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Abstract 13 

 14 
Human contrast discrimination performance is limited by transduction nonlinearities and 15 
variability of the neural representation (noise). Whereas the nonlinearities have been well-16 
characterised, there is less agreement about the specifics of internal noise. Psychophysical 17 
models assume that it impacts late in sensory processing, whereas neuroimaging and 18 
intracranial electrophysiology studies suggest that the noise is much earlier. We investigated 19 
whether perceptually-relevant internal noise arises in early visual areas or later decision 20 
making areas. We recorded EEG and MEG during a two-interval-forced-choice contrast 21 
discrimination task and used multivariate pattern analysis to decode target/non-target and 22 
selected/non-selected intervals from evoked responses. We found that perceptual decisions 23 
could be decoded from both EEG and MEG signals, even when the stimuli in both intervals 24 
were physically identical. Above-chance decision classification started <100ms after stimulus 25 
onset, suggesting that neural noise affects sensory signals early in the visual pathway. 26 
Classification accuracy increased over time, peaking at ~700ms. Applying multivariate analysis 27 
to separate anatomically-defined brain regions in MEG source space, we found that occipital 28 
regions were informative early on but then information spreads forwards across parietal and 29 
frontal regions. This is consistent with neural noise affecting sensory processing at multiple 30 
stages of perceptual decision making. We suggest how early sensory noise might be resolved 31 
with Birdsall’s linearisation, in which a dominant noise source obscures subsequent 32 
nonlinearities, to allow the visual system to preserve the wide dynamic range of early areas 33 
whilst still benefitting from contrast-invariance at later stages. A preprint of this work is 34 
available at: http://dx.doi.org/10.1101/364612 35 
 36 
Keywords: contrast discrimination; EEG; MEG; source space; pattern classification; internal 37 
noise 38 
 39 
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1 Introduction 41 
 42 
The ability to make comparisons between sensory stimuli of different intensities has profound 43 
survival value for most organisms. Animals might benefit from choosing the ripest fruit based 44 
on colour, swimming towards the warmest patch of ocean, or selecting the mate with the 45 
loudest roar. Understanding the features of the central nervous system that limit such 46 
sensory discriminations has been a focus of research in many areas of psychology and 47 
neuroscience, from early work in humans (c.f. Weber’s law, Fechner, 1912), and experiments 48 
with model organisms (Busse et al., 2011; Hecht & Wald, 1934) to studies using contemporary 49 
neuroimaging techniques (Boynton, Demb, Glover, & Heeger, 1999). 50 
 51 
A widely studied perceptual task is the ability to discriminate between visual stimuli of 52 
different contrasts. Human contrast discrimination performance is constrained by the 53 
nonlinearity that maps physical contrast to neural response, and the intrinsic variability of the 54 
neural representation (‘internal noise’). Psychophysical, neurophysiological and 55 
neuroimaging work have converged on a nonlinearity that is expansive at low contrasts and 56 
compressive at higher contrasts (Boynton et al., 1999; Busse, Wade, & Carandini, 2009; Legge 57 
& Foley, 1980). However, there is substantially less agreement regarding the details of 58 
performance-limiting internal noise. 59 
 60 
Most psychophysical models make the assumption that the dominant source of noise for 61 
contrast discrimination is additive (i.e. independent of signal strength) and impacts at a late 62 
stage of processing. The primary justification for this arrangement is the observation that a 63 
dominant source of noise occurring before a nonlinearity will neutralise the effects of that 64 
nonlinearity, rendering it invisible to inspection (termed Birdsall's theorem; Klein & Levi, 65 
2009; Smith & Swift, 1985). Since contrast transduction is observably nonlinear (Boynton et 66 
al., 1999; Busse et al., 2009; Legge & Foley, 1980), any early sources of noise must be 67 
negligible in comparison to the magnitude of late additive noise. 68 
 69 
On the other hand, most electrophysiological and neuroimaging studies have suggested that 70 
perceptually relevant noise is located in early sensory areas (Campbell & Kulikowski, 1972; 71 
Carandini, 2004; Roelfsema & Spekreijse, 2001). Ress and Heeger (2003) demonstrated the 72 
influence of early sensory noise by measuring fMRI blood-oxygen-level dependent (BOLD) 73 
responses in areas V1-V4 during contrast detection. They found that false alarms (trials on 74 
which the stimulus was absent, but reported as seen) evoked higher responses than misses, 75 
(trials on which the stimulus was present, but reported as not seen) suggesting that these 76 
areas encoded conscious percepts of the stimuli rather than the presence of the stimulus 77 
itself. The origin of the spurious activity in the case of false alarms is presumably neural noise 78 
in these early areas. Similarly, several intracranial primate electrophysiology studies have 79 
been able to predict the perceptual decisions of monkeys from neural activity recorded in 80 
early visual areas (Britten, Newsome, Shadlen, Celebrini, & Movshon, 1996; Britten, Shadlen, 81 
Newsome, & Movshon, 1992; Michelson, Pillow, & Seidemann, 2017). This suggests that 82 
sensory decisions are influenced by neural noise at an early stage of processing. 83 
 84 
In this study, we attempt to understand how neural activity governs observer responses in a 85 
two-interval-forced-choice (2IFC) contrast discrimination paradigm, using methods typical of 86 
such studies. Two stimuli are presented in a random order, one containing a ‘pedestal’ of a 87 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 21, 2018. ; https://doi.org/10.1101/364612doi: bioRxiv preprint 

https://doi.org/10.1101/364612


fixed contrast (here 50%), and the other containing the pedestal plus a ‘target’ contrast 88 
increment. This paradigm involves several complicating factors that must be considered, 89 
including: (i) the observer must retain a neural representation of the first stimulus for 90 
comparison with the second stimulus, (ii) individuals might have idiosyncratic biases to prefer 91 
one or other interval, and (iii) fast acting adaptation (often termed repetition suppression) 92 
effects might reduce the neural response to the second stimulus (and perhaps also its 93 
appearance). We recorded evoked responses using both EEG (Experiment 1) and MEG 94 
(Experiment 2). We perform traditional univariate analyses, and also employ multivariate 95 
pattern analysis to decode participants’ percepts. Advantages of pattern analysis are that it 96 
can detect subtle and complex effects that might be missed by univariate analyses, is 97 
expressed in meaningful units (classifier decoding accuracy), and permits testing of pattern 98 
generalisation across conditions and time (King & Dehaene, 2014). The high temporal 99 
resolution (~1ms) of electromagnetic recording techniques enabled us to closely examine the 100 
timecourse of perceptual decision making, and the spatial resolution of MEG source space 101 
allowed us to investigate the involvement of discrete anatomical brain areas.  102 
 103 
Our primary motivation was to determine whether the dominant source of neural noise is 104 
located in early sensory brain areas, or later (more frontal) areas involved in making decisions. 105 
To achieve this, our most crucial experimental condition is one in which the target contrast 106 
increment is 0%, meaning that the two stimuli to be compared contain only the pedestal and 107 
are therefore physically identical. Any differences in the neural representation that 108 
correspond to perceptual decisions must be due to processes occurring within the 109 
participant’s nervous system, rather than due to differences in the stimulus. We also included 110 
conditions in which the target contrast was >0% in order to measure psychophysical accuracy, 111 
to keep participants motivated, and to provide information on the timecourse of contrast 112 
discrimination when physical stimuli differ. 113 
 114 
2 Methods 115 
 116 
2.1 Participants 117 
 118 
Twenty-two adults with normal or corrected-to-normal vision took part in Experiment 1 and 119 
ten took part in Experiment 2. All participants gave written informed consent. Experiment 1 120 
was approved by the Ethics Committee of the Department of Psychology at the University of 121 
York, and Experiment 2 was approved by the York Neuroimaging Centre Ethics Committee. 122 
 123 
2.2 Stimuli and psychophysical task 124 
 125 
Stimuli were horizontally oriented sine wave gratings with a spatial frequency of 1c/deg and 126 
a diameter of 10 degrees. The edges of the gratings were blurred by a cosine function. On 127 
each trial, two stimuli were presented: a pedestal stimulus of 50% contrast (where percent 128 
contrast is defined as 100*(Lmax−Lmin)/(Lmax+Lmin), where L is luminance), and a 129 
pedestal+target stimulus consisting of the 50% contrast pedestal plus a target contrast 130 
increment. Five target contrast conditions were used in Experiment 1: 0% (no target), 2%, 4%, 131 
8% and 16%. In Experiment 2 only the 0% (no target) and 16% target contrast conditions were 132 
used. Note that in the ‘no target’ conditions, the stimuli displayed were physically identical 133 
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and the ‘target’ interval assignment was arbitrary. Participants were not informed of this, and 134 
still made a judgement about which interval appeared higher in contrast. 135 
 136 
The two stimuli on each trial were presented sequentially for 100ms each, with a random 137 
inter-stimulus interval between 400ms and 600ms. The inter-trial interval followed the 138 
participant’s response, and was of variable length between 1000ms and 1200ms to avoid 139 
distortion of ERP averages (Woldorff, 1993). The order of target and non-target intervals 140 
within trials was counterbalanced. Trials of different target contrasts were intermixed and 141 
the order was randomized. Stimulus onsets and participant responses were recorded on the 142 
M/EEG trace using low-latency digital triggers. 143 
 144 
2.3 EEG data collection 145 
 146 
Event-related potentials were recorded using an ANT Neuroscan EEG system and a 64-147 
channel Waveguard cap with electrodes arranged according to the 10/20 system. The ground 148 
electrode was positioned at AFz, and a whole head average was used as a reference. Data 149 
were digitised at 1kHz using the ASALab software. Stimuli were presented on a ViewPixx 150 
display (VPixx Technologies Inc., Quebec, Canada) running in M16 mode (16-bit luminance 151 
resolution) with a mean luminance of 51cd/m2 and a refresh rate of 120Hz, using Matlab and 152 
elements of the Psychophysics Toolbox (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 153 
1997). The display was gamma corrected using a Minolta LS110 photometer, fitting the data 154 
with a 4-parameter exponential function, and transforming stimulus intensities using the 155 
inverse of the function to ensure linearity. 156 
 157 
Participants were seated in a darkened room 57cm away from the display. Instructions for 158 
the task were to ‘indicate the grating that appeared higher in contrast’. They were asked to 159 
fixate on a central cross throughout the task and used a mouse to indicate their responses. 160 
There were 200 trials per target contrast (1000 trials total, yielding 2000 stimulus-locked 161 
ERPs). The task was run in 5 blocks of approximately 8 minutes, with short breaks in between. 162 
 163 
2.4 MEG data collection 164 
 165 
MEG data were recorded using a 4D Neuroimaging Magnes 3600 Whole Head 248 Channel 166 
MEG scanner housed in a purpose-built Faraday cage. The data were recorded at 1017.25Hz, 167 
with 400Hz Bandwith using a High Pass DC filter. Nine channels were identified as having 168 
failed and were removed from all analyses. The location of the head inside the dewar was 169 
continuously monitored throughout the experiment using 5 position indicator head coils. 170 
Stimuli were presented on an Epson EB-G5900 3LCD projector (refresh rate 60Hz; mean 171 
luminance 160cd/m2) with a 2-stop ND filter, using Psychopy v1.84 (Peirce, 2007). The 172 
projector was gamma corrected using a Minolta LS110 photometer, fitting the data from each 173 
channel (red, green and blue) with a separate exponential function, and transforming 174 
stimulus intensities using the inverse of the function to ensure linearity. 175 
 176 
Participants were seated in a hydraulic chair in front of the projector screen in a dark room. 177 
Prior to the task the three dimensional shape of the participant’s head was registered using a 178 
Polhemus fast-track headshape digitization system. Five fiducial points were used for this over 179 
two registration rounds. If the distance in location between the first and second round was 180 
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>2mm, the registration was repeated. When successful, the headshape was then traced and 181 
recorded using a digital wand. This was later coregistered with T1-weighted anatomical MRI 182 
scans of each participant acquired in separate sessions using a 3T GE Signa Excite HDx scanner 183 
(GE Healthcare). 184 
 185 
Participants fixated on a small central cross throughout the task. The experiment was 186 
completed in a single block consisting of 240 trials per contrast condition (480 trials in total, 187 
yielding 960 stimulus-locked ERPs), with a total acquisition duration of around 20 minutes. A 188 
single hand response pad was used to make responses in the experiment. 189 
  190 
2.5 EEG data analysis 191 
 192 
EEG recordings were bandpass filtered (from 0.1Hz to 30Hz) and then epoched into 1 second-193 
long windows (200ms before stimulus onset to 800ms after) for each interval of every trial. 194 
Each epoch was then baselined at each electrode independently by subtracting the mean 195 
response over the 200ms preceding stimulus onset. ERPs were then sorted by target/non-196 
target intervals for stimulus classification analysis and then again by selected/non-selected 197 
intervals for decision classification. No artifact rejection was performed, as we have generally 198 
found in previous studies (e.g. Baker, 2017) that this has no material impact on classification 199 
accuracy when trial numbers are large, stimulus presentations are brief, and participants are 200 
adults (as here). 201 
 202 
To perform univariate analyses, ERPs were averaged across a cluster of 10 posterior 203 
electrodes (Oz, O1, O2, POz, PO3-8), and significance was determined using cluster corrected 204 
paired-samples t-tests across participants (Maris & Oostenveld, 2007). The significance of 205 
each cluster was determined by comparing to a null distribution of summed t-values derived 206 
by randomly permuting the labels of the largest cluster 1000 times. To perform multivariate 207 
analyses, a support vector machine (SVM) was used to classify the data independently at each 208 
sample point (i.e. in 1ms steps). A second stage of normalization was applied at each time-209 
point and each electrode by subtracting the mean response across all intervals and conditions 210 
for that time/sensor combination. The data were then randomly averaged in five subsets of 211 
40 trials for each category (target/non-target or selected/non-selected), of which four subsets 212 
were used to train the model and one was used to test it. The classifier algorithm creates a 213 
parameter space of all data points and then fits a hyperplane boundary that maximizes the 214 
distances between the support vectors of each category. Classifier accuracy for categorising 215 
the test data was averaged across 1000 repetitions of this analysis (with different random 216 
allocations of trials on each repetition), and was repeated for each target contrast condition. 217 
Timecourses of classifier accuracy were then averaged across participants, and periods of 218 
above-chance performance were determined using the same non-parametric cluster 219 
correction procedure as used in the univariate analyses (Maris & Oostenveld, 2007). 220 
 221 
2.6 MEG data analysis 222 
 223 
Cortical reconstruction and volumetric segmentation was performed with the Freesurfer 224 
image analysis suite (http://surfer.nmr.mgh.harvard.edu/) using each individual participant’s 225 
anatomical MRI scan. Initial MEG analyses were then performed in Brainstorm (Tadel, Baillet, 226 
Mosher, Pantazis, & Leahy, 2011). First the MEG sensor array was aligned with the anatomical 227 
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model of the participant’s head using an automated error minimisation procedure. 228 
Covariance matrices were estimated from the data, and a head model comprising overlapping 229 
spheres was generated. A minimum norm solution was used to calculate a source model, with 230 
dipole orientations constrained to be orthogonal to the cortical surface. The model consisted 231 
of a set of linear weights at each location on the cortical surface that transformed the sensor 232 
space representation into source space. 233 
 234 
MEG data were then imported into Matlab using Fieldtrip (Oostenveld, Fries, Maris, & 235 
Schoffelen, 2011), bandpass filtered (from 0.1Hz to 30Hz) and epoched. Univariate and 236 
multivariate analyses were performed in the same way as described for the EEG data in 237 
section 2.5. This was done using the sensor space representation (with 239 working sensors), 238 
the source space representation at approximately 500 vertices evenly spaced across the 239 
cortical mesh, and also within discrete regions of cortex defined by the Mindboggle atlas 240 
(Klein et al., 2017). For this latter analysis, the mean number of vertices in each cortical region 241 
is given in Table A1 in the Appendix. We conducted further analyses using multiple time-242 
points as observations, at a single spatial (sensor or cortical) location. 243 
 244 
3 Results 245 
 246 
3.1 Experiment 1: EEG reveals above-chance classification of percepts 247 
 248 
Mean event-related potentials (ERPs), averaged over the ten occipital electrodes where the 249 
changes in response from baseline were greatest (Figure 1a), showed a typical response to 250 
brief visual stimulation (black curve, Figure 1a). Clear ERPs were evident for all individual 251 
participants (thin traces, Figure 1a). In the grand average (black curve), two successive 252 
positive responses were evident over occipital electrodes at early time-points (126ms and 253 
225ms after stimulus onset), corresponding to stimulus onset and offset. A later time-point 254 
(594ms after stimulus onset) showed negative voltages in occipital areas and positive voltages 255 
in frontal electrodes (see upper headplots for voltage distributions). 256 
 257 
Task performance in the five target contrast conditions ranged from chance in the 0% target 258 
contrast condition (where there was no correct answer as the ‘target’ interval was 259 
determined arbitrarily) to close to ceiling in the 16% target contrast condition (94% correct). 260 
Average data (black line) and results for individual participants (thin traces) are shown in 261 
Figure 1b, where it is evident that increasing target contrast improved performance for all 262 
participants. We fitted cumulative Gaussian functions to each participant’s data to estimate 263 
threshold contrast at 75% correct. The mean threshold was 4.25%, with the distribution 264 
shown at the lower axis of Figure 1b. 265 
 266 
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 267 
Figure 1: Grand mean ERPs (a) and summary of psychophysical performance (b). The black trace in panel (a) 268 
shows the grand mean across all conditions and participants (N=22, with 2000 ERPs per participant), with the 269 
grey shaded region giving 95% confidence intervals derived from 10000 bootstrap resamples. Thinner coloured 270 
traces show results for individual participants. In all cases the evoked responses were averaged across the 10 271 
posterior electrodes shown in the lower left inset. The grey rectangle along the lower axis indicates the period 272 
during which the stimulus was presented. Scalp distributions of voltages at three time points (126ms, 225ms 273 
and 594ms, marked by dashed vertical lines) are shown at the top of the plot. The black line and coloured 274 
symbols in panel (b) show the mean psychophysical performance in each condition, averaged across participants 275 
(N=22), with the grey shaded region giving 95% confidence intervals derived by bootstrapping. Thinner coloured 276 
traces show results for individual participants, and symbol colour corresponds to those used to indicate target 277 
contrast conditions in subsequent figures. The grey curve at the foot shows the distribution of individual 278 
thresholds at the 75% correct point, with the black circle giving the mean, and error bars giving 95% confidence 279 
intervals. 280 
 281 
We first divided ERP data by contrast, and compared evoked responses in the null (pedestal 282 
only) and target (pedestal + target) intervals. The upper row of Figure 2a shows the ERPs 283 
averaged across occipital electrodes, with the null interval responses shown in black, and the 284 
target interval responses in colour. The middle row of Figure 2a shows the differences 285 
between these two ERPs, with horizontal lines at y=-1.5 indicating time points showing 286 
cluster-corrected significant differences. For a target contrast of 0%, the two stimuli are 287 
identical, and there are no meaningful differences between the waveforms (the two brief 288 
periods of significance are type I errors by definition). As target contrast increases, significant 289 
differences emerge between 100ms and 700ms post stimulus onset. These likely reflect both 290 
differences in early evoked responses, and also later decision-related components. 291 
Multivariate analyses across all 64 electrodes showed significant decoding only at the highest 292 
two target contrast levels (lower row of Figure 2a) within the same time window. 293 
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 294 
Figure 2: Univariate and multivariate analyses of EEG data. Panel (a) shows results for data partitioned according 295 
to the stimulus contrast (pedestal vs pedestal+target), and panel (b) shows results for data partitioned according 296 
to the participants’ perceptual decisions (selected vs non-selected). The upper section of each sub-plot contains 297 
grand averages of the ERPs being compared, in which the coloured curve indicates the target (or selected) 298 
waveform, and the black curve indicates the pedestal (or non-selected) waveform. The middle section of each 299 
sub-plot is the difference waveform. The lower section of each sub-plot shows multivariate classifier 300 
performance at each timepoint, where the baseline is 50% correct. In each panel, shaded regions show 95% 301 
confidence intervals across participants (N=22), calculated by bootstrapping. The coloured horizontal lines in the 302 
lower two sections indicate periods of time when the difference waveforms were significantly different from 0 303 
(middle plots) or exceeded 50% correct (lower plots), calculated using a nonparametric cluster correction 304 
procedure (Maris & Oostenveld, 2007). 305 
 306 
Next, we repeated the analyses on the same data, but this time organised according to the 307 
participant’s decisions rather than the physical stimulus contrast. In other words, we took 308 
ERPs from the intervals selected by the participants as appearing higher in contrast, and 309 
compared these with ERPs from the non-selected intervals. This analysis revealed additional 310 
time periods where the ERPs were significantly different, particularly in the 0% target 311 
condition, where differences were observed at around 100ms post stimulus onset. This 312 
finding was echoed in the multivariate analyses, which showed above chance decoding at 313 
early time points (around 100ms), as well as a sustained period of above chance decoding at 314 
all target contrasts from around 400-600ms post stimulus onset. The 0% target condition is 315 
of particular interest for this analysis, as any differences between evoked responses are not 316 
determined by the stimulus (which is identical in both intervals), and must be a consequence 317 
of differences in neural activity. The early significant clusters in both univariate and 318 
multivariate analyses indicate differences in the amplitude of the evoked response that 319 
influence subsequent perceptual decisions. Higher target contrasts increasingly converge 320 
with the contrast decoding analysis, as performance approaches ceiling (see Figure 1b) and 321 
the majority of selected intervals also contained the target (e.g. results for the 16% target 322 
condition are near identical in Figure 2a,b). 323 
 324 
We tested the generality of the multivariate results in two ways. First, we took the classifier 325 
trained to discriminate between perceptual decisions at the highest target contrast (16%), 326 
and used this model to predict performance at lower target contrasts. This analysis (shown in 327 
Figure 3a) replicates the early periods of above chance decoding for 0% target contrast trials, 328 
suggesting that observers use a similar decision strategy for very challenging discriminations 329 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 21, 2018. ; https://doi.org/10.1101/364612doi: bioRxiv preprint 

https://doi.org/10.1101/364612


as for easier ones. Next, we took the classifier trained at each time point, and used it to predict 330 
selected and non-selected trials at all other time points (King & Dehaene, 2014). The results 331 
of this temporal generalization analysis (shown in Figure 3b,c) reveal isolated early structures 332 
around 100ms and 200ms, and a more sustained pattern from 400-600ms (in the 0% 333 
condition) and from 200-800ms (in the 16% condition). We propose (see Discussion) that the 334 
early periods of above chance decoding may represent neural noise at the initial stages of 335 
processing, and the later periods could reflect noise in perceptual decisions or memory traces 336 
from the first temporal interval. 337 
 338 

 339 
Figure 3: Multivariate generalization analyses across contrast condition (a) and time (b,c), for data partitioned 340 
according to the participants’ perceptual decisions. Panel (a) shows classifier accuracy at the four lower target 341 
contrasts after training the algorithm at the highest target contrast. Plotting conventions are as described for 342 
the multivariate analyses shown in Figure 2. Panels (b,c) show classifier accuracy when trained at each time 343 
point independently, and then tested using data at all time points. Regions enclosed by green lines indicate 344 
clusters where classifier accuracy differed significantly from chance (50% correct).  345 
 346 
3.2 Interval biases and decoding within the first or second interval 347 
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 348 
The temporal structure of a 2IFC trial is necessarily asymmetric, as the observer has 349 
knowledge of the first interval by the time they experience the second interval. In addition, 350 
repetition suppression effects can affect the evoked amplitude of the second presentation 351 
(Grill-Spector, Henson, & Martin, 2006). We first compared the average ERPs for all pedestal-352 
only presentations (where the stimulus contrast was 50%) across the two intervals. We find 353 
both subtle and gross differences between these waveforms (see Figure 4a). Before stimulus 354 
onset, the waveforms differ as the second interval (green trace) has a decreasing voltage  355 
 356 

 357 
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Figure 4: Comparisons across trial intervals. Panel (a) shows evoked responses in the first (red curve) and second 358 
(green curve) intervals of a 2IFC trial (upper plot) and their difference (lower plot). The evoked response is 359 
generally more negative in the second interval, particularly at time points >250ms after stimulus onset, despite 360 
the contrasts being physically identical (both 50%). Panels (b,c) show multivariate pattern classifier accuracy 361 
when comparing evoked potentials time-locked to either the first interval (upper plots) or the second interval 362 
(lower plots), for target contrasts of 0% (panel b) or 16% (panel c). In each plot, the shaded grey region shows 363 
the presentation of the stimulus from that interval and the yellow shaded region shows the range of time points 364 
when the stimulus from the other interval was presented (the precise inter-stimulus interval was jittered on 365 
each trial to reduce entrainment of ERP averages). In all panels shaded regions around each curve show 95% 366 
confidence intervals across participants, and horizontal coloured lines indicate significant clusters, consistent 367 
with conventions in previous figures. 368 
 369 
during the 200ms before the stimulus is presented. This likely originates from the tail end of 370 
the evoked response from the first interval (see Woldorff, 1993), which is decreasing from 371 
400-600ms (the time window in which the second interval occurred). The second interval then 372 
has a more generally negative voltage throughout the 800ms following stimulus onset. The 373 
magnitude of this difference is much greater than that at stimulus onset, and so would persist 374 
even with a different baseline normalization regime (e.g. if the voltages were normalized to 375 
those at t=0). Furthermore, the differences become much more substantial at later time 376 
points, from 400-800ms. This may relate to the perceptual decision and motor response that 377 
the participant must make following the second interval.  378 
 379 
Do these substantial differences in the evoked response to two physically identical stimuli 380 
affect the observer’s perception of the stimulus, or their decision over which interval to 381 
choose? We estimated interval bias for all participants by calculating the proportion of trials 382 
on which the second interval was selected, for the 200 trials in the 0% target contrast 383 
condition (where the two stimuli are identical). If this index is significantly below 0.5, it 384 
indicates a bias towards the first interval, and if it is significantly above 0.5 it indicates a bias 385 
towards the second interval. Despite individuals showing idiosyncratic biases (indices ranged 386 
from 0.23 to 0.92), the mean bias index was precisely 0.5 (SD: 0.14) and not significantly 387 
different from it (t21=0.11, p=0.91). The substantial voltage differences (Figure 4a) therefore 388 
do not appear to reflect group level differences in the appearance of the stimuli across 389 
intervals, and any idiosyncratic biases would presumably only reduce the power of our 390 
decision-based decoding analyses (Figure 2b), which are nevertheless significant. 391 
 392 
The size of the voltage differences across intervals prompted us to investigate the extent to 393 
which decisions can be decoded within one or other interval, making comparisons across 394 
trials (within an interval) instead of across intervals (within a trial). The finite number of trials, 395 
combined with the presence of interval biases for some observers (see above) meant that 396 
there were often different numbers of trials available in the two intervals, so it was necessary 397 
to train and test the classifier on averages of fewer than 40 trials in some cases. The results 398 
of this multivariate analysis are shown in Figure 4b/c for decoding perceptual decisions at 0% 399 
contrast (Fig 4b) and at 16% contrast (Fig 4c), and for all conditions in Figure A1. In each sub-400 
plot, the upper trace shows the classifier performance for data from interval 1 (with ERPs 401 
aligned at t=0ms), and the lower trace shows the classifier performance for data from interval 402 
2 (with ERPs aligned at t=500ms). The yellow shaded regions indicate the time window when 403 
the stimulus in the other interval was displayed (the jittered inter-stimulus interval means 404 
that this time window is probabilistic rather than exact). Overall, we find increased decoding 405 
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accuracy in the second interval compared with the first. This presumably reflects the 406 
increased information available for making a decision following the second stimulus. 407 
 408 
3.3 Experiment 2: source space decoding is more sensitive than sensor space decoding 409 
 410 
We confirmed that our MEG data replicated the key effects from Experiment 1 in several 411 
ways. First, we performed univariate and multivariate analyses in sensor space, using a cluster 412 
of posterior sensors for the univariate analysis, and all working sensors (N=239) for the 413 
multivariate analysis. The results of this analysis are shown in Figure 5a,c for the data split by 414 
participants’ perceptual decisions. Consistent with the EEG results, we find above chance 415 
pattern classification at early time points (~100ms) as well as later >200ms. Second, we 416 
performed complementary analyses in MEG source space, using ERPs from pericalcarine 417 
cortex (corresponding to early visual cortex) for the univariate analyses, and a subset of 500 418 
vertices across the entire cortical surface for the multivariate analyses. The results of this 419 
analysis are shown in Figure 5b,d. The general pattern of results is consistent with the sensor 420 
space analysis, though the shape of the ERP waveforms from pericalcarine cortex is somewhat 421 
different from those recorded in sensor space, with the peaks of the onset and offset 422 
response appearing more prominent, and the response returning to baseline by around 423 
500ms. Interestingly, we found that the multivariate analysis produced greater classification 424 
accuracy in source space (maximum of 80% correct) versus sensor space (maximum of 72% 425 
correct). We discuss possible reasons for this in the Discussion. Having confirmed that the 426 
multivariate source space analysis can decode perceived contrast, we next asked which brain 427 
regions contained information relevant to the task. 428 
 429 

 430 
Figure 5: Sensor space and source space MEG analysis. Panel (a) shows the grand average ERP for all conditions 431 
and participants, pooled across a subset of MEG sensors indicated in black in the leftmost inset. Magnetic field 432 
distributions across the sensor array are shown at three time points at the top of the plot. Panel (b) shows a 433 
similar analysis in source space, for a region of cortex around the calcarine sulcus (highlighted black in the 434 
leftmost inset). The evoked response at each vertex on the cortical mesh was normalised such that the 110ms 435 
deflection was always positive, to avoid signal cancellation due to polarity inversions. In both panels, thin 436 
coloured curves represent individual participants (N=10). Panels (c,d) show univariate and multivariate 437 
comparisons between selected and non-selected ERPs in both contrast conditions, in the same format as 438 
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described for Figure 2. Panel (c) shows this analysis in sensor space, and panel (d) shows the same analysis in 439 
source space. The source space multivariate analyses used a matrix of around 500 points distributed across the 440 
surface of the cortex. 441 
 442 
3.4 Classification in anatomically-defined brain regions 443 
 444 
We divided the cortex into 31 discrete non-overlapping anatomical regions using the 445 
Mindboggle atlas (Klein et al., 2017). Maximal evoked potentials in these regions showed 446 
clear differentiation (see Figure A2). Because regions differed in size, each area contributed a 447 
different number of vertices on the cortical mesh for pattern classification (see Table A1).  448 
 449 
At early time points, around 100ms, information in three adjacent regions around the 450 
occipital pole (the peri-calcarine region, the cuneus and the lateral occipital cortex) could be 451 
used to decode the participant’s percept in the 0% target contrast condition (final three traces 452 
in Figure 6a). Over time, this information spread forward to frontal and temporal cortex (see 453 
Figure 6c). By 300ms following stimulus onset, almost the entire brain contains information 454 
relevant to the task. This includes regions that do not appear to respond directly to 455 
presentation of visual stimuli (i.e. where there is no obvious evoked response, see Figure A2). 456 
A similar pattern of results is evident in the 16% target contrast condition (see Figure A3), 457 
confirming our earlier finding that differences in physical and perceived contrast are 458 
processed in a similar fashion. 459 
 460 
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 461 
Figure 6: Atlas-based classification of decisions in the 0% target condition. Timecourses in panel (a) indicate 462 
classifier performance for each brain region, offset vertically for clarity, and organised from anterior (top) to 463 
posterior (bottom) (see legend in panel b). Shaded regions in panel (a) indicate clusters in which classification 464 
performance was significantly above chance (Bonferroni corrected for 31 brain regions). In panel (c), regions 465 
containing significant clusters within a given time window are shown in blue. 466 
 467 
4 Discussion 468 
 469 
The present study investigated the timecourse and location of perceptually relevant neural 470 
noise in contrast discrimination, using univariate and multivariate analysis of EEG and MEG 471 
data. Our results show that perceptual decisions are partly determined by responses in early 472 
visual cortex even when the two stimuli in a discrimination task are physically identical. This 473 
indicates that perceptually relevant neural noise impacts at the initial stages of processing 474 
and affects stimulus encoding in the visual system. However the best classifier performance 475 
occurred at later time points (>400ms), suggesting that additional sources of noise might also 476 
be involved. Analysis of differences across trial intervals revealed that neural activity in the 477 
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second interval was more closely associated with subsequent decisions. We will now discuss 478 
the implications of these finding for our understanding of how neural activity (both evoked 479 
and spontaneous) influences the perceptual decisions involved in sensory discrimination. 480 
 481 
4.1 Superior classification in MEG source space 482 
 483 
Classifier performance overall was much higher for MEG data than for EEG data in identical 484 
conditions, despite the larger sample size of the EEG study (N=22 for EEG vs. N=10 for MEG). 485 
This is presumably due to the greater intrinsic sensitivity of MEG sensors, and the greater 486 
sampling density across the scalp (N=64 for EEG vs. N=239 for MEG). Classifier accuracy was 487 
also consistently higher in source space than in the sensor space representation primarily 488 
used in previous MEG studies (Cichy, Pantazis, & Oliva, 2014; Clarke, Devereux, Randall, & 489 
Tyler, 2015; Mostert, Kok, & de Lange, 2016). Since the source space representation is a 490 
weighted linear combination of activity at the sensors, this might be somewhat surprising. 491 
However, the source reconstruction presumably weights out signals from outside the brain 492 
(e.g. heart rate, breathing and blinking artefacts, and noise from outside of the scanner), 493 
resulting in a cleaner signal. Some form of source localisation may therefore be a useful 494 
processing step in future studies attempting multivariate classification of MEG signals. 495 
Additionally, combining the source space representation with atlas-based multivariate 496 
analysis permits questions to be asked about the information contained in specific brain 497 
regions at different points in time. 498 
 499 
4.2 Single interval versus 2IFC 500 
 501 
One distinction between this and most previous studies on the neural correlates of perceptual 502 
decision making is that previous work has used single interval (yes/no) paradigms 503 
(Hesselmann, Kell, Eger, & Kleinschmidt, 2008; Hillyard, Squires, Bauer, & Lindsay, 1971; Jolij, 504 
Meurs, & Haitel, 2011; Mostert et al., 2016; Ress & Heeger, 2003; Schölvinck, Friston, & Rees, 505 
2012; Squires, Squires, & Hillyard, 1975), whereas here we used a 2IFC design. Since most 506 
psychophysical studies of contrast discrimination have used 2IFC, this choice has direct 507 
relevance to previous work. Additional benefits are that the number of evoked potentials in 508 
the selected and non-selected categories were necessarily balanced, and it was possible to 509 
analyse perceptual decisions based on two physically identical stimuli. In addition, 2IFC 510 
designs avoid problems with differences in bias (or response criteria) between participants, 511 
as pairs of stimuli are compared directly on a given trial (rather than against an internal 512 
standard). However, 2IFC cannot distinguish between hits and correct rejections (as these 513 
comprise ‘correct’ trials) or between misses and false alarms (incorrect trials), so direct 514 
comparisons of these trial categories is not possible in our design.  515 
 516 
Another feature of 2IFC paradigms is that participants must hold information about the 517 
stimulus from the first interval in memory until after the second stimulus has been presented. 518 
This process may account for the sustained patterns of activity that permit classification long 519 
after stimulus presentation (see Figures 2-6). In particular, our analysis of interval-specific 520 
effects (see Figure 4b,c) shows greater multivariate decoding accuracy in the second interval, 521 
presumably because at this point in the trial the observer has obtained all information 522 
necessary to make a decision. 523 
 524 
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4.3 Multiplicative noise 525 
 526 
An alternative account of contrast discrimination performance at high pedestal contrasts is 527 
that transduction is linear but internal noise is signal-dependent (Pelli, 1985). If the dominant 528 
source of noise were early and multiplicative, this would avoid any issues relating to Birdsall’s 529 
theorem, as the transducer could be linear. It has proven difficult to distinguish between the 530 
multiplicative and additive noise accounts purely from contrast discrimination experiments 531 
(Georgeson & Meese, 2006; Kontsevich, Chen, & Tyler, 2002). At a single neuron level there 532 
is well-established evidence of multiplicative noise (Tolhurst, Movshon, & Dean, 1983), yet it 533 
appears that across populations of neurons with different sensitivities the overall noise is 534 
effectively additive (Chen, Geisler, & Seidemann, 2006). Since evidence from fMRI (Boynton 535 
et al., 1999), EEG (Busse et al., 2009) and psychophysics (Kingdom, 2016) all argue strongly 536 
against a linear transducer, we think this explanation is unlikely to account for the body of 537 
available data.  538 
 539 
4.4 Resolving early noise and Birdsall’s theorem 540 
 541 
Early noise has typically been considered at very early stages, including photoreceptor noise 542 
in the retina (Barlow, 1962), which can be considered as external noise (albeit in a different 543 
sense from experimentally added external noise, as it is not under the direct control of the 544 
experimenter). Late additive noise is often assumed (either implicitly or explicitly) to be added 545 
at the decision stage, long after the nonlinearities of early visual processing (Cabrera, Lu, & 546 
Dosher, 2015; Mueller & Weidemann, 2008). The results here point to a perceptually-relevant 547 
source of noise that is present in the early evoked response, at around 100ms or earlier. 548 
However we find that classification performance improves after this point in processing, 549 
reaching a maximum around 700ms after target onset (see Figure 3e). In addition, our 550 
temporal generalisation analysis (see Figure 3b,c) shows that these two time windows involve 551 
distinct patterns of electrical activity, implying separate sources of noise. This is consistent 552 
with a sequence of multiple (and presumably independent) noise sources at different stages 553 
of processing. Since mathematical treatment of complex systems involving multiple 554 
nonlinearities and noise sources is currently lacking, it is unclear what implications this would 555 
have for the visibility of early nonlinearities. 556 
 557 
One possibility is that a strong source of noise occurs immediately after the initial contrast 558 
transduction nonlinearity in V1, leaving that nonlinearity visible but obscuring later ones. This 559 
would explain why psychophysical contrast perception maps closely onto the neural response 560 
from early visual areas (Baker & Wade, 2017; Barlow, Hawken, Parker, & Kaushal, 1987; 561 
Boynton et al., 1999), but not the highly compressive contrast-invariant response in later 562 
regions (Avidan et al., 2002; Rolls & Baylis, 1986). Indeed, this might enable the visual system 563 
to harness the properties of Birdsall linearisation to preserve the dynamic range of early 564 
representations through later processing (that is more compressive) when making 565 
comparisons across stimuli (as in a discrimination paradigm). Object recognition, and other 566 
operations that benefit from invariance to features such as contrast, position and size, but do 567 
not require comparisons across multiple stimuli, would be immune to the Birdsall effect and 568 
benefit from the later nonlinearities. Furthermore, a strong early source of noise would make 569 
the study of later ‘mid-level’ visual processes much more challenging, perhaps explaining why 570 
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vision research has typically focussed on earlier mechanisms and can be caricatured as being 571 
‘stuck’ in V1 (Graham, 2011; Peirce, 2007). 572 
 573 
In order to investigate these possibilities further, we performed two additional analyses. To 574 
link the internal fluctuations measured in our experiments with a psychophysical measure of 575 
internal noise, we correlated classifier accuracy with the contrast discrimination thresholds 576 
estimated from the psychophysical responses in Experiment 1. Since high internal noise 577 
should result in higher discrimination thresholds (poorer performance), we predicted that the 578 
two measures would be correlated at time points where the neural fluctuations were most 579 
relevant to perception. This analysis is shown in Figure 7, and reveals a time window with 580 
significant negative correlations around 450-650ms (i.e. high thresholds correspond to poor 581 
classifier performance). We speculate that neural noise within this time window most closely 582 
corresponds to the ‘late’ additive noise that is a feature of contemporary models of contrast 583 
discrimination. However it is also possible that other factors mediate this relationship, 584 
including the interval bias described in the Results section which could inflate negative 585 
correlations by driving thresholds up and classifier performance down. Nevertheless, it is 586 
interesting to demonstrate a link between psychophysical thresholds and decoding of neural 587 
responses. 588 

 589 
Figure 7: Correlation between individual contrast discrimination thresholds (see distribution in Figure 1b) and 590 
classifier accuracy in the 0% target contrast condition of Experiment 1 (N=22). Panel (a) shows the correlation 591 
as a function of time. The horizontal black lines at r=0.5 denote clusters of significant effects (two-tailed), 592 
according to a nonparametric cluster correction procedure (Maris & Oostenveld, 2007). Grey shaded regions 593 
represent bootstrapped 95% confidence intervals calculated across participants, and the lower grey rectangle 594 
shows the period when the stimulus was displayed. To further illustrate this relationship, panel (b) shows a 595 
scatterplot of the correlation between thresholds and the averaged classifier performance within all significant 596 
clusters identified in (a). The diagonal line is the best fitting Deming regression line, with grey shaded regions 597 
showing bootstrapped 95% confidence intervals, and blue and yellow histograms showing the distribution of 598 
values for each measure. 599 
 600 
The final analysis we performed was inspired by the suggestions of an anonymous reviewer, 601 
who pointed out that in our main multivariate analyses, although the classifier is always 602 
trained on information from both trial intervals, test data are supplied from one interval at a 603 
time. This means that the classifier’s decisions differ from those of human participants, who 604 
in a 2IFC paradigm always have information available from both trial intervals. We conducted 605 
further multivariate analyses, by training and testing the classifier on downsampled 606 
timecourses of entire 2IFC trials combined across both intervals (to account for the jittered 607 
ISI, each interval was aligned to its respective trigger). 608 
 609 
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The results of this analysis are shown in Figure 8 for the EEG experiment (Figure 8a,c), and for 610 
the MEG experiment in both sensor space (Figure 8b,d) and source space (Figure 8e,f). All 611 
data sets produced above-chance classification at some sensors and brain regions, indicating 612 
that patterns across time were able to discriminate neural states. For the 16% target contrast, 613 
early visual areas at the occipital pole showed high classifier accuracy (Figure 8f), consistent 614 
with the salient target contrast increment producing greater ERP amplitudes in the target 615 
interval (see Figures 2 & 5). For the 0% target contrast condition, accuracy in early visual 616 
regions was relatively poor, and the highest accuracy was in fronto-parietal regions (Figure 617 
8e). This suggests that the most important signals for classifying decisions in this condition 618 
arise after the initial responses in visual brain areas. The later sustained response from around 619 
400ms onwards (see Figures 2b & 3b) seems more consistent with the brain regions producing 620 
significant decoding here. These additional analyses suggest that the internal noise sources 621 
most relevant for contrast discrimination performance occur subsequent to the initial visual 622 
cortical responses, and are therefore more consistent with models of ‘late’ noise than with 623 
early internal (or unintended external) noise. 624 
 625 

 626 
Figure 8: Whole-trial pattern classification accuracy in sensor space and source space. Entire time courses of 627 
both 2IFC intervals were categorised according to participant percepts (selected vs non-selected), and 628 
downsampled in steps of 10ms. Classifier accuracy was averaged across participants at individual electrodes in 629 
the EEG experiment (panels a,c), in sensor space in the MEG experiment (panels b,d) and at 15000 vertices on 630 
the cortical surface in source space in the MEG experiment (panels e,f). Sensors comprising significant clusters 631 
are marked by green points in panels a-d, and vertices not part of significant clusters are coloured grey in panels 632 
e,f. 633 
 634 
4.5 Conclusion 635 
 636 
To summarise, in this study we investigated the timecourse of the neural operations involved 637 
in contrast discrimination. We demonstrated that internal noise impacting early in time 638 
(around 100ms after stimulus onset) and in the visual pathway can affect sensory processing 639 
and perceptual decisions. However, the strongest internal noise source was later (around 640 
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400-700ms), involved parietal and frontal brain regions, and was correlated with 641 
psychophysical thresholds. Our novel application of multivariate analysis methods to discrete 642 
spatial regions of MEG source space offers the capability of studying how the brain represents 643 
information in both space and time. 644 
 645 
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6 Appendices 776 
 777 
Table A1: Numbers of vertices on the cortical mesh. Individual regions were taken from a mesh consisting of 778 
around 3000 vertices, and pooled across hemispheres. The ‘whole brain’ mesh (final row) was subsampled to 779 
around 500 vertices. Precise numbers of vertices varied across individual participants owing to individual 780 
differences in brain size and morphology. Entries in the ‘Colour’ column correspond to the colours used in 781 
Figures 6, A2 & A3. 782 

Region Colour Mean size Minimum size Maximum size 
Rostral Middle Frontal  157 145 173 
Superior Frontal  342 317 384 
Rostral Anterior Cingulate  31 27 37 
Lateral Orbitofrontal  100 83 113 
Medial Orbitofrontal  53 45 62 
Pars Triangularis  63 56 69 
Pars Orbitalis  31 27 35 
Caudal Anterior Cingulate  29 25 34 
Pars Opercularis  53 43 61 
Caudal Middle Frontal  75 59 91 
Insula  60 53 69 
Entorhinal  16 9 25 
Pre-central  140 124 155 
Superior Temporal  166 150 183 
Posterior Cingulate  38 32 45 
Transverse Temporal  9 6 11 
Post-central  142 130 156 
Para-central  48 41 61 
Middle Temporal  134 123 152 
Parahippocampal  21 17 25 
Inferior Temporal  118 96 149 
Supramarginal  123 102 155 
Isthmus Cingulate  28 23 34 
Fusiform  81 73 87 
Precuneous  119 93 140 
Superior Parietal  148 136 168 
Inferior Parietal  149 131 157 
Lingual  101 69 125 
Cuneus  67 58 74 
Peri-calcarine  38 24 45 
Lateral Occipital  162 139 181 
Whole brain  503 503 504 
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 787 
Figure A1: Interval-based MVPA analysis for all target contrast conditions, and for both contrast-based decoding 788 
(a) and decision-based decoding (b). Plotting conventions are consistent with Figure 4b,c. 789 
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 790 
Figure A2: Maximal evoked responses in different anatomical regions. Each trace in panel (a) plots the 791 
timecourse of the vertex in the named region (see legend in panel (b)) with the largest absolute deflection from 792 
baseline. Panel (c) shows absolute activity averaged across four time windows, demonstrating that the majority 793 
of activity occurs in occipito-temporal regions. 794 
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 796 
Figure A3: Atlas-based classification of decisions in the 16% target condition. Plotting conventions mirror those 797 
of Figure 6. 798 
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