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Abstract

Introduction: Analysis of differential alternative splicing from RNA-seq data is
complicated by the fact that many RNA-seq reads map to multiple transcripts,
besides, the annotated transcripts are often a small subset of the possible
transcripts of a gene. Here we describe Yanagi, a tool for segmenting
transcriptome to create a library of maximal L-disjoint segments from a complete
transcriptome annotation. That segment library preserves all transcriptome
substrings of length L and transcripts structural relationships while eliminating
unnecessary sequence duplications.

Contributions: In this paper, we formalize the concept of transcriptome
segmentation and propose an efficient algorithm for generating segment libraries
based on a length parameter dependent on specific RNA-Seq library construction.
The resulting segment sequences can be used with pseudo-alignment tools to
quantify expression at the segment level. We characterize the segment libraries for
the reference transcriptomes of Drosophila melanogaster and Homo sapiens and
provide gene-level visualization of the segments for better interpretability. Then
we demonstrate the use of segments-level quantification into gene expression and
alternative splicing analysis. The notion of transcript segmentation as introduced
here and implemented in Yanagi opens the door for the application of lightweight,
ultra-fast pseudo-alignment algorithms in a wide variety of RNA-seq analyses.

Conclusion: Using segment library rather than the standard transcriptome
succeeds in significantly reducing ambigious alignments where reads are
multimapped to several sequences in the reference. That allowed avoiding the
quantification step required by standard kmer-based pipelines for gene expression
analysis. Moreover, using segment counts as statistics for alternative splicing
analysis enables achieving comparable performance to counting-based approaches
(e.g. rMATS) while rather using fast and lighthweight pseudo alignment.

Keywords: Transcriptome Quantification; Differential Gene Expression;
Alternative Splicing; RNA-Seq; pseudo alignment; Segmentation

1 Introduction

Messenger RNA transcript abundance estimation from RNA-Seq data is a crucial

task in high-throughput studies that seek to describe the effect of genetic or en-

vironmental changes on gene expression. Transcript-level analysis and abundance

estimation can play a central role in performing fine-grained analysis studying local

splicing events and coarse-grained analysis studying changes in gene expressions.
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Over the years, various approaches have addressed the joint problems of (gene

level) transcript expression quantification and differential alternative RNA process-

ing. Much effort in the area has been dedicated to the problem of efficient alignment,

or pseudo-alignment, of reads to a genome or a transcriptome, since this is typi-

cally a bottleneck in the analytical processes that start with RNA-Seq reads and

yield gene-level expression or differentially expressed transcripts. Among these ap-

proaches are alignment techniques such as bowtie [1], Tophat [2, 3], and Cufflinks

[4], and newer techniques such as sailfish [5], RapMap [6], Kallisto [7] and Salmon

[8], which provide efficient strategies through k-mer counting that are much faster,

but maintain comparable, or superior, accuracy.

These methods simplified the expected outcome of the alignment step to find only

sufficient read-alignment information required by the quantification step. Given a

transcriptome reference, an index of kmers is created and used to find a map-

ping between reads and the list of compatible transcripts based on each approach’s

definition of compatibility. The next step, quantification, would be to resolve the

ambiguity in reads that were mapped to multiple transcripts. Multi-mapping reads

are common even assuming error free reads, due to shared regions produced by

alternative splicing. The ambiguity in mapping reads is resolved using probabilis-

tic models, such as the EM algorithm, to produce the abundance estimate of each

transcript [9]. It is at this step that transcript-level abundance estimation still face

substantial challenges that inherently affect the underlying analysis.

The presence of sequence repeats and paralogous genes in many organisms creates

ambiguity in the placement of reads. More importantly, the fact that alternatively

spliced isoforms share substantial portions of their coding regions, greatly increases

the proportion of reads coming from these shared regions and consequently reads

being multi-mapped becomes more frequent when aligning to annotated transcripts

(Figure 1 A-B). In fact, local splicing variations can be joined combinatorially to

create a very large number of possible transcripts from many genes. An extreme

case is the Drosophila gene Dscam, which can produce over 38,000 transcripts by

joining less than 50 exons [10]. More generally, long-read sequencing indicates that

although there are correlations between distant splicing choices [11], a large number

of possible combinations is typical. Thus, standard annotations, which enumerate

only a minimal subset of transcripts from a gene (e.g. [12]) are inadequate descrip-

tions. Furthermore, short read sequencing, which is likely to remain the norm for

some time, does not provide information for long-range correlations between splicing

events.

In this paper, we propose a novel strategy that aims at constructing a set of

transcriptome segments that can be used in the read-alignment-quantification steps

instead of the whole transcriptome without loss of information. Such a set of seg-

ments (a segment library) can fully describe individual events (primarily local splic-

ing variation, but also editing sites or sequence variants) independently, leaving the

estimation of transcript abundances as a separate problem. Here we introduce and

formalize the idea of transcriptome segmentation, propose and analyze an algorithm

for transcriptome segmentation, through a tool called Yanagi. To show how the seg-

ments library can be used in downstream analysis, we show results of using yanagi

for gene-level and alternative splicing differential analysis.
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2 Transcriptome Segmentation
Figure 1 shows a typical situtation in RNASeq data analysis and provides an

overview of the transcript segmentation strategy. In particular, it summarizes how

reads that would be multi-mapped when aligning to a transcript library would be

aligned to segments. In the latter case, all reads are aligned to a single target se-

quence and read counts are obtained per segment without the need of probabilistic

quantification methods to resolve ambiguity. The next few subsections present a

few more specifics of the Yanagi [13] method for transcriptome segmentation.

2.1 Segments Properties

Yanagi’s objective is to generate a minimal set of disjoint sequences (where disjoint-

ness is parameterized by the experimental sequencing read length) while maintain-

ing transcriptome sequence completeness.

The following definitions are for a given transcriptome T, and parameter L.

Definition 1 A Segment

A segment seg defined by the tuple 〈exs, loc, w〉 is a genomic region of width w

beginning at genomic location loc and spanning the sequence of consecutive exonic

regions exs ∈ ExsT (either exons or retained introns). Exonic regions are considered

consecutive if they are consecutively spliced into at least one possible isoform in T.

And for all segments in a segments library ST,L, its width w is at least L bases.

Definition 2 Segments Sequences Completeness

The set of segments ST,L is Complete if and only if

seq ∈ ST,L;∀seq ∈ Substring(T ), len(seq) ≤ L

and

seq ∈ Substring(T );∀seq ∈ Substring(ST ,L)

Definition 3 L-disjoint Segments

Each segment in the set ST,L is L-disjoint if and only if

width[overlap(segi, segj)] < L;∀segi, segj ∈ S, i 6= j

The L-disjointness property restricts any pair of L-disjoint segments to have an

overlap region shorter than parameter L, which typically equals to the sequencing

read length. In other words no read of length at least L can be mapped to both

segments of an L-disjoint segment pair, assuming error-free reads.

Another property of the generated segments is to be maximal. For seg :

〈exs, loc, w〉, denote Txs(seg) as the set intersection of annotated transcripts splic-

ing exons exs. We can define a subsumption relationship between segments as

seg1 � seg2 if and only if exs1 = exs2, loc1 = loc2, Txs(seg1) = Txs(seg2) and

w1 > w2. With this relationship we can define the following property of a segment

library ST,L
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Definition 4 Maximal Segments

For each segment in the set ST,L to be Maximal

seg1 � seg2 ⇒ seg2 /∈ ST,L,∀seg1 ∈ ST,L

Thus a maximal segment is the longest common sequence of genomic regions

starting at loc, such that these regions are spliced similarly, i.e. the entire sequence

belongs to the same set of transcripts. That is why in figure 1 (C) segment S5 is

extended to include two exons and its junction, while segment S2 is interrupted by

the different splicings of Tx1 and Tx2.

2.2 Segmentation Algorithm

The transcriptome segmentation process can be summarized into three steps: (1)

Preprocessing the transcriptome annotation in order to obtain disjoint exonic bins,

(2) Constructing a Segments Graph, and finally (3) Generating the final segments.

Transactions in Figure 1 (F) represent these three steps.

1. Annotation Preprocessing:

Yanagi applies a preprocessing step to eliminate region overlaps present in the

transcriptome reference. Parts of an exon (or a retained intron) can be differentially

spliced between isoforms either due alternative 3’/5’ splice sites, or transcription

start/end sites. For example, splicing the first and second exons between Tx1 and

Tx3 in figure 1 (F). This step ensures that any splicing event is occurring either at

the beginning or the end of an exonic bin, which makes the process of generating

maximal L-disjoint segments easier. The preprocessing step is independent from the

parameter L, so it can be done only once per transcriptome reference.

2. Constructing Segments Graph:

Currently Yanagi builds a separate segment graph for each gene, since there are

no alternative splicing events between transcripts of different genes. However, fu-

ture work may use segment graphs that connect different genes sharing regions of

identical sequence length L or greater, but we have yet to address this.

Definition 5 Segments Graph

A segment graph GT,L is an acyclic directed graph defined by the pair (N,E),

where N is a set of nodes representing segments, and E is the set of directed edges

between the nodes. An edge e : (ni, nj) ∈ E is created if the segment corresponding to

node ni directly precedes the segment corresponding to node nj in some transcript.

For each gene, the preprocessed Splice graph is parsed to construct a set of segment

nodes (review algorithm details in [13]). These nodes formulate the segments graph

of that gene. Each segment node represents an L-disjoint segment, which is not

necessarily a maximal segment.

3. Generating Segments:

To preserve the maximality property, the segments graph is parsed to aggregated

segment nodes into the final maximal segments. In a segment graph, if there is

an edge from nodei to nodej while outdegree(nodei) = indegree(nodej) = 1, that

implies that both nodes belong to the same set of transcripts and can be aggregated
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into a segment that subsumes both nodes. In other words, aggregating nodes along

a path in the segment graph bounded by branching points (nodes with indegree or

outdegree greater than 1).

Yanagi reports the segments into a FASTA file. Each sequence represents a max-

imal L-disjoint segment. Each segment sequence has a header specifying metadata

of how each segment was formed, including: gene ID, the set of exonic bins exs

included in the segment, genome location in the first exonic bin of exs where the

segment starts, genome location in the last exonic bin of exs where the segment

ends, and the set of transcripts splicing the segment’s region.

2.3 Yanagi-based Workflow

Figure 1 (E) gives an overview of a yanagi-based workflow which consists of three

steps. The first step is the transcriptome segmentation, in which the segments li-

brary is generated. Given the transcriptome annotation and the genome sequences,

and for a specific parameter value L, Yanagi generates the segments in FASTA

file format. This step of library preparation is done once independently from the

samples. The second step is the alignment step. Using any kmer-based aligner e.g.

kallisto or RapMap, the aligner uses the segments library for library indexing and

alignment. The outcome of this step is read counts per segments (in case of single-

end reads) or segment-pair counts (in case of paired-end reads). These segment

counts (SCs) are the statistics that yanagi provides to be used in any downstream

analysis. The third step depends on the specific target analysis. Later on this work,

we describe two use cases where using segment counts shows to be computationally

efficient and statistically beneficial.

3 Datasets
The experiments are based on the simulation data provided by [14] for both fruit fly

and human organisms (dm3 and hg37 assembly versions, respectively). Each dataset

consists of samples from two conditions. Each condition has three replicates. The

reads for the replicates are simulated from real RNA-seq samples, to get realistic

expression values, after incorporating a variance model and the change required

between conditions. The simulation is restricted to only protein-coding genes in the

primary genome assembly. The difference in transcripts usage across conditions was

simulated in 1000 genes randomly selected from genes with at least two transcripts

and high enough expression levels. For each of these 1000 genes, the expression

levels of the two most abundant transcripts is switched across conditions. Refer to

[14] for full details of the preparation procedure of the dataset.

4 Analysis of Generated Segments
For practical understanding of the generated segments, we used Yanagi to build

segment libraries for the fruit fly and human genomes: Drosophila melanogaster

(UCSC dm6) and Homo sapiens (UCSC hg38) genome assemblies and annotations.

These organisms show different genome characteristics, e.g. the fruit fly genome

has longer exons and transcripts than the human genome, while the number of

transcripts per gene is much higher for human genome than the fruit fly. A summary

of the properties of each genome is found in [14].
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4.1 Sequence lengths of generated segments

Since L is the only parameter required by the segmentation algorithm, we tried

different values of L to understand the impact of that choice on the generated seg-

ments library. Recall that the choice of L is based on the expected read length of the

sequencing experiment. For this analysis we chose the set L = (40, 100, 1000, 10000).

Figure 2 shows the histogram of the lengths of the generated segments compared

to the histogram of the transcripts lengths, for each value of L, for both fruit fly

(left) and human (right) genomes. The figure shows the expected behavior when

increasing the value of L; using small values of L tends to shred the transcriptome

more (higher frequencies for small sequence lengths), especially with genomes of

complex splicing structure like the human genome. While with high values of L,

such as L = 10, 000, the minimum segment length anticipated tends to be higher

than the length of most transcripts, ending up generating segments such that each

segment represents a full transcript.

4.2 Number of generated segments per gene

Figure 3 shows how the number of generated segments in a gene is compared to

the number of the transcripts in that gene, for each value of L, for both fruit fly

(left) and human (right) genomes. A similar behavior is observed while increasing

the value L, as with the segments length distribution. The fitted line included in

each scatter plot provides indication of how the number of target sequences grows

compared to the original transcriptome. For example when using L = 100 (a suitable

value with Illumina’s short reads), the number of target sequences per gene, which

will be the target of the subsequent pseudo-alignment steps, almost doubles. It is

clear from both figures the effect of the third step in the segmentation stage. It

is important not to shred the transcriptome so much that the target sequences

become very short leading to resulting complications in the pseudo-alignment and

quantification steps, and not to increase the number of target sequences leading to

increasing the processing complexity of these steps.

4.3 Library Size of the generated segments

As a summary, Table 1 shows the library size when using segments compared to

the reference transcriptome in terms of the total number of sequences, sequence

bases, and file sizes. The total number of sequence bases clearly shows the advan-

tage of using segments to reduce repeated sequences appearing in the library that

corresponds to genomic regions shared among multiple isoforms. For instance, using

L = 100 achieves 54% and 35% compression rates in terms of sequence lengths for

fruit-fly and human genomes, respectively. The higher the value of L is, the more

overlap is allowed between segments, hence providing less the compression rate.

Moreover, that necessarily hints on the expected behavior of the alignment step in

terms of the frequency of multi-mappings.

4.4 Impact of using segments on Multi-mapped Reads

To study the impact of using the segments library instead of the transcriptome

for alignment, we created segments library with different values of L and observed

the number of multimapped and unmapped reads for each case and how it is com-

pared to when the transcriptome is used. We used RapMap [6] as our kmer-based
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aligner, to align samples of 40 million simulated reads of length 101 (samples from

the dataset discussed in Datasets section) in a single-end mode. The experimented

values of L were centered around the value of L = 101 with more value points close

to 101 to test how sensitive the results are towards small changes in the selection

of L. Figure 4 shows the alignment performance in terms of the number of mul-

timapped reads (red solid line) and unmapped reads (blue solid line), compared to

the number of multimapped reads (red dotted line) and unmapped reads (blue dot-

ted line) when aligning using the transcriptome. Using segments highly reduces the

number of multimapped reads. The plot shows that too short segments compared

to the read length results in a lot of unmapped reads. Consequently, choosing L to

be close to the read length is the optimal choice to minimize multimappings while

maintaining a steady number of mapped reads. It is important to note that the

best segments configuration still produces some multimappings. That is a result of

the presence of reads sequenced from paralogs and sequence repeats that are not

tackled in the current version of yanagi. However, it is clear that using segments

can achieve around 10 fold decrease in the number of multimappings.

4.5 The importance of maximality property

Recalling that the generated segments are maximal segments, as mentioned in defi-

nition 2.1. It is the property that segments are extended as much as possible between

branching points in the segments graph. The purpose of this property is to main-

tain stability in the produced segment counts; Since shorter segments will inherently

produce lower counts which introduces higher variability that can complicate the

downstream analysis. Figure 5 shows the distribution of coefficient of variation (CV)

of the produced segment counts from segments with and without maximal property.

To examine the effect of the maximal property, we simulated 10 replicates from 1000

random genes (with more than two isoforms) from the hg38 transcriptome using

ployester [15]. When segments are created without maximal property, The scatter

plot clearly shows that maximal segments have lower CVs to their corresponding

short segments for a majority of points (40% of the points has a difference in CVs

¿ 0.05). That corresponds to generating counts with lower means and/or higher

variances if the maximal property was dropped.

5 Segment-based Gene Expression Analysis
A typical segment-based approach to do gene expression analysis would start by

performing kmer-based alignment over the segments library prepared earlier by

Yanagi using high-throughput tools like kallisto, sailfish or RapMap, to derive seg-

ment counts (SCs). The segment counts are then used to perform differential gene

expression.

The standard RNAseq pipeline for gene expression analysis depends on performing

kmer-based alignment over the transcriptome to obtain transcripts abundances, e.g.

transcripts per million (TPMs). Then depending on the objective of the differential

analysis, an appropriate hypothesis testi is used to detect genes that are differen-

tially expressed. Methods that perform differential gene expression (DGE) prepares

gene abundances by summing the underlying transcript abundances. Consequently,

DGE methods aims at testing for differences in the overall gene expression. Among
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these methods are: DESeq2 [16] and edgeR [17]. Such methods fails to detect cases

where some transcripts switch usage levels while the total gene abundance is not

significantly changing. Note that estimating gene abundances by summing counts

from the underlying transcripts can be problematic, as discussed in [18]. RATs [19]

on the other hand is among those methods that target to capture such behavior

and tests for differential transcript usage (DTU). Regardless of the testing objec-

tive, both tests entirely depend on the transcript abundances that were obtained

from algorithms like EM during the quantification step to resolve the ambiguity of

the multimapped reads, which adherently requires some bias-correction modeling

([8]) adding another layer of complexity to achieve the final goal of gene analysis.

Our segment-based approach aims at breaking the coupling between the quan-

tification, bias modeling, and gene expression analysis, while maintaining the ad-

vantage of using ultra-fast pseudo-alignment techniques provided by kmer-based

aligners. When Aligning over the L-disjoint segments, the problem of multimapping

across target sequences is avoided and as a result the quantification step can be

dropped. Then the hypothesis test for differences across conditions are performed

on SCs count matrix instead of TPMs.

5.1 Kallisto’s TCC-based approach

Yi et al. introduces a comparable approach in [20]. This approach uses an interme-

diate set defined in kallisto’s index core as equivalence classes (ECs). Specifically,

a set of kmers are grouped into an equivalence class (EC) if it belongs to the same

set of transcripts during the transcriptome reference indexing step. Then during

the alignment step kallisto derives a count statistic for each EC. The statistics are

referred to as transcripts compatibility counts (TCCs). In other words, kallisto pro-

duces one TCC per EC representing number of fragments that appeared compatible

with the corresponding set of transcripts during the pseudo-alignment step. Then

the work in [20] uses these TCCs to directly perform gene-level differential analysis

by skipping the quantification step using logistic regression. We will refer to that

direction as TCC-based approach. To put that approach into perspective with our

segment-based approach, we will discuss how the two approaches are compared to

each other.

5.2 Comparison between segment-based and TCC-based approaches

Both segment-based and TCC-based approaches successfully avoids the quantifica-

tion step when targeting gene-level analysis. This can be seen as an advantage in

efficiency, speed, simplicity, and accuracy, as previously discussed. One difference

is that segment-based approach is agnostic to the alignment technique used, while

TCC-based approach is a kallisto-specific approach. More importantly, the statistic

used in segment-based approach is easily interpretable. Since segments are formed

to preserve the genomic location and splicing structure of genes, SCs can be directly

mapped and interpreted with respect to the genome coordinates. However, ECs do

not have a direct biological meaning in this sense. For instance, all kmers that be-

long to the same transcript yet originated from different locations over the genome

will all fall under the same EC, making TCCs less interpretable. While on the con-

trary, these kmers will appear in different segments depending on the transcriptome
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structure. This advantage can be crucial for a biologist who tries to interpret the

outcome of the differential analysis. In the next section we show a segment-based

gene visualization that allows users to visually examine, for genes determined to be

differentially expressed, what transcripts, exons and splicing events contributed to

that difference.

Figure 6-bottom shows the number of yanagi’s segments per gene versus the num-

ber of kallisto’s equivalence classes per gene. The number of equivalence classes

were obtained by building kallisto’s index on hg37 transcriptome, then running the

pseudo command of kallisto (kallisto 0.43) on the 6 simulated samplesNote that, in

principle there should be more segments than ECs since segments preserve local-

ization, however in practice kallisto reports more ECs than those discovered in the

annotation alone in some genes. The extra ECs are formed during pesudo-alignment

when reads show evidence of unannotated junctions.

5.3 DEXSeq-based model for differential analysis

In this work we adopt the DEXSeq [21] method to perform the segment-based

gene differential analysis. DEXSeq is a method that performs differential exon us-

age (DEU). The standard DEXSeq workflow begins by aligning reads to a refer-

ence genome, not to the transcriptome, using TopHat2 or STAR [22] to derive

exon counts. Then given the exon counts matrix and the transcriptome annotation,

DEXSeq tests for DEU after handling coverage biases, technical and biological varia-

tions. It fits, per gene, a generalized linear model (GLM) of negative binomial (NB)

accounting for effect of the condition factor, and compares it to the null model

(without the condition factor) using a chi-square test. Exons that have their null

hypotheses rejected are proven to be significanlty different between the experimental

conditions, hence DEU is achieved. DEXSeq extends its testing for DEU by con-

trolling the false discovery rate (FDR) at gene level using the Benjamini–Hochberg

procedure to find genes with at least one significantly different exon.

Adopting DEXSeq model for the case of segments is done by replacing exons

with segments. In other words, the count matrix fed to DEXSeq represent seg-

ment counts, instead of exon counts. Once segments are tested for differential usage

between conditions, their p-values are aggregated to find genes with at least one

segment proven to be significantly different.

We tested that model on the simulated data for both human and fruit fly samples,

and compared our segment-based approach with the TCC-based approach since they

are closely comparable. Since the subject of study is the effectiveness of using either

SCs or TCCs as statistic, we fed TCCs reported by kallisto to DEXSeq’s model as

well to eliminate any performance bias due the testing model. As anticipated, figure

6-top shows that both approaches provide highly comparable results. Furthermore,

using segment counts to test for differentially expressed genes adds to the inter-

pretability of the test outcomes. The next section shows how visualizing segment

counts connects the result of the hypotheses test with the underlying biology of the

gene.

6 Segment-based Gene Visualization
Figure 7 shows Yanagi’s proposed method to visualize segments and the segment

counts of a single gene with differentially expressed genes. The plot includes differ-

ent panels combined, each showing a different aspect of the mechanisms involved in
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differential expression calls. The main panel of the plot is the segment-exon mem-

bership matrix (Panel A). This matrix plot shows the structure of the segments

(rows) over the exonic bins (columns) prepared during the annotation preprocessing

step. Recall that an exon (or a retained intron) in the genome can be represented

with more than one exonic bin in case of within-exon splicing events (Step 1 in

section 2.2). Panel B is a transcript-exon membership matrix. It encapsulates the

transcriptome annotation with transcripts as rows and the exonic bins as columns.

Both membership matrices together allows the user to map segments (through ex-

onic bins) to transcripts.

Panel C shows the segment counts (SCs) for each segment row. Panel D shows

the length distribution of the exonic bins. Panel E is optional. It adds the transcript

abundances of the samples, if provided. This can be useful to capture cases where

coverage biases over the transcriptome is considered, or to capture local switching

in abundances that are inconsistent with the overall abundances of the transcripts

The gene in figure 7 is on the reverse strand, that’s why the exonic bins axis

is reversed and segments are created from right to left. Consider segment S.0674

for instance. It was formed by spanning the first exonic bin (right-most bin) plus

the junction between the first two bins. This junction is present only at transcript

T.1354 and hence that segment belongs to only that transcript. In the segment-

exon matrix, red-colored cells mean that the segment spans the entire bin, while

salmon-colored cells represent partial bin spanning; usually at the start or end of a

segment with correspondence to some junction.

Alternative splicing events can be easily visualized from figure 7. For instance,

segments S.0672 and S.0671 represent an exon-skipping event where the exon is

spliced in T.6733 and skipped in both T.1354 and T.9593.

7 Segment-based Alternative Splicing Analysis
Within a gene, the study of how certain genomic regions are alternatively spliced

into different isoforms is related to the study of relative transcript abundances.

Each local splicing event describes a possible variation of splicing of the described

genomic region. For instance, an exon cassette event (exon skipping) describes either

including or excluding an exon between the upstream and downstream exons. Con-

sequently, isoforms are formed through a sequential combination of local splicing

events. For binary events, the relative abundance of an event is commonly described

in terms of percent spliced-in (PSI) [23] which measures the proportion of reads se-

quenced from one splicing possibility versus the alternative splicing possibilty, while

∆PSI describes the difference in PSI across experimental conditions of interest.

Several approaches were introduced to study alternative splicing and its impact

in studying multiple diseases. [24] surveyed eight different approaches that are com-

monly used in the area. These approaches can be roughly categorized into two

categories depending on how the event abundance is derived for the analysis. The

first category is considered count-based where the approach focuses on local mea-

sures spanning specific couunting bins (e.g. exons or junctions) defining the event,

like DEXSeq [21], MATS [25] and MAJIQ [26]. Unfortunately, many of these ap-

proaches can be expensive in terms of computation and/or storage requirements

since it requires mapping reads to the genome, and then processing the huge ma-

trix of counting bins. The second category is isoform-based where the approach
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uses the relative transcript abundances as basis to derive PSI values. This direc-

tion utilizes the transcript abundance (e.g. TPMs) as a summary of the behavior

of the underlying local events. Cufflinks [4, 18], DiffSplice [27] and SUPPA [28, 29]

are of that category. Unlike Cufflinks and DiffSplice which perform read assembly

and discovers novel events, SUPPA succeeds in overcoming the computational and

strorage limitations by using transcript abundances that were rapidly prepared by

lightweight kmer counting alignment like Kallisto or Salmon.

A main drawback of SUPPA and other transcript-based approaches alike is that it

assumes a homogeneous abundance behavior across the transcript making it prone

to coverage biases. Previous work showed that RNA-seq data suffers from coverage

bias that needs to be modeled into methods that estimate transcript abundances

[30, 31]. Sources of bias can vary between fragment length, positional bias due to

RNA degradation, and GC content in the fragment sequences. Consider the dia-

gram in figure 8 with a case of two isoforms where isoform1 has higher abundance

than isoform2. Both isoforms involve two exon skipping events (E1, E2). The dia-

gram shows the read coverage over different regions of both isoforms with exon E1 in

particular has low relative coverage. Considering the real evidence of reads support-

ing the first skipping event E1, gives a counter conclusion to when considering the

overall abundances of the two isoforms involved. More importantly, transcript-based

approaches fail to provide different measure of confidence for differential analysis of

events E1 and E2 since both events will have the same PSI values, whereas there

is a significant difference in coverage supporting both events.

Our segment-based approach works as a middle ground between count-based and

transcript-based approaches. It provides local measures of splicing events while

avoiding the computational and storage expenses of count-based approaches by us-

ing the rapid lightweight aligners that transcript-based approaches use. Our pipeline

begins by running kmer-based lightweight alignment tools like Kallisto over the seg-

ments library prepared by Yanagi and obtain the segment counts. Yanagi’s script is

then used to map splicing events to their corresponding segments, e.g. each event

is mapped into two sets of segments: The first set spans the inclusion splice, and

the second for the alternative splice. Current version of Yanagi follows SUPPA’s

notation for defining a splice event and can process seven event types: Skipping

Exon (SE), Retain Intron (RI), Mutually Exclusive Exons (MX), Alternative 5’

splicec-site (A5), Alternative 3’ splicec-site (A3), Alternative First Exon (AF) and

Alternative Last Exon (AL).

7.1 Segment-based calculation of PSI

While Yanagi uses the transcriptome annotation to prepare the segments along with

the splicing events, it generates mapping between each event and its corresponding

segments spanning the event. For each event, Yanagi takes into consideration the

transcripts involved and the event genomic coordinates to decide the set of tran-

scriptome segments that correspond to each of the two possibilities of the splicing

event. This step becomes complicated in case of overlapping events. The current ver-

sion of Yanagi selects segments that spans either the event exon or junctions while

the segment belong to at least one transcript that undergoes the corresponding

splicing.
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After alignment, Yanagi provides segment counts or segment-pair counts in case

of paired-end reads. For each splicing event, we calculate the PSI value of event e

in sample x as follows:

PSI(e, x) =

∑
s∈Si(e)

SC(s, x)∑
s∈Si(e)∪Se(e)

SC(s, x)

where Si(e) and Se(e) are inclusion and exclusion segments, respectively, and

SC(s, x) is the segment count in the sample. That means segment-based PSI values

uses reads spanning both the junctions and the target inclusion exon towards the

inclusion count. In fact, read counts will also include reads extended around the

event as long as the segment extends on both sides. This extension takes advantage

of situations where splicing events are near to include as much discriminative reads

into the counts to achieve higher levels of confidence when calculating PSI values.

7.2 PSI comparison on simulated data

we compared PSI values obtained from our approach versus counting-based ap-

proaches like rMATS and isoform-based approaches like SUPPA2 on splicing events

found in hg37 based on the six samples in section 3. Since each tool provides differ-

ent set of events, We focus our comparison on the intersection set of events between

SUPPA and rMATS. That includes events from five types of splicing events. Table

3 summarizes the number of events subject to the study. Two levels of filtering are

applied to observe how the different approaches behave in different scenarios. Non-

overlapping events is the smallest subset of events where there is no more splicing

other than the two possibilities defining the event, i.e. complex splicing is excluded.

While highTPM events is a subset of events in which inclusion and exclusion iso-

form levels are relatively high (TPMinc > 1, TPMex > 1). This is a typical filtering

criteria adopted by isoform-based approaches. This filter excludes events involv-

ing isoforms of low levels of expression which inherently suffer from low estimation

accuracy.

Figure 9 shows a scatter plot of PSI values calculated by the three approaches. It

is clear that our segment counts (SCs) based approach produces results comparable

to rMATS with average Pearson correlation of 0.92 over the full set of events. As

expected, PSI values obtained by our approach and rMATS are more correlated to

each other than to values derived directly from TPMs, since both our approach and

rMATS’s are counts based.

Our results and rMATS are consistently comparable across the three subsets of

events. In other words, both approaches give comparable results for cases of events

with complex overlapping splicing, While results start to diverge from isoform-based

results for overlapping events. On the other hand, results from isoform-based start

to be less correlated with the other two approaches when events with low TPMs

are included.

Among the five different splicing types exon skipping, alternative 3’ and alter-

native 5’ events gives the highest correlation between segment counts and rMATS

approaches. In our experiments we noticed that rMATS (v4.0.1) does not behave

as intended for intron retention events. We noticed that counts including junction
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reads only and counts including both junction and intron reads (which we use in

this study) are the same. In other words, rMATS fails to report reads spanning

the intron, which explains the underestimated inclusion counts and PSI values for

retained introns.

7.3 Differential Alternative Splicing

Since the scope of this paper is to introduce the use of segment counts as a statistic

for studying alternative splicing, we want to use the simplest statistical model for

differential splicing to exclude any advantage of the model itself. In that matter we

used the PSI values of the three approaches (SCs, rMATS, TPM) as discussed in

the previous section. Then we used a linear model for differential hypothesis test-

ing (implemented with Limma-voom R Package [32, 33]). However, more advanced

models of differential analysis can be used instead. For example, a similar model

to SUPPA2 can be developed to test the significance of ∆PSI by considering all

events genome-wide [29]. Figure 10 shows ROC plots for sensitivity and specificity

measures. Using segment counts achieves comparable performance to both rMATS

and isoform-based approaches.

8 Discussion
In this paper, we formalized the concept of transcriptome segmentation and propose

an efficient algorithm for generating segment libraries based on a length parame-

ter dependent on specific RNA-Seq library construction. The resulting segment

sequences were used with pseudo-alignment tools to quantify expression at the seg-

ment level. We characterized the segment libraries for the reference transcriptomes

of Drosophila melanogaster and Homo sapiens and provided gene-level visualization

of the segments for better interpretability. We demonstrated the use of segments-

level quantification into gene expression and alternative splicing analysis. The notion

of transcript segmentation as introduced here and implemented in Yanagi opens the

door for the application of lightweight, ultra-fast pseudo-alignment algorithms in a

wide variety of RNA-seq analyses.

Using segment library rather than the standard transcriptome succeeds in sig-

nificantly reducing ambigious alignments where reads are multimapped to several

sequences in the reference. That allowed avoiding the quantification step required

by standard kmer-based pipelines for gene expression analysis. Moreover, using

segment counts as statistics for alternative splicing analysis enables achieving com-

parable performance to counting-based approaches (e.g. rMATS) while rather using

fast and lighthweight pseudo alignment that are several folds faster than standard

counting pipelines.
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Figure 1 An overview of transcriptome segmentation and Yanagi-based workflow. The leftside
shows a typical RNAseq example with Yanagi’s output. (A) Shows the example set of exons and
its corresponding sequenced reads. (B) shows the result of alignment over the annotated three
isoforms spliced from the exons. (C) shows the splice graph representation of the three isoforms
along with the generated segments from yanagi. (D) shows the alignment outcome when using
the segments, and its segment counts (SCs). (E) Yanagi-based workflow: segments are used to
align a paired-end sample then use the segments counts for downstream alternative splicing
analysis. Dotted blocks are components of Yanagi. (F) Yanagi’s three steps for generating
segments starting from the splice graph for an example of a complex splicing event. Assuming no
short exons for simplicity. Step two and three are cropped to include only the beginning portion of
the graph for brevity.
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Figure 2 Histogram of transcripts lengths vs. segments lengths for both fruit fly (left) and human
(right) genomes, with different values of L (40, 108, 1000, 10,000). Dotted vertical line represents
the used value of L during the transcriptome segmentation.

Figure 3 Number of transcripts vs. number of segments, per gene, for both fruit fly (left) and
human (right) genomes, with different values of L (40, 108, 1000, 10,000). The figure shows how
a fitted line (solid blue) compares to the identity line (dotted black).

Figure 4 Alignment performance using Segments from hg37, tested for different values of L, to
align 40 million reads of length 101 (first sample in simulated dataset 3. Performance is shown in
terms of the number of multimapped reads (red solid line) and unmapped reads (blue solid line),
compared to the number of multimapped reads (red dotted line) and unmapped reads (blue
dotted line) when aligning using the transcriptome.
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Figure 5 Distribution of coefficient of variation for segment counts produced from maximal
segments versus segments without the maximal property enforced. Reads of 10 replicates are
simulated from 1000 random genes (with more than two isoforms) from hg38 transcriptome.

Figure 6 Segment-based gene-level differential expression analysis. Top row, ROC curve for
simulation data for DEX-Seq based differential gene-level differential expression test based on
segment counts (SC) and Kallisto equivalence class counts (TCC) for D. melanogaster and H.
sapiens. Bottom row, scatter plot of number of segments per gene (x-axis) vs. Kallisto equivalence
classes per gene (y-axis) for the same pair of transcriptomes.
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Figure 7 Visualizing segments and segment counts of a single gene with differentially expressed
transcripts. It shows human gene EFS (Ensembl ENSG00000100842, genome build Hg37). The
gene is on the reverse strand, so the bins axis is reversed and segments are created from right to
left. (A) Segment-exonic bin membership matrix, (B) Transcript-exonic bin membership matrix.
(C) Segment counts for three control and three case samples, fill used to indicate segments that
were significantly differential in the gene. (D) Segment length bar chart, (E) (optional) Estimated
TPMs for each transcript. .

Figure 8 Diagram illustrates the coverage bias problem with AS transcript-based approaches.
Given the two given isoforms where isoform1 has higher abundance than isoform2. The diagram
shows the read coverage over different regions of both isoforms with exon E1 in particular has low
relative coverage. Using the overall transcript abundances gives PSI > 0.5 for the first skipping
event E1, whereas using the read evidence of the event gives PSI < 0.5. Additionally, using
transcript abundances gives equal PSI values for both events E1 and E2 without any measure of
confidence corresponding to their actual evidence.
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Figure 9 PSI value comparison between segment counts, rMATS (based on spliced alignment to
genome) and SUPPA2 (based on estimated TPMs from pseudo-alignemnt and quantification).
Columns indicate seven types of alternative splicing events. Scatterplots are stratified by event
types (non-overlapping, high TPM, and all events). See Table 3 for number of events of each AS
event type shown.
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Figure 10 ROC curves for differential alternative splicing comparison between segment-count
method, rMATS and SUPPA2 based on simulation data. See Table 3 for number of events of each
AS event type shown.
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Tables

Table 1 Library size summary

Transcriptome
Segments

L = 40 L = 100 L = 1000 L = 10000

Dm6
Number of bases (Gb) 90 39 41 71 90
Number of Sequences 34,681 54,680 53,694 48,741 34,625

FASTA File Size (MB) 89 44 47 76 92

Hg38
Number of bases (Gb) 278 147 181 308 281
Number of Sequences 182,435 544,991 541,361 264,083 183,165

FASTA File Size (MB) 276 206 239 338 302

Additional Files
Additional file 1 — Sample additional file title

Additional file descriptions text (including details of how to view the file, if it is in a non-standard format or the file

extension). This might refer to a multi-page table or a figure.

Additional file 2 — Sample additional file title

Additional file descriptions text.
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Table 2 Running time (seconds) and memory usage (gigabytes) by Yanagi to generate segment
library for fruit fly (Dm6) and human (Hg38) genomes, for both the preprocessing and segmentation
steps. Time for the preprocessing step does not include the time to load the FASTA and GTF files.
Most of the memory usage is from loading the input data in both steps. Running on a 6-core 2.1 GHz
AMD processor, using single-threaded processes. The lower half shows the time and memory usage
for running Rapmap’s quasi-mapping using the segments library and the the full transcriptome, to
quantify samples of 40M paired-end reads, each of length 101bp.

Dm6 Hg38

time(s) memory(GB) time(s) memory(GB)

Preprocessing 13 0.9 112 1.5
Segmentation

L=40 20 0.4 248 1.3
L=108 20 0.4 250 1.3

L=1000 20 0.4 228 1.3
L=10000 8.5 0.4 77 1.3

Rapmap Indexing (4 Threads)
L=108 103 0.8 420 2.6

Txs 121 1.1 480 3.7
Rapmap Quantification (8 Threads)

L=108 236 0.7 220 2.1
Txs 292 1.2 416 3.1

Table 3 Number of Events in Hg37 common between MATS and SUPPA for the five event types
reported by both tools. Two levels of filtering are applied to obtain three subsets. Non-overlapping
events are the simplest events where there is no more splicing other than the two possibilities defining
the event. While highTPM events are events where inclusion and exclusion isoform levels are
relatively high (TPMinc > 1, TPMex > 1).

Events Subset SE MX A3 A5 RI Total

Non-overlapping 4,180 68 1,435 885 323 6,891
HighTPM Events 9,756 354 2,327 1,483 793 14,713

All Events 13,650 1,024 3,131 2,053 1,711 21,569
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