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Abstract7

Recurrent neural networks (RNNs) are increasingly being used to model complex cogni-8

tive and motor tasks performed by behaving animals. Here, RNNs are trained to reproduce9

animal behavior while also recapitulating key statistics of empirically recorded neural ac-10

tivity. In this manner, the RNN can be viewed as an in silico circuit whose computational11

elements share similar motifs with the cortical area it is modeling. Further, as the RNN’s12

governing equations and parameters are fully known, they can be analyzed to propose13

hypotheses for how neural populations compute. In this context, we present important14

considerations when using RNNs to model motor behavior in a delayed reach task. First,15

by varying the network’s nonlinear activation and rate regularization, we show that RNNs16

reproducing single neuron firing rate motifs may not adequately capture important popula-17

tion motifs. Second, by visualizing the RNN’s dynamics in low-dimensional projections, we18

demonstrate that even when RNNs recapitulate key neurophysiological features on both19

the single neuron and population levels, it can do so through distinctly different dynamical20

mechanisms. To militate between these mechanisms, we show that an RNN consistent with21

a previously proposed dynamical mechanism is more robust to noise. Finally, we show that22

these dynamics are sufficient for the RNN to generalize to a target switch task it was not23

trained on. Together, these results emphasize important considerations when using RNN24

models to probe neural dynamics.25
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Introduction26

Recurrent neural networks (RNNs) have been employed to model computation in neurophysio-27

logical tasks (Mante et al., 2013; Hennequin et al., 2014; Sussillo et al., 2015; Michaels et al.,28

2016; Song et al., 2016; Chaisangmongkon et al., 2017; Miconi, 2017; Song et al., 2017). In these29

studies, the RNN is trained to perform tasks and reproduce empirically observed behavior. Exam-30

ples include an animal’s kinematics or electromyography during a motor task or its psychometric31

curve during a decision making task. Further, the RNN can be trained so that its artificial neurons32

recapitulate key statistics of neurons recorded from experiments, both on the single unit and pop-33

ulation level. Training techniques to achieve this include regularizing the network to avoid complex34

patterns (Sussillo et al., 2015; Michaels et al., 2016), introducing architectural constraints such35

as Dale’s law (Song et al., 2016), and utilizing biologically plausible learning rules including those36

based on reinforcement learning (Miconi, 2017; Song et al., 2017). RNNs that recapitulate the37

behavior and key statistics of the neural population have then been analyzed to propose mech-38

anisms for how recurrent computation occurs in cortical circuits (Sussillo & Barak, 2013; Mante39

et al., 2013; Chaisangmongkon et al., 2017). The RNN may also generate hypotheses that can be40

tested in future neurophysiological experiments (Chandrasekaran, 2017).41

The existence of a diversity of training approaches that meaningfully change artificial neuron mo-42

tifs raises several questions. For example, does the particular training approach matter? Said43

differently, can a variety of RNNs, each trained in a different way but nevertheless all resembling44

empirical neural activity, employ different dynamical mechanisms? If so, what are the key consid-45

erations in using RNNs as in silico models of cortical circuits? We address these questions by46

changing various design variables for RNNs and assessing how these changes affect the RNN’s47

motifs and dynamics. In particular, we vary (1) the nonlinear activation of the RNN, (2) rate reg-48

ularization during training, and (3) task input configuration. We perform these comparisons for a49

common motor neuroscience task: the delayed reach task. We chose this task because prior work50

in motor systems neuroscience has proposed a concrete dynamical mechanism employed by the51

motor cortex to perform this task (Ames et al., 2014; Churchland et al., 2006; Afshar et al., 2011;52

Kaufman et al., 2014). Therefore, we are able to make comparisons to neurophysiological results53

at the level of the RNN’s single units, population, and dynamics.54

We consider how design choices affect the RNN’s ability to recapitulate key behavioral and neural55

features from experiments. From this, we find that is important to recapitulate both single unit56

and population motifs. That is, it is possible to find artificial neurons that resemble single unit57

peri-stimulus time histograms (PSTHs) but that do not capture key population features in the neu-58

rophysiological data. Further, we show that distinct RNNs can resemble neurophysiological data59

while using fundamentally different dynamical mechanisms. We illustrate this idea in Fig 1b-d,60

where for the same neural population activity evolving in two dimensions, different dynamics (de-61

noted by the flow fields) may give rise to the same population activity. By visualizing the RNN’s dy-62
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Figure 1: Illustration of sampling RNN dynamics. (a) Toy example of an RNN with three example units. The units’ firing
rates through time, r(t), is plotted as a trajectory (blue) in 3 dimensions, but it largely evolves in a 2 dimensional plane
indicated in red, defined by the vectors u1 and u2. (b) The inputs may drive the trajectory slowly along a line attractor.
Red dots denote stable fixed points. (c) The dynamics may be strong and cause the trajectory to be strongly driven to
a stable fixed point. (d) The trajectory may be driven along regions of bifurcation, with slow unstable attractors denoted
by blue dots. (e) For a given basis, defined by u1 and u2, it is possible to project the RNN dynamics into a given plane.
Here, we show a sampling rule where the values in orthogonal dimensions are set to the trajectory values. An obstacle
is that the trajectories sampled at two different times, t1 and t2, may have very different dynamics, indicated by the flow
field arrows in the red and green planes. (f) If the dynamics are relatively smooth, one strategy to address this obstacle
is to ensure the sampling planes, shown in red and green, are close to each other. This is achieved by sampling the
principal components. (g) Another approach is to sample dynamics in “dynamics relevant” manifolds, where the views
of the dynamics may not change as drastically depending on the sampling.

namical equations, we demonstrate that RNN input design can substantially modify the network’s63

dynamical mechanisms. Finally, we explore consequences of computation using these distinct64

dynamical mechanisms, including robustness to noise and generalization to new tasks.65
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Materials and Methods66

Description of RNN and training67

An RNN is composed of N artificial neurons (or units) that receive input from Nin time-varying68

inputs u(t) and produce Nout time-varying outputs z(t). The RNN defines a network state, given69

by x(t) ∈ RN ; the ith element of x(t) is a scalar describing the “currents” of the ith artificial neuron.70

The network state is transformed into the artificial neuron firing rates (or network rates) through71

the transformation:72

r(t) = f(x(t)), (1)

where f(·) is an activation function applied elementwise to x(t). The activation function is typically73

nonlinear, endowing the RNN with nonlinear dynamics and expressive power. In this work, we use74

f(x) = tanh(x) as well as f(x) = max(x, 0), also known as the rectified linear unit or relu(·). In the75

absence of noise, the continuous time RNN is described by the equation76

τ ẋ(t) = −x(t) + Wrecr(t) + Winu(t) + brec, (2)

where τ is a time-constant of the network, Wrec ∈ RN×N defines how the artificial neurons are77

currently connected, brec ∈ RN defines a constant bias, and Win ∈ RN×Nin maps the RNN inputs78

onto each neuron. We note that equation 1 can also be used to calculate the dynamics of the79

network rates, ṙ(t). This quantity is useful because it describes how the network rates evolve80

through time. In neurophysiological studies, this is equivalent to calculating the dynamics of the81

recorded neuron firing rates (Churchland et al., 2012; Kao et al., 2015).82

The output of the network is given by a linear readout of the network rates, i.e.,83

z(t) = Woutr(t), (3)

where Wout ∈ RNout×N maps the network rates onto the network outputs. We trained the RNN84

to minimize the mean-square error between its output, z(t), and a desired output, zdes(t). In85

addition to this objective, we included several regularizations to improve training. In particular,86

we regularized the L2-norm (Euclidean norm) of Win, Wrec, and Wout to penalize larger weights.87

We also regularized the L2-norm of r(t) across all time, as was done in (Sussillo et al., 2015;88

Michaels et al., 2016) to penalize larger rates, which are not encountered in biological neurons89

due to their refractory period. We later report that this regularization has an important impact90

on firing rates during movement preparation. Finally, we incorporated gradient clipping and the91

regularization proposed by Pascanu and colleagues to ameliorate vanishing gradients (Pascanu92

et al., 2012). Training was performed using stochastic gradient descent, with gradients calculated93

using backpropagation through time. For gradient descent, we used the Adam optimizer, which94
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is a first order optimizer incorporating adaptive gradients and momentum (Kingma & Ba, 2014).95

Finally, because reaching behavior is highly stereotyped, we allowed training to continue until96

the coefficient of determination in kinematic reconstruction on validation data exceeded R2 >97

0.997.98

Visualizing RNN dynamics99

The RNN’s dynamics are fully described by equation 2. Thus, one may qualitatively assess the100

RNN’s dynamical mechanism by visualizing this equation. However, in most scenarios, the RNN101

is composed of a relatively large number of neurons, N (e.g., typically N > 100). By treating each102

artificial neuron as an independent dimension, this implies that ṙ(t) is N -dimensional, and thus103

not trivial to visualize. One way to address this problem is to consider that, in many scenarios, not104

unlike what is observed in neural population activity in motor cortex (Yu et al., 2009; Cunningham &105

Yu, 2014), the dimensionality of the N artificial neurons are correlated and can thus be adequately106

described in a D dimensional subspace, where D < N . Hence, while the dynamics implemented107

by the RNN cannot be visualized in a straightforward manner if N is large, it may be possible to108

do so if the dynamics can be appropriately sampled in D = 1 to 3 dimensions.109

There are important considerations in visualizing dynamics in a low-dimensional subspace. The110

primary consideration is that the dynamics in any D-dimensional projection will differ depending111

on the activity in the remaining N −D dimensions. Hence, depending on the values the network112

rates take on in the remaining N − D dimensions, the visualized dynamics may differ in a minor113

or substantial way. To illustrate this concept, consider the 3D example shown in Fig 1a. As shown114

in Fig 1a, we can measure the firing rates of each artificial neuron for a given input, and plot the115

trajectory of r(t) in 3 dimensions, where each dimension is defined by the activity of one artificial116

neuron.117

In Fig 1e, we introduce the notion of projecting the RNN dynamics into a given subspace. Consider118

an orthonormal basis given by U3 = [u1 u2 u3] where each ui ∈ RN and UT
3 U3 = I. We can119

define a two-dimensional trajectory by projecting the network rates into the subspace spanned by120

U2 = [u1 u2]. The low-dimensional trajectory in this subspace is given by121

s(t) = UT
2 (r(t)− µ) , (4)

where µ is the mean of r(t) across time, and its dynamics can be calculated as122

ṡ(t) = UT
2 ṙ(t) (5)

= UT
2

f(x(t) + ẋ(t)∆t))− f(x(t))

∆t
. (6)

However, this sampling rule is naı̈ve in the following way. In Fig 1e, we consider the trajectory at123

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2018. ; https://doi.org/10.1101/364489doi: bioRxiv preprint 

https://doi.org/10.1101/364489
http://creativecommons.org/licenses/by-nc-nd/4.0/


times t1 and t2, denoted by r(t1) in red and r(t2) in green, respectively. If the trajectory r(t) has a124

relatively large component along u3, the dynamics may be very different (e.g., at time t2, illustrated125

by the green plane). This is because:126

ṙ(t) = U2ṡ(t) + u3u
T
3 ṙ(t),

and thus, the low-dimensional dynamics embedded in the high-dimensional space (given by U2ṡ(t),127

and plotted as the flow field trajectories in Fig 1e) may change if uT
3 ṙ(t) is large. We note that it is128

possible to sample the dynamics accurately at any single time point t, since the component of r(t)129

in the orthogonal complement of UD is known. Hence, it is possible to visualize local dynamics130

over time in a movie by re-sampling the low-dimensional dynamics at every time t for a given UD;131

such a movie is shown in Supplementary Movie 1.132

To address the changing dynamics, we propose two heuristics to find the low-dimensional sub-133

space, UD (where D is the number of dimensions) to sample RNN dynamics. We wish to134

find a matrix UD with D orthonormal columns so that UT
DUD = I. UD defines the subspace135

where we will visualize the network rates r(t) as well as their dynamics ṙ(t). With this definition,136

PD = UDU
T
D is a projector matrix into the subspace spanned by UD. To create a meaningful137

dynamical portrait from which it may be possible to glean intuition as to how the RNN performs138

a given task, the subspace should capture meaningful variance in the data, as well as capture a139

faithful view of the dynamics. We enumerate two heuristics to sample these dynamics:140

1. Intuitively, the components of r(t) along the remaining N − D dimensions do not change141

dramatically. In this manner, the sampled D-dimensional subspace is approximately the142

same across time. In the context of Fig 1f, this corresponds to the red and green subspaces143

being relatively close to each other. Assuming a smoothness in the RNN dynamics, if this144

separation is sufficiently small, the dynamics will not change drastically. This smoothness145

assumption is valid for the tanh nonlinearity, but for the relu nonlinearity fails at x(t) = 0.146

This projection has the added benefit of finding the projection that maximizes the projected147

data variability UT
Dr(t). Formally, this projection can be found by maximizing the variance of148

UT
Dr(t). The solution of this optimization is called principal components analysis, where UD149

correspond to the first D left singular vectors of [r(1) r(2) . . . r(T )], with T being the horizon150

of the data.151

2. Intuitively, the projected dynamics in “dynamics relevant” dimensions ought to be oriented in152

similar directions over the course of the epoch. This reflects that the dynamics will not vary153

substantially over the course of the epoch, as illustrated in Fig 1g. This may be achieved by154

optimization of an appropriate loss function over Stiefel manifolds.155

In this work, we found that heuristic 1, projection along principal components, was sufficient for our156

analyses. While we also performed an optimization under heuristic 2, we found that this did not157

affect any conclusions. After finding UD, we visualized the network rates and their dynamics by158
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using equations 4 and 5 (and substituting UD for U2), respectively. Finally, we also visualized the159

fixed points of the RNN’s dynamics using the approach presented by Sussillo and Barak (Sussillo160

& Barak, 2013).161

RNN task and training162

We trained the RNN on a variant of the delay task used by Ames and colleagues (Ames et al.,163

2014). This study proposed a specific dynamical mechanism that we sought to probe with RNNs.164

In this task, a monkey is instructed to hold a center target. After holding the center target for165

700 − 1100 ms, a peripheral target is cued in one of eight locations uniformly spaced on a circle,166

45◦ apart beginning at 0◦. The monkey continues to hold the center target while planning to reach167

to the cued target. After a random delay period, ranging from 0 − 900 ms, the monkey is given a168

go cue and is allowed to perform a reach to the prompted target. Upon reaching the target, the169

monkey then holds on the target for a 500 ms hold time to successfully acquire the target, ending170

the trial. This task is diagrammed in Fig 2a.171

The RNN inputs were the target’s x-position, the target’s y-position, and a go cue signal. Because172

we were interested in assessing the effect of inputs on dynamical mechanisms, we trained with two173

different go cue configurations. In the “sustained RNN” (Fig 2b, orange) the go cue was encoded174

with a sustained signal indicating whether to withhold movement (signal high) or not (signal low)175

as in prior studies (Sussillo et al., 2015; Michaels et al., 2016). In the “pulsed RNN” (Fig 2b, blue)176

the go cue was encoded as a transient pulse indicating that movement could occur. This go pulse177

could correspond to when the animal is cued that he may move by a transient cue (e.g., a brief178

and temporary visual cue). This pulse may also be interpreted as reflecting that the state of the179

task has changed, so that the animal may now make a reach, analogous to a signal that triggers180

movement (Erlhagen & Schöner, 2002; Kaufman et al., 2016). An additional motivation for using181

the pulse is that prior tasks have used transient cues, such as networks trained to process a182

transient movement instruction (Hennequin et al., 2014). The RNN transformed these inputs into183

four outputs: the x- and y-positions of the hand, and the x- and y-velocities of the hand. In this184

manner, the input was 3-dimensional, u(t) ∈ R3, and the output was 4-dimensional, z(t) ∈ R4.185

Our trained networks had 100 artificial neurons, so that x(t), r(t) ∈ R100.186

Like in the study by Ames and colleagues, we trained the network with reaches having delay187

periods ranging from 0−900 ms after a 700−1100 ms center-hold period. After each delay period,188

we had the network produce a reach following a fixed reaction time of 150 ms. After the reach189

transient, the network was then trained to generate zero x- and y-velocities and appropriate final190

positions for a hold period. Instead of a static 500 ms hold period used by Ames and colleagues,191

we allowed the hold period to be from any length from 500 to 1500 ms, so that the network didn’t192

learn specific timings (i.e., to use a region of slow dynamics for only 500 ms). We trained the193

network to produce reaches to 8 targets uniformly spaced on a circle. The targets were 45◦ apart194
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Figure 2: Delayed reach task and RNN training. (a) Schematic of the RNN task used by Ames and colleagues. For
RNN training, the hold time was allowed to be variable for anywhere from 500 to 1500 ms so that the RNN did not learn
specific timings. (b) Example (and representative) target inputs and outputs of the RNN. The RNN was trained until it
achieved a coefficient of determination, R2 > 0.997, on the task. The RNN outputs both position and the velocity. The
sustained RNN encodes the go cue as a signal to withhold movement (1) or to allow movement (0) while the pulsed
RNN encodes the go cue as a transient cue that indicates a change in the state of the task (i.e., that the monkey can
now execute his planned reach).

beginning at 0◦. In addition to these delayed reaches, on 10% of trials, we introduced “catch trials”195

to the RNN where a target may not have appeared, or if it appeared, the go cue was never given.196

In both instances, the network had to sustain zero output.197

In the task by Ames and colleagues, there were also occasional switch trials, where the target198

was switched on 20% of trials. Following this target switch, the monkey was given a second delay199

period ranging from 0−900 ms followed before the go cue was delivered. We explicitly did not train200

on this task because we were interested in assessing how the RNN would generalize to it.201

Results202

Before delving into design choices, we found that it was possible to train an RNN to recapitulate203

key features of the neural activity in a delayed reach task, as reported in prior studies (Sussillo204

et al., 2015; Michaels et al., 2016). The hyperparameters for this network are listed in Supplemen-205
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Figure 3: Sample PSTHs and population trajectories of the RNN. (a) Example PSTHs of artificial neurons in the RNN,
where each color denotes one of the eight possible reach conditions. The PSTHs achieve a stable firing rate in the
preparatory period, followed by multiphasic activity during perimovement. The condition with the highest firing rate may
also change through time. (b) Proportion of variance captured by the principal components. 5 PCs capture 90.8% of
the PSTH variability, and 10 PCs 98.2% of the variability. (c) PC1, capturing 43.7% of the signal variance, demonstrates
properties consistent with the condition independent signal proposed by Kaufman and colleagues. It is the largest
response component of the RNN rates, but largely does not reflect movement type (until well after the go cue has
been delivered). (d) RNN rate trajectories in the PC2 and PC3 axis with a delay period. For each reach condition, the
trajectories reach a stable set of neural states prior to go cue delivery. These are indicated by the trajectory locations
at the green dot. Adjacent conditions are topographically organized (0◦: red, 45◦: dark orange, 90◦: orange, 135◦: light
orange, 180◦: yellow, 225◦: light green, 270◦: green, 315◦: dark green). The gray part of the trajectory represents the
baseline activity. (e) Trajectories (in bold) when the RNN performs the task without a delay period. This shows that the
preparatory neural states are not obligatory, consistent with the findings of Ames and colleagues.

tary Table 1. Fig 3a shows peristimulus time histograms (PSTHs) of artificial neurons for delayed206

reaches to eight different directions. These PSTHs plateau during the delay period (Tanji & Evarts,207

1976; Weinrich et al., 1984; Churchland et al., 2010; Sussillo et al., 2015; Michaels et al., 2016),208

have substantial heterogeneity and multiphasic activity during perimovement (Sergio et al., 2005;209

Churchland & Shenoy, 2007; Churchland et al., 2010), and change preferred directions over time210

(Churchland & Shenoy, 2007; Michaels et al., 2016), reflected by the fact that the condition with the211

highest firing rate is not the same across the entire trial. Fig 3b-e shows that the artificial neural212

population also recapitulates qualitative observations from neurophysiologically recorded neural213

populations. We found that only 5 PCs were required to capture more than 90% of the PSTH vari-214

ability, as shown in Fig 3b, demonstrating that the population is low-dimensional (Yu et al., 2009;215

Cunningham & Yu, 2014; Ames et al., 2014; Sadtler et al., 2014; Kao et al., 2015; Gallego et al.,216

2017; Gao & Ganguli, 2015), that PC1, capturing 43.7% of the PSTH variability, strongly resembled217

a high variance condition-independent signal (Kaufman et al., 2016) (Fig 3c), that artificial neural218

population activity had topographic organization in the PCs (Santhanam et al., 2009) (Fig 3d), and219

that the neural population achieved a prepare-and-hold state attractor (Churchland et al., 2006)220

(Fig 3d) but that this attractor was not obligatory (Ames et al., 2014) (Fig 3e).221
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Rate regularization and activation function affect preparatory activity222

Prior studies using RNNs to model motor cortex use the hyperbolic tangent (tanh) activation func-223

tion (Michaels et al., 2016; Sussillo et al., 2015) or a variant of it (Hennequin et al., 2014). Recent224

studies have also used the rectified linear unit (relu) nonlinearity to model various decision making225

tasks (Song et al., 2016, 2017). We note the relu nonlinearity has proliferated in several engi-226

neering applications, in part due to the faster training times and that the gradient of the relu is227

either zero or one, which is favorable for backpropagation (Krizhevsky et al., 2012; Szegedy et al.,228

2015; He et al., 2016). We found that the choice of activation function impacts preparatory activity229

during the delay period. Preparatory activity captures a substantial proportion of neural variability.230

Typically, preparatory activity plateaus to a stable level prior to movement onset (Tanji & Evarts,231

1976; Weinrich et al., 1984; Churchland et al., 2010; Sussillo et al., 2015; Michaels et al., 2016). In232

a dynamical systems framework, the population preparatory activity evolves to a subspace called233

the “prepare-and-hold” state that is beneficial for the upcoming reach (Churchland et al., 2006;234

Afshar et al., 2011; Ames et al., 2014).235

Given its prior use in RNN models of motor cortex, we first considered the hyperbolic tangent non-236

linearity. Interestingly, we found that rate regularization (weighted by λr) was important for achiev-237

ing preparatory activity that was qualitatively consistent with neurophysiological data. When rate238

regularization was relatively small, we found that artificial neurons in the RNN had little prepara-239

tory activity (Fig 4a, leftmost panel). This can be observed by recognizing that population activity240

at the time of the go cue essentially overlapped with population activity at target onset. This so-241

lution is not unreasonable because the RNN’s outputs remain zero during both the baseline and242

preparatory epochs. While target information is available to the RNN in the preparatory period, it243

does not necessarily have to act (i.e., change its state) upon this information until the go cue is244

given. To this end, the RNN can delay processing target information until the go cue is given and245

still successfully perform the task.246

We found that, for the hyperbolic tangent nonlinearity, increasing rate regularization increased247

the amount of preparatory activity in the network. This is shown for several values of λr in the248

remaining panels of Fig 4a, and is summarized by Fig 4b, which shows the ratio of lengths between249

the preparatory trajectory and the movement trajectory. The trajectory ratios are calculated in the250

high-dimensional artificial neuron activity space and not in the low-dimensional PCs. By observing251

the PSTHs of the activity at different levels of regularization (Supp Fig 1), we observe that rate252

regularization causes the rates to achieve (1) smaller overall peak values and (2) intermediate253

activations in the preparatory epoch. In this manner, rate regularization causes the tanh RNN254

to have stronger preparatory dynamics, effectively partitioning computation into two segments: a255

preparatory dynamical system (driving the activity to a fixed point, denoted by the green dots in256

Fig 4a) followed by the movement dynamical system (trajectory after the green dot). This is most257

apparent in the rightmost panel of Fig 4a. We note that this population activity is consistent with258

what is qualitatively observed in motor cortex. For the hyperbolic tangent nonlinearity, this is an259
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Figure 4: Rate regularization increases preparatory activity in tanh but not relu RNNs. (a) Population trajectories of
tanh RNNs in PCs 2 and 3 (analogous to Fig 3d) for different values of λr, which weights the L2 norm penalty on the
rates. As λr increases, the preparatory trajectory becomes larger relative to the movement trajectory. (b) Ratio of the
the preparatory trajectory length (in all N dimensions, not only in selected PCs) divided by the movement trajectory
length. As λr increases, the preparatory trajectory length becomes relatively larger. Error bars are standard deviations
across 8 separate RNNs trained at each value of λr. (c) Same as (a) but for relu. As λr increases, there is not a
noticeable increase in preparatory activity. (d) Same as (b) but for relu.

energetically favorable outcome for the network.260

We emphasize that increasing rate regularization does not always result in more preparatory ac-261

tivity. In fact, when we used the relu activation, we observed empirically that the network finds a262

solution that has little preparatory activity irrespective of λr (Fig 4c; trajectory lengths summarized263

in Fig 4d). We note that this was not because rate regularization was not “active” due to other reg-264

ularizations dominating the optimization cost; in fact, when we removed all regularization except265

rate regularization, the networks still had units with very little preparatory activity across 4 orders266

of magnitude (from λr = 10−3 to λr = 10). PSTHs of the relu RNN are shown in Supp Fig 2,267

and demonstrate that although the maximum rate may decrease as rate regularization increases,268

the preparatory activity does not appear to increase in variability relative to movement activity.269

Togther, these results suggest that the relu() activation, for these instantiations of RNNs, does a270

poorer job of capturing key features in the neurophysiological activity. Further, we point out that271

it was not the case that units with preparatory activity were absent in the network. Rather, Supp272

Fig 2 demonstrates that it was possible to find relu units that had substantial preparatory activ-273

ity. Hence, when considering RNNs to model neurophysiological tasks, its important to not only274

find single unit examples that resemble physiological activity, but that also recapitulate population275

level features. For the rest of this work, we utilize the tanh() activation with rate regularization276

λr = 1.9× 10−3.277

RNN dynamics in the sustained RNN during a delayed reach task278

We next visualized the dynamics of the RNN (see Materials and Methods) as displayed in Fig 5.279

We also visualized the stable attractor regions of the dynamics by using the approach of (Sus-280

sillo & Barak, 2013). We found that the RNN implemented a dynamical mechanism that can be281

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2018. ; https://doi.org/10.1101/364489doi: bioRxiv preprint 

https://doi.org/10.1101/364489
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) (b) (c) (d)Preparatory dynamics Movement dynamics Movement dynamics Movement dynamics
(Go cue + 200ms) (Go cue + 400ms) (Hold period)

2PC

3PC

Figure 5: Composition of dynamical systems mechanism. (a) The delay period trajectory in PCs 2 and 3. The gray
portion of the trajectory corresponds to the baseline period of the task. The blue portion of the trajectory corersponds
to the delay period of the task. The state converges along essentially linear dynamics to a stable attractor (shown as
a red dot). The attractor was found as the location in state space that minimized ‖ẋ‖2 below a threshold tolerance.
(b) The movement dynamics 200 ms after go cue onset. The green portion of the trajectory corresponds to the post
go cue period of the task. The dynamics are strongly driven towards a single stable attractor region. There appear
to be non-zero dynamics overlapping the attractor because the trajectory is not in the same plane as the attractor (in
orthogonal dimensions). (c) The movement dynamics 400 ms after go cue onset. The dynamics have changed due to
trajectory movement in the orthogonal dimension. (d) Approaching the hold period, we see that the dynamics converge
on the stable attractor.

interpreted as a composition of dynamical systems to single stable attractor regions. Key features282

of this mechanism were proposed by Ames and colleagues to describe neural population activity283

during a delayed reach task (Ames et al., 2014). In particular, Ames and colleagues proposed two284

principal dynamical systems: a “preparatory” dynamical system implicated in planning a reach to285

a desired target, and a “movement” dynamical system corresponding to the execution of the reach286

after the go cue is delivered. The preparatory dynamical system has a stable attractor correspond-287

ing to each prompted target. The neural state converges to this attractor, the prepare-and-hold288

state, during the delay period. This state is a favorable initial condition for the subsequent move-289

ment (Churchland et al., 2006; Afshar et al., 2011). When the go cue is given, the movement290

dynamical system is engaged, driving the trajectory through a path associated with movement291

generation.292

By visualizing the RNN’s dynamical equations, we were able to qualitatively probe how the RNN293

uses nonlinear dynamics to perform the task. We found that during the delay period, the RNN294

implemented an analogous preparatory dynamical system. Upon target presentation, the trajec-295

tories were driven by this preparatory dynamical system to a single stable attractor region as in296

Fig 5a. This stable attractor location was target dependent. The RNN achieved different prepara-297

tory attractors and dynamics for a given target because the network’s dynamics at a given time,298

ẋ(t), are modified by an input-dependent additive factor, Winu(t). Hence, each unique input can299

be interpreted as setting up a unique dynamical system. This enables the network to, prior to the300

go cue, instantiate different preparatory dynamics with different stable attractor regions for each301

prompted target.302

When the go cue was delivered, the changing input drastically modified the dynamics, so that the303

trajectories were driven along paths associated with output generation (i.e., the movement dynam-304
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ical system). We found that this movement dynamical system was comprised of a single stable305

attractor region. The movement dynamical system utilized strong dynamics to drive the RNN’s rate306

trajectories at relatively high speeds, as shown in Fig 5b,c. In this manner, the mechanism is not307

integration along slow points on a line attractor (e.g., Mante et al. (2013)), but rather abrupt state308

transitions from stable attractor to stable attractor. A video of these dynamics is shown in Supp309

Movie 1. These types of dynamics, illustrated in Fig 1c, have been observed in another study310

(Chaisangmongkon et al., 2017). An increase in the speed of neural trajectories following the go311

cue is consistent with experimental observations from PMd and M1 (Afshar et al., 2011) (their Fig312

3c). Note that when target presentation is simultaneous with the go cue so that there is no delay313

period, the movement dynamical system is immediately engaged, and trajectories are driven by314

the movement dynamical system to its single stable attractor region. As a result, the prepara-315

tory dynamical system attractor is not obligatory. Because the preparatory dynamical system has316

not been engaged for enough time, the trajectories will not achieve the preparatory attractor, a317

phenomena also observed in neurophysiological data (Ames et al., 2014).318

RNNs qualitatively recapitulating neurophysiological motifs may utilize different319

dynamical mechanisms320

We next wondered if task design considerations could produce RNNs that, while looking qualita-321

tively similar to neurophysiological data, utilize distinct dynamical mechanisms. To this end, we322

trained the earlier described pulsed RNN to perform a delayed reach task, using the same hyper-323

parameters as the sustained RNN. In the training set, the pulsed go cue was delivered for 150 ms.324

This pulse may also be interpreted as reflecting that the state of the task has changed, so that325

the animal may now make a reach, analogous to a signal that triggers movement (Erlhagen &326

Schöner, 2002; Kaufman et al., 2016). We are not suggesting that this pulse length would be327

reasonable for experiments; although we chose to use 150 ms, this pulse length can be varied.328

The RNN was capable of performing the pulsed go cue task at the same level as the single at-329

tractor RNN (training terminated when R2 > 0.997 on validation data, example output trajectory330

shown in dark blue in Fig 6a). Its recurrent computation was similarly low-dimensional, with 5 PCs331

capturing 91.8% of the PSTH variability (Supp Fig 3a). This RNN also bore hallmarks of neuro-332

physiological responses, including: neural activity being organized topographically (Supp Fig 3f),333

the trajectories achieving a “prepare-and-hold” state in the delay period (Supp Fig 3f), and that334

these states were not obligatory (Supp Fig 3e). We do note that condition-independent variance,335

though present, appeared to be smaller in this network, with a large proportion appearing in PC 3336

(Supp Fig 3b-d).337

In this task design, the input during the delay period is the same as the input during the movement338

period post go cue. We reasoned that under the insight that each input changes the RNN’s dynam-339

ics, as seen in Fig 5 and Supp Movie 1, this RNN cannot use a composition of dynamical systems340
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with single stable attractor regions. Doing so would imply that the delay and movement periods341

must converge to the same stable attractor, and hence the delay and movement periods would342

converge to the same output under this mechanism. Such an RNN would be unable to adequately343

perform this task. We note that while we have chosen a pulsed go cue, a similar conclusion holds344

for RNNs which use transient cues, such as the networks trained by Hennequin and colleagues345

with a movement instruction cue (Hennequin et al., 2014). Analogously, this network produced346

two different output transients (pre-preparatory and post-movement) for the same input.347

Although the trajectories in condition-relevant dimensions demonstrate qualitatively similar tra-348

jectories to neurophysiological data, how does the RNN dynamically achieve this, if not by the349

mechanism used by the sustained RNN? To answer this question, and recognizing the RNN must350

be capable of achieving two steady-state outputs, we pulsed the go cue to determine what dura-351

tion of go cue was required for the pulsed RNN to settle to the correct final kinematics as opposed352

to returning to the preparatory state kinematics (i.e., zero positions and velocities). We delivered353

different input pulses, as shown in Fig 5a, and found that when the pulsed go cue was delivered354

for less than 85 ms, the pulsed RNN produced transient kinematics that decayed back to zero.355

However, when the go cue was delivered for greater than 85 ms, the pulsed RNN produced the356

correct final kinematic output corresponding to the prompted reach.357

By visualizing the trajectories and dynamics, as shown in Fig 6b,c, it is clear that the pulsed358

RNN sets up at least two stable attractor regions. Our optimization did not identify any other359

attractors, suggesting that the pulsed RNN implements a bistable dynamical system. One stable360

state is associated with the preparatory period, analogous to the prior RNN, where the RNN rates361

converge to during the delay period. The second stable state is the region associated with making362

a movement to the prompted target. By visualizing the dynamics, shown in Fig 6c, we were able363

to identify bifurcation dynamics associated with the task. These bifurcation dynamics could be364

viewed in the projections of PCs 2 and 3. The go cue pulse drives the trajectory to this region of365

bifurcation, and depending on the trajectory’s location, it will either settle back to the preparatory366

state (with zero kinematic output, i.e., left of the illustrated bifurcation axis) or settle to the state367

associated with the correct kinematic output (i.e., right of the illustrated bifurcation axis).368

These results demonstrate that, for trajectories having qualitative similarities to neurophysiologi-369

cally observed data, different dynamics may be at play. While both RNNs utilize a composition of370

dynamical systems (Ames et al., 2014), we found that the employed mechanism differed substan-371

tially from task input design (i.e., strongly driving trajectories to single attractors versus implement-372

ing a region of bifurcation). In considering how to then militate between these two mechanisms,373

we asked which mechanism was more robust to input noise, as could occur from suboptimal pro-374

cessing of the task inputs. To this end, we added independent zero-mean Gaussian noise to the375

inputs, and assessed the RNN’s performance as a function of the standard deviation of the Gaus-376

sian noise. We found that increasing the input noise affects the network in at least two distinct377

ways.378
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Figure 6: An RNN trained to perform a delayed reach task with a transient go cue. (a) Example output for an RNN that
was trained on a pulsed go cue task to make a reach to the target at 315◦. The output is shown for pulsing the go cue
at different lengths, denoted by different colors. When the go cue is pulsed for greater than 85 ms, the RNN eventually
outputs the correct final x and y-positions. When the go cue is pulsed for 85 ms or less, the RNN decays to output
incorrect final zero x- and y-positions. (b) Neural trajectories for the reach to the target at 315◦ for different length go
pulses. The trajectories either decay back to the preparatory state (left attractor region) or eventually converge to the
stable attractor associated with movement generation (right attractor region). Red circles denote stable slow regions
of state space; blue circles denote unstable slow regions of state space. (c) The dynamics at the point of bifurcation.
The bifurcation axis is illustrated in light purple. Left of the axis, the dynamics will drive the trajectory to decay back to
the preparatory attractor. Right of the axis, the dynamics will eventually drive the trajectory to the attractor associated
with the correct final output. (d) The y-axis denotes the normalized final position error (normalized so that the final
position is 1). The x-axis denotes the standard deviation of independent zero mean Gaussian noise added to the
inputs. The dotted line represents the performance of the pulsed RNN, while the solid line represents the performance
of the sustained RNN. As input noise increases, the pulsed RNN has worse final position performance. Stars denote
significant differences in the mean (bootstrap, 1001 shuffles, p < 0.01). (e) Final positions to the eight targets for RNNs
of both mechanisms when the input noise standard deviation is 0.1. Each dot represents the final position on a single
trial. Both RNNs still generate relatively accurate outputs. (f) When the input noise standard deviation is increased
to 0.2, the pulsed RNN has several trials where the final position begins to decay back to the center target, which is
the kinematic output corresponding to the preparatory attractor. The hold time was increased to 2000 ms to show this
slow decay. Trials which end at intermediate locations may reflect trajectories in slow regions of decay back to the
preparatory attractor, as well as variable end points due to large input noise.

First, for both RNNs, because the stable attractor region is input-dependent, noisier inputs cause379

the stable attractor region to be variable, resulting in greater neural trajectory end point variabil-380

ity, and hence, kinematic end point variability. We observed this effect, as end point deviation381

increased with the standard deviation of Gaussian noise (Fig 6d) and in Fig 6e, substantial vari-382

ability can be observed in the end positions. Interestingly, however, we did not observe a significant383

difference in performance between the sustained and pulsed RNNs when the standard deviation384

was less than or equal to σ = 0.1, which is approximately 10% of the input signal (p = 0.69, boot-385

strap with 1001 shuffles). Hence, the effect of input noise varying attractor location was similar in386
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both networks.387

Second, we found that for the pulsed RNN, input noise may cause the trajectory to not cross the388

bifurcation axis, resulting in eventual relaxation to the preparatory attractor. As shown in Fig 6d,389

when the standard deviation increased beyond σ = 0.15, the pulsed RNN had worse final end390

point performance than the single attractor RNN (p < 0.01, bootstrap with 1001 shuffles). Impor-391

tantly, for the pulsed RNN, we observed that its state occasionally relaxed back to the preparatory392

attractor, corresponding to a (0, 0) output center position, as can be observed by the final end393

point of the kinematics shown in Fig 6f. This demonstrates that in the presence of noise, RNN task394

performance will similarly degrade until the point where noise causes the pulsed RNN’s state to395

converge to the incorrect attractor. This suggests that, for the purposes of performing a delayed396

reach task, the sustained RNN is more robust under input noise.397

RNN generalization to new tasks398

Finally, we wondered the extent to which a qualitative understanding of the RNN’s dynamics could399

inform task generalization. We believe this is an important line of questioning for future RNN400

studies. In particular, by constraining what tasks the RNN is trained on, it is possible to comment401

on what dynamical mechanisms are sufficient to carry out certain tasks. As an example, can402

an RNN using the composition of preparatory and movement dynamical systems generalize to403

perform a target switch task? The target switch task is diagrammed in Fig 7a. We hypothesized404

this ought be possible; indeed, Ames and colleagues used a qualitatively consistent dynamical405

mechanism to describe how motor cortex performs a target switch task. By training an RNN to406

only perform a delayed reach task and utilizing the composition of dynamical systems, we can407

assess whether this dynamical mechanism is sufficient to enable the network to perform related408

tasks it was not trained on. We considered three variants of a target switch task, where the target409

switches at different times: (1) before the go cue, (2) simultaneous with the go cue, and (3) after the410

go cue. The first two were considered in neurophysiological experiments by Ames and colleagues411

(Ames et al., 2014).412

Consider first the sustained RNN. When the target switch is delivered prior to the go cue, the413

preparatory dynamical system is changed from that associated with the before-switch target to414

that of the after-switch target. As a result, the preparatory stable attractor changes when the415

target is switched, and the RNN’s rates will converge to the single stable attractor associatd with416

the switched target. When the go cue is then delivered, the RNN will execute the reach as it did417

in a delayed reach task. We found this was the case, as illustrated in Fig 7b-e, mimicking the418

experimental results presented by Ames and colleagues (Ames et al., 2014). When the go cue419

is given simultaneously with the target switch, this is analogous to performing a delayed reach420

from a suboptimal initial condition. The network will achieve the correct end behavior, because421

when the go cue is delivered, it must settle to the single stable attractor region of the movement422
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Figure 7: RNN dynamics during a target switch task. (a) Schematic of the target switch task when the go cue is delivered
either with a delay or contemporaneously with the go cue. (b-e) RNN dynamics during a target switch task, with an
additional delay period to re-prepare. (b) Preparatory dynamics during the delay period (blue trajectory). (c) Dynamics
during the switch period (red trajectory). The new target changes the stable attractor region, and the dynamics drive
the trajectory to this attractor. (d-e) Dynamics following the go cue, recapitulating the same trajectory seen in Fig 5c,d.
(f-i) Same as (b-e) but when the go cue is given contemporaneously with the target switch.

dynamical system, as shown in Fig 7f-i. However, there is the potential for initial aberrant kinematic423

activity from initiating the movement dynamical system from the fixed point of an incorrect target424

plan. We found that this was not the case, and indeed the RNN was able to carry out the target425

switch task with no additional delay period, illustrated by representative examples in Fig 8a. Thus,426

the mechanism used by the RNN to perform the delayed reach task generalizes to perform two427

variants of the target switch task, even though it was not trained on it. Analogous arguments apply428

to the pulsed RNN. We found that, like the sustained RNN, the pulsed RNN also generalized to429

the target switch task when the switch was delivered either at the same time or preceding the go430

cue, as shown in Fig 7a.431

We also considered a task when the target is switched after the go cue. This task comprises an432
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Figure 8: Example behavior for the RNNs generalizing to perform the target switch task. (a) Both RNNs discussed
generalize to the target switch task when the target switch occurred either before or at the same time at the go cue.
Both RNNs had a coefficient of determination R2 > 0.99 in reconstructing the output kinematics despite not being
trained on the target switch task explicitly. (b) RNN output positions during a target switch task, where the switch is
delivered after the go cue. Here, we show four target switch conditions, when switches occur to adjacent targets. This
output corresponds to the RNN trained to perform the sustained go cue delayed reach task. The different shades
correspond to output reach trajectories when the target was switched some amount of time following the go cue (legend
in between panels (a) and (b)). (c) Same as (b) but for the pulsed RNN trained on the pulsed go cue delayed reach
task.

online corrective component, where feedback of the arm’s kinematics play an important role in433

updating motor commands to reach to a new target. While we did not account for this corrective434

component, we nevertheless found that the open-loop RNN could reasonably perform the task435

as the correct target input dictated the stable attractor location. This is shown in Fig 8b,c, where436

for different lengths of time after the go cue, a target switch is delivered in the middle of the trial.437

We found that even though there was not a corrective feedback component and the target was438

abruptly changed, the RNN made a smooth and reasonable trajectory between targets.439

We found that the pulsed RNN had poorer generalization in the presence of input and recurrent440

noise. We incorporated input noise and recurrent noise into RNNs as they performed a task where441

the target switched 200 ms after the go cue. We found that, in general, the pulsed RNN had poorer442

robustness to both input noise and recurrent noise (Fig 9a,b) across varying levels of noise. In443
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Figure 9: (a) Normalized error in the final position as a function of the standard deviation of Gaussian noise added to
the input. The final position was measured at 1200 ms after go cue onset, when the trials were terminated. The position
errors are normalized so that the target position has a distance of 1. The solid lines correspond to the performance
of the sustained RNN trained on the delayed reach task when performing the target switch after go cue task, and
the dotted lines correspond to the performance of the pulsed RNN. The black lines denote the error across all switch
conditions. The purple lines denote the error for switch conditions where the switched target was 180◦ away from the
pre-switch target, and the green lines correspond to the error for switch conditions where the switched target was +90◦

away from the pre-switch target. Stars denote a significant difference in the means at the level p < 0.01 (bootstrap,
1001 shuffles). Error bars are standard error of the mean. In general, the pulsed RNN has poorer robustness under
additive input noise. (b) The same as (a) but for recurrent noise added to each artificial neuron. In general, the pulsed
RNN has poorer robustness under additive recurrent noise. (c) Example output kinematics of the sustained RNN for
target switch trials for two conditions, where the target switch is diagonal. The lighter target corresponds to the initially
prompted target, and the darker target corresponds to the switched target. To make the task harder, noise was injected
into the inputs. The RNN arrives at the correct final behavior, as would be expected by its dynamical mechanism. (d)
Same as (c) but for the pulsed RNN trained to perform the pulsed go cue delayed reach task. One can observe that the
RNN fails to perform the task adequately, achieving the incorrect final position.

particular, we found that the pulsed RNN especially performed worse when the target switch was444

maximal at 180◦ (purple lines in Fig 9a,b). The sustained RNN adequately performed this task,445

being able to make diagonal corrections, as shown in Fig 9c. However, we found that the pulsed446

RNN was not able to consistently perform this task (example trajectories in Fig 9d). One reason447

for poorer performance is that on several occasions, the output trajectories began to correct in the448

right direction, but do not cross the bifurcation axis, settling back to the preparatory state attractor.449

These results suggest that, while both the sustained and pulsed RNNs are capable of using their450

dynamical mechanisms to generalize to target switch tasks, the sustained RNN has more robust451
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generalization in the presence of noise.452

Discussion453

RNNs, being an in silico circuit model that is fully observed, are a promising tool to investigate454

mechanisms underlying motor behavior (Sussillo et al., 2015; Hennequin et al., 2014; Michaels455

et al., 2016), decision-making (Mante et al., 2013; Chaisangmongkon et al., 2017; Song et al.,456

2017), and other neurophysiological tasks (Song et al., 2016). However, there are important con-457

siderations when using RNNs to make conclusions about cortical computation. Our results high-458

light two key points: (1) that it is not sufficient to demonstrate that RNNs have artificial neurons that459

only recapitulate key motifs in single neurons, and (2) that even networks that capture both single460

neuron and population motifs in the data may use fundamentally distinct mechanisms.461

First, we found that it is insufficient to have RNNs merely recapitulate single neuron motifs alone.462

In addition to single neuron motifs, RNNs ought capture population level motifs in the data. This is463

clear in the choice of activation function to train RNNs. In RNNs trained with the relu activation, it464

was possible to find artificial neurons with preparatory activity, but these RNNs did not capture key465

population features from the data. Rather, preparatory trajectories were relatively short compared466

to movement trajectories (Fig 4c), which is inconsistent with empirical results. Further, even for the467

tanh activation function, we found that it was important to regularize the network appropriately to468

capture preparatory variability in the population. This would not have been straightforward if only469

looking at single neuron comparisons.470

Second, we saw that two distinct RNNs could both recapitulate key hallmarks of neurophysiological471

activity, but do so in fundamentally different ways. In this manner, even if an RNN recapitulates472

both single neuron and population level motifs, careful consideration should be given to how the473

RNN dynamically performs the task. Our results showed that by varying how the task inputs are474

designed, the RNN can use distinct mechanisms with important consequences on generalization475

in the presence of noise. Our results also demonstrate that in addition to regularizations (e.g.,476

(Sussillo et al., 2015)), architectures (e.g., (Song et al., 2016)), and training rules (e.g., (Miconi,477

2017; Song et al., 2017)), task input design can have an important effect on how the RNN’s478

computations are performed. It may be possible for future experiments to be designed in such479

a way to militate between these mechanisms by assessing behavior in the presence of noisy480

inputs.481

As task design can substantially affect the dynamical mechanisms employed by the RNN, so too482

may other hyperparameters and training paradigms. It will be appropriate to consider how RNN483

architectures and parameters affect dynamical mechanisms, their robustness to noise, and gen-484

eralization. For example, Song and colleagues demonstrated that it is possible to design RNNs485

that obey biological constraints such as Dale’s law (Song et al., 2016). They demonstrated that in486
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these networks, one could find single artificial neurons consistent with empirical recordings. Sim-487

ilarly, Miconi and colleagues demonstrated that networks can be trained with biological learning488

rules (Miconi, 2017). These learning rules, which reproduce neurophysiological features of the489

data, may affect the network dynamics. Assessing the extent to which important features of the490

employed dynamical mechanisms change through introducing biological constraints and learning491

may play an important role in proposing mechanisms for cortical computation and making concrete492

predictions for future experiments.493

Interrogating an RNN’s dynamics also has consequences for what type of dynamics may be suf-494

ficient to carry out a class of tasks. In our work, we found that an RNN trained to only perform a495

delayed reach task was capable of generalizing to target switch tasks, even though it wasn’t trained496

on these tasks. This shows that the mechanism employed by the RNN to perform a delayed reach497

task endows the network with the capability of performing the target switch task. An interesting498

line of future work may assess how the RNN’s dynamics change as it is trained to perform a wider499

assortment of tasks (Yang et al., 2017). This may describe how many, and what classes, of tasks500

are necessary to provide an RNN with the capability of performing a different set of tasks. Further,501

in so far as the capability to perform a variety of tasks changes the dynamical mechanisms of the502

network, this may help to narrow the set of plausible mechanisms used to perform a given task.503

For example, if we trained the networks in this work to perform motor tasks with perturbations504

to the arm (e.g., Omrani et al. (2014); Nashed et al. (2012)), does the network cease to employ505

a bistable mechanism? Another line of inquiry is to visualize the dynamics of RNNs that fail to506

generalize, and determine what deficiencies result in poor generalization.507
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Supplementary materials604

Supplementary Movie 1. Movie demonstrating visualized dynamics at each point in time as the605

RNN performs a delayed reach task. The stable fixed point jitters in the preparatory period due to606

numerical precision; we performed the optimization to find the fixed point at each time step. A link607

to this movie is at: https://seas.ucla.edu/~kao/vid/18rnn_SuppMovie1.mp4608

Supplementary Table 1.

RNN parameters Values
Number of units 100

Time constant (τ ) 50 ms
Discretization bin width 10 ms
L2 regularizer for Win 1× 10−3

L2 regularizer for Wout 1× 10−3

L2 regularizer for Wrec 1× 10−3

L2 regularizer for r(t) 1.9× 10−3

λΩ regularizer 2
Activation function tanh(·)

Initial learning rate (Adam) 1× 10−4

Maximum gradient norm 0.2

Table S1: Parameters used for RNN training. The λΩ regularizer is described further in the study by (Pascanu et al.,
2012) as well as (Song et al., 2016).
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Supplementary Figures.610
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Figure S1: PSTHs for the same neuron in an RNN across seven different levels of regularization for a tanh RNN.
The region highlighted in gray corresponds to preparatory activity. The neuron is the “same” across all networks in
the sense that we initialized the networks in the exact same way, with the same random seed, and they only differed
in the amount of rate regularization. We found that each unit across the different RNNs shared similar motifs under
this training process. In general, as rate regularization increases, the units have more preparatory activity relative to
movement activity.
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Figure S2: PSTHs for the same neuron in an RNN across 8 different levels of regularization for a relu RNN. The region
highlighted in gray corresponds to preparatory activity. In general, even as rate regularization increases, the units have
similar activity.
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Figure S3: Principal components analysis for RNN trained to perform a delayed reach task with pulsed go cue. (a)
Variance captured by dimension. The first 5 PCs capture 91.8% of the PSTH variability and the first 10 PCs capture
98.6% of the PSTH variability. (b) PC1 of the RNN rates. PC1 contains a substantial amount of condition dependent
information. (c) PC2 of the RNN rates. (d) PC3 of the RNN rates. This dimension captures a large transient signal that
is largely condition independent after the go cue. (e) Projection of PC2 and PC3 with a delay period. The trajectories
in the delay period reach a target dependent stable region in state space, and subsequently are strongly driven along
trajectories associated with movement production. (f) Projection of PC2 and PC3 shows that the delay period is not
obligatory. The dotted traces are trajectories with a delay period while the solid traces are trajectories without a delay
period.
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