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Abstract  
 
Deep sequencing can measure viral genetic diversity within human influenza infections, but 
published studies disagree in their estimates of how much genetic diversity is typically 
present. One large-scale deep-sequencing study of human influenza reported high levels of 
shared viral genetic diversity among infected individuals in Hong Kong, but subsequent 
studies of other cohorts have reported little shared viral diversity. We re-analyze sequencing 
data from four studies of within-host genetic diversity encompassing more than 500 acute 
human influenza infections. We identify an anomaly in the Hong Kong data that provides a 
technical explanation for these discrepancies: read pairs from this study are often split 
between different biological samples, indicating that some reads are incorrectly assigned. 
These technical abnormalities explain the high levels of within-host variation and loose 
transmission bottlenecks reported by this study. Studies without these anomalies consistently 
report low levels of genetic diversity in acute human influenza infections. 
 
Main text 
 
A key question in the study of influenza-virus evolution is how rapidly viral genetic variation 
arises within infected humans, and how much of this genetic diversity is maintained during 
transmission (McCrone and Lauring, 2018; Xue et al., 2018a). Recently, several studies have 
measured influenza's within-host genetic diversity in large cohorts of infected humans using 
high-throughput deep sequencing (Supplemental Table 1) (Debbink et al., 2017; Dinis et al., 
2016; McCrone et al., 2018; Poon et al., 2016). These studies have disagreed considerably 
in their estimates of influenza's within-host genetic diversity.  
 
One of the first large-scale studies of influenza's genetic diversity in human infections 
analyzed a household cohort in Hong Kong (Poon et al., 2016). This study reported high 
within-host genetic diversity, estimating that approximately 40% to 66% of patients harbor 
mixed infections, resulting from co-infection with multiple genetically distinct viral lineages. 
However, subsequent deep sequencing studies of influenza's genetic diversity in human 
cohorts from Wisconsin (Dinis et al., 2016), Michigan (Debbink et al., 2017; McCrone et al., 
2018), and Washington (Xue et al., 2018b) have reported lower levels of viral genetic 
diversity, with few mixed infections. One important reason to measure within-host viral 
diversity is to estimate transmission bottleneck sizes (McCrone and Lauring, 2018; Sobel 
Leonard et al., 2017; Xue et al., 2018a), and the wide variation in estimates of viral genetic 
diversity has led to wide variation in estimates of bottleneck sizes. The Hong Kong study 
estimated a bottleneck of 200-250 viral genomes (Poon et al., 2016; Sobel Leonard et al., 
2017), while a subsequent Michigan study estimated a bottleneck of just to 1-2 viral genomes 
(McCrone et al., 2018). These large discrepancies between major published studies are 
concerning. 
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Various biological and technical explanations could account for these discrepancies. The 
studies differ in their geographic locations, cohort design, deep sequencing methods, and 
data analysis approaches. Any of these factors could affect estimates of viral genetic 
diversity (Djikeng et al., 2008; Illingworth et al., 2017; McCrone and Lauring, 2016; Sobel 
Leonard et al., 2017). Here, we examine whether technical differences in the underlying 
deep-sequencing datasets or the methods used to analyze them explain the disparate 
estimates of within-host viral genetic diversity. 
 
To systematically compare the results across studies, we used the same computational 
framework to re-analyze raw sequencing data for four large-scale studies of influenza's 
within-host genetic diversity, together encompassing more than 500 acute human infections 
(Debbink et al., 2017; Dinis et al., 2016; McCrone et al., 2018; Poon et al., 2016). For each 
study, we applied the same variant-calling thresholds as the Hong Kong study, identifying 
sites with a minimum coverage of 200 at which a non-consensus base exceeds a frequency 
of 3% in the sequenced reads at that site (Materials and methods). We averaged variant 
frequencies between sequencing replicates where available but otherwise used an analysis 
pipeline that was as similar as possible across studies to ensure comparable estimates of 
within-host genetic diversity. 
 
Our analysis recapitulates the major results reported in the Hong Kong study. Supplemental 
Figure 1 shows within-host variation in the hemagglutinin gene in H3N2 patients in our re-
analysis of the study’s data, in the same format as the second figure of the original 
publication (Poon et al., 2016). In both the original study and our re-analysis, the same 
within-host variant is often present at similar frequencies in multiple, epidemiologically 
unrelated individuals. Moreover, the minority variant in one group of samples is typically the 
majority or consensus variant in the remaining samples (Supplemental Figure 1A). Across 
the hemagglutinin gene, the original Hong Kong study and our re-analysis of that study’s 
data identify the same patterns of within-host variation (Supplemental Figure 1B). 
 
Our analysis also identifies major differences between the Hong Kong dataset and the other 
studies. We find little within-host viral variation in the other three datasets, in line with these 
studies' stated conclusions (Figure 1A) (Debbink et al., 2017; Dinis et al., 2016; McCrone et 
al., 2018). Furthermore, only the Hong Kong dataset contains high-frequency within-host 
variants that are shared between epidemiologically unrelated individuals. In data from the 
Hong Kong study, the same within-host variants were shared among more than half of the 
patients at 42 sites in the H3N2 genome, and 9 sites in the pdmH1N1 genome (Figure 1B). 
In contrast, we identified no such sites of extensively shared genetic variation among 
patients in the other three studies. These results show that the large discrepancies between 
the Hong Kong study and other published work cannot be accounted for solely by 
methodological differences in variant calling pipelines. 
 
The extensive shared genetic diversity in the Hong Kong study could result from genuine 
similarity in the mix of viruses that infect epidemiologically unrelated humans in Hong Kong. 
But they could also reflect cross-contamination or other abnormalities in the underlying 
sequencing data. In the course of our analysis, we identified abnormalities in the raw 
sequencing data from the Hong Kong study that can explain the apparently high levels of 
shared viral genetic diversity across different infected individuals. The deep sequencing for 
this study used paired-end Illumina reads. Both reads in a pair come from the same molecule 
of PCR-amplified viral genetic material, and so should always be assigned to the same 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2018. ; https://doi.org/10.1101/364430doi: bioRxiv preprint 

https://doi.org/10.1101/364430
http://creativecommons.org/licenses/by/4.0/


infected human (Figure 2A). Illumina software assigns standard headers to each FASTQ-
format sequencing read. These header lines contain information about each read, including 
the sequencing lane, a unique read-pair identifier, and whether a read is the first or second 
member of a pair (Figure 2B). When we analyzed FASTQ headers in the raw sequencing 
data for the Hong Kong study, we found that paired-end sequencing reads were frequently 
split between samples assigned to different individuals (Figure 2C). (Figure 1 and 
Supplemental Figure 1 were generated by analyzing the sequencing data from the Hong 
Kong study as single-end data.) For instance, the read 
@SOLEXA4_0078:1:1101:10000:101622#ATCACG/1 was associated with study subject 
737-V1(0), whereas its pair @SOLEXA4_0078:1:1101:10000:101622#ATCACG/2 was 
associated with study subject 741-V1(0), an epidemiologically unrelated individual.  
 
It is biologically impossible for reads in a pair to be associated with distinct individuals, since 
both reads originate from the same DNA molecule. Across all samples, 70% of reads had 
corresponding pairs in a FASTQ file assigned to a different individual, and 25% of reads 
were not part of an identifiable pair (Figure 2C). Only 5% of the 500 million sequencing 
reads in this study were associated with the same sample as their corresponding pairs. This 
splitting of read pairs between samples indicates a problem in the sample index de-
multiplexing or downstream computational analysis, and can be considered a form of 
technical cross-contamination. 
 
Importantly, the problem appears to be with how read pairs were assigned to samples rather 
than with the FASTQ headers. We found that 93% of the read pairs reconstructed based on 
FASTQ header information mapped concordantly to the H3N2 or pandemic H1N1 influenza 
genome—that is, both reads in a pair mapped to the same gene segment in the expected 
relative orientation. 
 
We analyzed patterns of read-pair splitting between all samples in the study (Figure 2D). We 
identified four disjoint sets of samples for which read pairs are split extensively within sets, 
but never between sets. Further analysis of FASTQ headers showed that all of the 
sequencing reads from each cluster were derived from the same flowcell lane. Poon et al. 
2016 report that samples were amplified in duplicate and that replicates were sequenced on 
distinct flowcell lanes. Indeed, we find that each set of samples corresponds almost exactly 
to one set of replicate samples for one of the two influenza subtypes sequenced in this study 
(Figure 2D). This finding was robust to the computational analysis pipeline: the first author 
generated all of the figures in this paper (https://github.com/ksxue/compare-flu-within-hosts-
public), but the last author conducted an independent re-analysis of the data to reach similar 
conclusions (https://github.com/jbloomlab/reanalyze_Poon_et_al). Altogether, these analyses 
suggest that read pairs are split extensively between samples of a given influenza subtype in 
the Hong Kong study. 
 
Without access to the full computational pipeline for the Hong Kong study, we cannot 
determine directly whether the first read, second read, or both members of split read pairs 
were assigned to samples incorrectly. However, when we analyzed only the first read of each 
pair, we found low within-host diversity, in line with other studies (Figure 3). In contrast, the 
second read of each pair was responsible for the high viral diversity reported in the Hong 
Kong study. These results suggest that the second member of each read pair may have 
been incorrectly assigned, and the first member may more accurately represent the low 
levels of within-host viral diversity. 
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This splitting of read pairs between unrelated samples has important consequences for 
estimates of viral genetic diversity within human infections. Even if each individual were 
infected with a clonal population of influenza virus, read-pair splitting would create the 
appearance of high levels of shared genetic diversity between unrelated individuals. For 
instance, at a site in the influenza genome where some individuals exclusively have 
nucleotide A and others exclusively have nucleotide T, read-pair splitting would make it seem 
as though all individuals with majority identity A have minority variant T and vice versa, even 
in the absence of genuine within-host variation. The high-frequency shared viral diversity 
within human hosts in the Hong Kong study corresponds closely to what would be expected 
from read-pair splitting (Supplemental Figure 1A), suggesting that this abnormality may be 
responsible for the published results. 
 
Read-pair splitting may also explain why the Hong Kong household cohort study estimates a 
loose transmission bottleneck for human influenza virus of 200-250 viral genomes (Poon et 
al., 2016; Sobel Leonard et al., 2017), compared to a Michigan household cohort study that 
estimates a bottleneck size of 1-2 viral genomes (McCrone et al., 2018). Splitting of read 
pairs between samples would also create the appearance of shared within-host variation in 
donor and recipient individuals in a transmission chain, resulting in estimates of a looser 
transmission bottleneck. 
 
Our finding of read-pair splitting in the Hong Kong dataset provides a technical explanation 
for major discrepancies in recent studies of the genetic diversity of human influenza viruses. 
In particular, these technical anomalies may account for the Hong Kong study's finding of 
shared, high-frequency viral diversity within human hosts (Poon et al., 2016) and its estimate 
of a loose transmission bottleneck between hosts (Poon et al., 2016; Sobel Leonard et al., 
2017). If we exclude the Hong Kong study, then all other studies report low levels of within-
host genetic diversity for human influenza virus (Debbink et al., 2017; Dinis et al., 2016; 
McCrone et al., 2018). 
 
 
Materials and methods 
 
Code availability. The computer code that performs the analysis is available at 
https://github.com/ksxue/compare-flu-within-hosts-public. All figures were generated by the 
first author using this code base, but the last author independently conducted an analysis of 
read pairing and came to similar conclusions 
(https://github.com/jbloomlab/reanalyze_Poon_et_al). 

Source data. We downloaded sequencing data generated by the Hong Kong study (Poon et 
al., 2016) from https://www.synapse.org/#!Synapse:syn8033988, following the methods of a 
study that re-analyzed data from the Hong Kong study to estimate transmission bottleneck 
sizes using a new analytical method (Sobel Leonard et al., 2017). We obtained sequencing 
data for the Wisconsin study (Dinis et al., 2016) by personal communication. We downloaded 
sequencing data for the other studies from SRA BioProject PRJNA344659  (Debbink et al., 
2017) and PRJNA412631 (McCrone et al., 2018). 
 
Variant calling. Here, we summarize our general computational pipeline for variant calling, 
with modifications for individual studies described below. We used cutadapt 1.8.3 (Martin, 
2011) to trim Nextera adapter sequences, remove bases at the ends of reads with a Q-score 
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below 24, and filter out reads whose remaining length was shorter than 20 bases. To 
determine the sample subtype, we used bowtie2 to map 1000 reads from each sample to 
reference genomes for each influenza subtype: A/Victoria/361/2011 (H3N2), 
A/California/04/2009 (pdmH1N1), and A/Boston/12/2007 (seasonal H1N1). We determined 
what proportion of the reads from each sample mapped to each reference genome and 
classified sample subtype based which reference genome resulted in the highest mapping 
rate. 
 
For each sample, we first aligned reads to the subtype reference genome using bowtie2 and 
the --very-sensitive setting (Langmead and Salzberg, 2012), then we used custom 
scripts to tally the counts of each base at each genome position and infer a consensus 
sequence for that sample. We then realigned the reads to the sample consensus sequence, 
discarding reads with a mapping score below 20 and bases with a Q-score below 20, and we 
removed read duplicates using Picard version 1.43. We used custom scripts to tally the 
counts of each base at each genome position among the remaining reads. 
 
We defined sites of within-host variation as positions in the genome with sequencing 
coverage of at least 200 reads at which a minority base is present at a frequency of at least 
3%, following the variant-calling criteria of the Hong Kong study (Poon et al., 2016). The 
Hong Kong study sequenced most samples in duplicate, and we required within-host variants 
to be present at a frequency of 3% in both sequencing replicates. To maintain consistent 
variant-calling criteria for all samples in the Hong Kong study, we did not include samples 
with only a single sequencing replicate in our downstream analyses. We performed no other 
filtering for sample or variant quality because common filtering metrics like sequencing 
replicates (Xue et al., 2017) and plasmid sequencing controls (McCrone and Lauring, 2016; 
McCrone et al., 2018) were not universally available. 
 
Study-specific modifications. We tried to analyze all sequencing data using methods that 
were as similar as possible across studies. However, certain study designs or data formats 
required us to modify our basic analysis framework as described below. For more 
information, the code that performs the analysis is available at 
https://github.com/ksxue/compare-flu-within-hosts-public.  
 
Hong Kong study. We obtained data from the Hong Kong study (Poon et al., 2016) from 
https://www.synapse.org/#!Synapse:syn8033988 in the form of a single FASTQ file per 
biological sample containing first and second members of read pairs. As described in the 
main text and in the section below, we found that read pairs were frequently split between 
different sample files, so we could not conduct a meaningful analysis of paired-end 
sequencing reads. To call variants and generate the data in Figures 1 and 2, we analyzed 
the sequencing data as single-end reads. We used single-end read-mapping settings for 
bowtie2, and we did not perform read deduplication, which typically makes use of paired-end 
read information. Most samples from this study were sequenced in duplicate. We only 
analyzed samples for which we were able to identify both sequencing replicates, and we 
required within-host variants to meet the variant-calling criteria in both replicates. 
 
Wisconsin study. We obtained data from the Wisconsin study (Dinis et al., 2016) by personal 
communication in the form of a single FASTQ file per biological sample containing first and 
second members of read pairs. We reconstructed read pairs for each sample using read-pair 
information in the FASTQ headers, and we found no read pairs that were split between 
different sample files. We then analyzed the reconstructed read pairs as described above. 
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Analysis of read pairing. To analyze read pairing in data from the Hong Kong study, we 
parsed FASTQ read headers to identify first and second members of read pairs, as well as 
their associated sequencing lane. We interpreted the colon-delimited fields of a FASTQ 
header like @SOLEXA4_0078:1:1101:10000:101622#ATCACG/1 to contain information 
about the sequencing instrument (@SOLEXA4_0078), lane number (1), tile (1101), cluster 
coordinate (10000:101622), sequencing index (ATCACG), and whether a read was the first 
or second member of a read pair (1), in accordance with Illumina specifications (for instance, 
see http://support.illumina.com/content/dam/illumina-
support/help/BaseSpaceHelp_v2/Content/Vault/Informatics/Sequencing_Analysis/BS/swSEQ
_mBS_FASTQFiles.htm). We did not make use of sequencing indices in this analysis. We 
used this FASTQ information to analyze all 500 million reads in the Hong Kong dataset to 
determine what proportion of reads had pairs in the same sample file and to determine which 
reads were associated with each sequencing lane. We used the --very-fast-local 
setting of bowtie2 to map reconstructed read pairs against a pan-influenza reference genome 
produced by concatenating the eight-segment A/Victoria/361/2011 (H3N2) reference genome 
and the eight-segment A/California/04/2009 (pdmH1N1) reference genome into a single 
reference genome containing sixteen segments. 
 
Analysis of first and second reads. To separate the first and second reads assigned to 
each sample file in the Hong Kong dataset, we interpreted the colon-delimited fields of the 
FASTQ headers as described above. Because read pairs were frequently split between 
sample files, the first and second reads that we identified in each sample did not necessarily 
constitute complete pairs. We then used the read-mapping and variant-calling pipeline 
described above for the Hong Kong study to identify sites of within-host variation. 
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Figures 
 

 
 
Figure 1. Comparison of within-host viral genetic diversity in four large-scale deep-
sequencing studies of human influenza virus. (A) Number of within-host variants 
identified in each sample in each study, normalized to the length of the genome sequenced 
in each study. For each sample, we identified within-host variants that were present at a 
frequency of at least 3% at sites with minimum sequencing coverage of 200 reads. (B) 
Proportion of samples in each study in which we identified within-host variation at each 
genome site. Our re-analysis is consistent with the previously reported results of each study: 
we find little shared genetic diversity in the data from the Dinis et al. (2016), Debbink et al. 
(2017), and McCrone et al. (2018) studies, but we observe high shared genetic diversity in 
the data from the Poon et al study. 
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Figure 2. Paired-end sequencing reads are frequently split between samples that were 
run on the same sequencing lane. (A) Paired-end sequencing reads are derived from the 
same physical DNA molecule. (B) The FASTQ header for each sequencing read provides 
information about the sequencing instrument, flowcell lane, tile, cluster coordinates, and 
sequencing index for each read, as well as whether the read is the first or second member of 
a read pair. (C) Sequencing reads from the Hong Kong dataset are frequently split between 
distinct biological samples. (D) Hierarchical clustering of the number of read pairs split 
between each pair of samples in the Hong Kong study. Sequencing reads from the Hong 
Kong dataset are split between four distinct clusters of samples. All sequencing reads in 
each cluster are derived from the same flowcell lane and correspond to one set of replicate 
samples for one of the two influenza subtypes sequenced in the study. 
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Figure 3. Within-host genetic diversity in the Hong Kong study is primarily located on 
read 2. (A) Number of within-host variants identified in the H3N2 samples when analyzing 
both members of each read pair, just read 1, or just read 2. For each sample, we identified 
within-host variants that were present at a frequency of at least 3% at sites with minimum 
sequencing coverage of 200 reads. (B) Proportion of samples for which we identified within-
host variation at each genome site when analyzing both reads for a pair, just read 1, or just 
read 2. 
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SUPPLEMENTAL FIGURES 

 

Supplemental Figure 1. High within-host genetic diversity of human influenza 
virus in our re-analysis of sequencing data from the Hong Kong study. This 
figure mimics the format of the second figure of Poon et al (2016) and shows that our 
re-analysis recapitulates the main reported results of high-frequency shared genetic 
diversity between epidemiologically unrelated individuals. (A) Viral genetic diversity at 
hemagglutinin codon 335 in H3N2 human influenza infections. At this codon, both 
variants encode the same amino acid. This plot shows within-host variants that were 
present at a frequency of at least 1% in both sequencing replicates at sites with 
minimum sequencing coverage of 200 reads. Shaded regions indicate individuals 
from the same household. (B) Viral genetic diversity in the HA1 domain of 
hemagglutinin in H3N2 human influenza infections in our re-analysis. Each panel 
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represents a separate site in the genome and is labeled by the HA codon it 
represents. Sites shown harbored within-host variation at a frequency of at least 3% 
in both sequencing replicates for at least two samples in the study. 
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Supplemental Table 1. Large-scale deep-sequencing studies of human influenza virus. 
 
Study Location H3N2 

samples 
pdmH1N1 
samples 

Methods Findings 

Dinis et al. 
2016 

Wisconsin 68 46 Targeted deep sequencing of 
hemagglutinin gene. 
 

Low genetic diversity. Possible low-
frequency antigenic variants. 

Poon et al. 
2016* 

Hong Kong 46 54 Whole-genome deep sequencing using 
multi-segment RT-PCR followed by 
sequence-independent, single-primer 
amplification. 
 

High genetic diversity, frequent mixed 
infections, and a loose transmission 
bottlenecks in a household cohort 
study. 

Debbink et al. 
2017 

Michigan 121 0 Whole-genome deep sequencing using 
multi-segment RT-PCR. 
 

Low genetic diversity. No differences in 
genetic diversity between vaccinated 
and unvaccinated individuals. 
 

McCrone et 
al. 2018** 

Michigan 217 32 Whole-genome deep sequencing using 
multi-segment RT-PCR.  
 

Low genetic diversity and narrow 
transmission bottlenecks in a 
household cohort study. 
 

 
* The Hong Kong study performed sequencing in duplicate for most samples in the study. We only analyzed samples for which we 
were able to identify both sequencing replicates. We count samples collected from the same individual at different time points as 
separate samples in this summary. 
 
** We count samples collected from the same individual at different time points as separate samples in this summary.  
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