 of its 

default value, X from 0 to 10%, and the minimum expression value from 0 to 6 𝑙𝑜𝑔2(𝑇𝑃𝑀 + 1) 

over 6 trials on 8 datasets, excluding our own, with high-confidence annotations. For each 

parameter and dataset, we computed the average pairwise distance matrix and adjacency matrix 

errors. To ensure that adjacency matrices built with different values of k are comparable (i.e. 

have an equivalent number of outgoing edges), we used the output distance matrices to 

recompute the final adjacency matrices such that they share the same default value of k (√𝑛). 

Additionally, we calculated the average ARI score for each dataset across all parameter values.  

 The error between two distance matrices is defined as before: 𝑆𝑗𝑘 =
1

𝑛
∑𝐷 {𝑑𝑖𝑗, 𝑑𝑖𝑘}. The 

error between adjacency matrices j and k is defined as the proportion of edges that are different 

between corresponding cells: 𝑇𝑗𝑘 =
1

2𝑛𝑘
∑|𝑁𝑖𝑗 − 𝑁𝑖𝑘|, where n is the number of cells, k is the 

number of nearest neighbors, and Nij is the nearest neighbors to cell i in adjacency matrix j. For 

the distance matrix and adjacency matrix error metrics, we computed error bars as the standard 

deviation of pairwise errors from 6 trials sweeping across values for each parameter. The ARI 

score error bars for each dataset and parameter are the standard deviations of the scores across 

the different parameter values. 

 

scRNA-seq of schistosome stem cells 

 Schistosoma stem cells were isolated from juvenile parasites retrieved from infected mice at 

2.5 weeks post infection. At this stage, juvenile parasites undergo a massive wave of growth and 

develop germline primordia de novo. Our previous study shows that >15% of the total number of 
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body cells in juvenile parasites are stem cells
13

. We followed the protocol as previously 

described
13

. Briefly, we retrieved juvenile parasites from schistosome-infected mice (Swiss 

Webster NR-21963) by hepatic portal vein perfusion using 37°C DMEM. Parasites were cultured 

at 37°C/5% CO2 in Basch Medium 169 supplemented with 1X Antibiotic-Antimycotic for 24-48 

hr to allow complete digestions of host blood cell in parasite intestines. Before dissociation, 

parasites were permeabilized in PBS containing 0.1% Triton X-100 and 0.1% NP-40 for 30 

seconds, and washed thoroughly to remove the surfactants. The permeabilized parasites were 

dissociated in 0.25% trypsin for 20 min, and triturated with serially narrowed flamed-tip glass. 

Cell suspensions were passed through a 100 μm nylon mesh (Falcon Cell Strainer) and 

centrifuged at 150 g for 5 min. Cell pellets were gently resuspended, passed through a 30 μm 

nylon mesh, and stained with Vybrant DyeCycle Violet (DCV; 5 µM, Invitrogen), and TOTO-3 

(0.2 µM, Invitrogen) for 30–45 min. As the stem cells comprise the only proliferative population 

in schistosomes, we flow-sorted cells at G2/M phase of the cell cycle on a SONY SH800 cell 

sorter. Dead cells were excluded based on TOTO-3 fluorescence. Single stem cells were gated 

using forward scattering (FSC), side scattering (SSC), and DCV to isolate cells with doubled 

DNA content compared to the rest of the population. Cells that passed these gates were sorted 

into 384-well lysis plates containing Triton X-100, ERCC standards, oligo-dT, dNTP, and RNase 

inhibitor. 

 cDNA was reverse transcribed and amplified on 384-well plate following the Smart-Seq2 

protocol
26

. For quality control, we quantified cDNA concentration using picogreen and histone 

h2a (Smp_086860) levels using qPCR, as h2a is a ubiquitously expressed in all schistosomes 

stem cell
11-13

. We picked 370 wells that had more than 0.4 ng/µL of total cDNA concentration 

and generated CT values within 2.5 CT around the most probable values (~45% of total wells) 
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(Supplementary Fig. 8a-b). cDNA was then diluted to 0.4 ng/µL for library preparation. 

Tagmentation and barcoding of wells were prepared using Nextera XT DNA library preparation 

kit. Library fragments concentration and purity were quantified by Agilent bioanalyzer and 

qPCR. Sequencing was performed on a NextSeq 500 using V2 150 cycles high-output kit at ~1 

million reads depth per cell. Raw sequencing reads were demultiplexed and converted to fastq 

files using bcl2fastq. Paired-end reads were mapped to S. mansoni genome version WBPS9 

(WormBase Parasite) using STAR. 338 cells with more than 1700 transcripts expressed at >2 

TPM were used for downstream analysis (Supplementary Fig. 8c-d).  
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Figure legends 

Fig. 1. The SAM algorithm. (a) SAM starts with a randomly initialized kNN matrix and iterates 

to refine the kNN matrix and weight vector until convergence. (b) Normalized root mean square 

error (RMSE) between adjacent iterations within a single run (top) and between multiple runs at 

the same iteration (bottom) to show that SAM converges to a universal, stable solution regardless 

of initial conditions. (c) Graph structures and weights converging to the final output over the 

course of 15 iterations (i denotes iteration number). Top: nodes are cells and edges connect 

neighbors. Nodes are color-coded according to the final clusters. Bottom: weights are sorted 

according to the final gene rankings. 

 

Fig. 2. SAM identifies subpopulations within schistosome stem cells. (a) t-SNE projections of 

schistosome stem cells comparing SAM, Seurat, PCA, and SIMLR. Cells are color-coded based 

on stem cell subpopulation assignments. (b) Hierarchical connectivity graph between cells based 

on the final kNN matrix. Edge bundles connecting cells arrayed along the periphery indicate the 

similarity between cells. (c) Normalized z-score (left) and normalized SC3 AUROC, which 

measures relative significance of differential gene expressions (right), plotted vs. the SAM 

weights, with linear fits and correlation coefficients shown. The top 30 genes specific to each 

subpopulation are colored according to the color scheme used in (a) and (b). (d) Heatmap of 

average gene expression in the four assigned clusters, with each gene’s expression normalized by 

its maximum value. (e) t-SNE projection heatmaps to show a subpopulation (arrowheads) that 

express none of the canonical schistosome stem cell markers, nanos-2, fgfrB, or eled, but express 

cell-cycle related genes (ago2-1, cyclin B) and another panel of genes that are specific to this 

population (bottom row). 
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Fig. 3. SAM improves analyses of a wide range of single-cell datasets. (a) t-SNE projections 

of two example datasets. Top: natural killer T-cells (NKTs), with subtypes specified by colors; 

bottom: macrophages activated in vitro. Examples of highly ranked gene expression patterns are 

overlaid. (b) Five example datasets that exemplify the superior performance of SAM over Seurat 

in reconstructing cellular manifolds with no supervision. The corresponding NACCs are shown 

in the upper-left corners. (c) Comparison of SAM and Seurat performance over 48 datasets, 

measured by the ratio of NACCs between graphs produced by SAM and Seurat. Inset: NACC of 

graphs produced by Seurat shows a negative correlation with dataset network sensitivity, 

whereas SAM is robust to sensitivity.  
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Fig. 1. 
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Fig. 2. 
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Fig. 3. 
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Supplementary Information 

 

Supplementary Figure 1-7. 

Supplementary Table 1-2. 

Supplementary References 21-62. 
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Supplementary Fig. 1: The parameter sensitivity of SAM. Top to bottom: average distance 

matrix errors, kNN matrix errors, and Adjusted Rand Scores (ARI), when varying the number of 

nearest neighbors (k, left) and the gene filtering parameters (X, middle, and minimum expression 

value, right) with error bars shown (Methods). The distance and adjacency matrices are highly 

robust to k and X. ARI is only available for datasets with high-confidence annotations. 
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Supplementary Fig. 2: SAM does not converge to a universal solution when applied to a 

randomly shuffled dataset. Normalized RMSE between adjacent iterations within a single run 

(top) and between multiple runs at the same iteration (bottom) to show that while SAM 

converges to a solution within a single run, it does not converge to the same solution between 

runs. 
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Supplementary Fig. 3: SAM performs well in benchmarks against other methods on gold 

standard datasets. Evaluation of clustering performance using different dimensionality 

reduction approaches. For Seurat and SIMLR, we use built-in clustering algorithms. For SAM, 

SC3, and PCA, we use k-means clustering with the same k across all methods defined as the 

number of known cell types from the annotations provided by the original studies. 
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Supplementary Fig. 4: Expression patterns of highly ranked genes for NTKs and activated 

macrophages datasets. t-SNE projection of SAM output on (a) NTKs dataset (Engel 2016)
14

, 

and (b) activated macrophages dataset (Lane 2017)
15

 colorcoded by the expression levels of top 

ranked genes.   
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Supplementary Fig. 5: SAM t-SNE projections for 48 datasets. t-SNE projections are shown 

for all 48 datasets analyzed. Gray boxes highlight datasets in which SAM produces manifolds 

with greater topological structure than those produced by Seurat (Supplementary Fig. 6). 

Numbers indicate NACC values. 
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Supplementary Fig. 6: Seurat t-SNE projections for 48 datasets. t-SNE projections are shown 

for all 48 datasets analyzed. Gray boxes highlight datasets in which Seurat produces manifolds 

with less topological structure than those produced by SAM (Supplementary Fig. 5). Numbers 

indicate NACC values. 
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Supplementary Fig. 7: Quality control of library preparation and sequencing. (a) qPCR 

quantification of histone h2a (Smp_086869) expression and picogreen measurement of total 

cDNA after reverse-transcription and PCR amplification. (b) Histogram of h2a qPCR 

measurement. In (a) and (b), green and purple separate two batches (plate 1 and 2), respectively. 

Blue colored bars represent cells selected for downstream library preparation. (c) Detected gene 

counts and total reads of individual sequenced cells. (d) Histogram of detected gene counts. Cells 

with fewer than 1700 gene detected are filtered (red) and the remaining cells are kept for 

downstream analysis (blue). 
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Supplementary Table legends: 

Supplementary Table 1: Schistosome stem cell population-specific genes. Gene IDs, protein 

product information, expressing clusters, and SAM ranks are provided. Rows highlighted in light 

green indicate genes that are shown in Fig. 2e and labeled in Fig. 2d. The colors highlighting the 

cluster numbers in the provided legend correspond to the colors of the clusters in Fig. 2a.  

 

Supplementary Table 2: A list of all datasets used in this study. Accession numbers, 

normalization methods, and corresponding reference numbers are provided. Accession numbers 

with asterisks indicate datasets that are sourced from the conquer database
21

. 
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