










Figure 2: Evaluation of the three imputation approaches at genomic positions that show vari-
ation in signal across cell types. (a) A schematic describing how genomic loci are segregated on an
example of four cell types. MACS2 peak calls (in gray) are summed over each of the cell type. Genomic loci
are then evaluated separately based on the number of cell types in which a peak occurs. (b) Each panel plots
a specified performance measure (y-axis) across varying sets of genomic positions (x-axis) for the H3K4me3
assay. For each point, genomic positions are selected based on the number of cell types in which a peak
is called at that position, up to a maximum of 127. MSE is calculated between H3K4me3 ChIP-seq signal
and the corresponding imputed signal. Precision and recall are computed by thresholding the ChIP-seq
signal at 1.44. In the plots, the series labeled “Roadmap” use the observed Roadmap data with peaks called
by MACS2. (c) Similar to (b), but using DNAse-seq instead of H3K4me3. All analyses are restricted to
chromosome 20.

Figure 3: The evaluation procedure for each task. For each cell type and feature set combination,
20-fold cross validation is performed and the MAP across all 20 folds is returned. At each evaluation, a
gradient boosted decision tree classifier is trained on 18 of the folds, convergence is monitored based on
performance on a 19th fold, and the performance of the resulting model is evaluated on the 20th fold.
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model for one task and then applying the model (or components thereof) to some other task. Specifically, we
hypothesize that Avocado’s latent representation can serve as a replacement for epigenomic data as the input
for machine learning models across a variety of genomic prediction tasks. One reason that transfer learning
may be beneficial in this case is that many genomic phenomena are associated with epigenomic signals, and
so a representation trained to predict these signals is also likely to be associated with these phenomena.

We then investigated whether Avocado’s latent representation has implicitly encoded four different types
of important biological activity: gene expression, promoter-enhancer interactions, replication timing, and
FIREs. These tasks span a diversity of biological phenomena and data sources to ensure that our findings
are robust. For each task we train a supervised machine learning model (Section 4.6) using one of seven
feature sets: (1) all available ChIP-seq assays for the cell types being considered, (2–4) the set of 24 assays
imputed by each of the three methods, (5) the genomic position factors from the single model of PRE-
DICTD’s ensemble that is highlighted in Figure 3 of Durham et al. [5], (6) the genomic position factors in
Avocado’s latent representation, or (7) the full set of 1,014 ChIP-seq and DNase-seq assays available in the
Roadmap compendium (Figure 3). We include the full set of assays from the Roadmap compendium as a
baseline feature set because the Avocado latent representation is learned from this full set, allowing us to
test our hypothesis that the learned representation preserves cellular variation while removing redundancy
and technical noise. Additionally, we include PREDICTD’s learned latent representation to investigate its
utility relative to the Avocado latent representation. Lastly, we compare these models to a majority baseline
where our prediction for each sample is simply the most prevalent label. We hypothesize that, should the
latent representation encode these phenomena well, that the models trained using the latent representation
as input will outperform those trained using the other feature sets. Note that the Avocado latent represen-
tation is extracted from a model that is trained on the full Roadmap data set. For three of these tasks we
use a gradient boosting classifier for this evaluation due to this technique’s widespread success in machine
learning competitions [15, 16], with a partial list of top performance on Kaggle competitions available at
https://bit.ly/2k7W3Jh.

2.3.1 Gene expression

The composition of histone modifications present in the promoter region of a gene can be predictive of whether
that gene is expressed as measured by RNA-seq or CAGE assays. Accordingly, several prior studies have
shown that machine learning models can learn associations between these histone marks and gene expression.
Because RNA-seq experiments are cheap enough to be performed in any cell type of interest, the typical goal
of building a machine learning model is not to replace RNA-seq but to better understand the mechanism
behind gene expression. While it may be difficult to explain this mechanism through the interaction of
complex latent factors, performing well at this task indicates that complex regulatory information comprised
of multiple epigenomic marks is being encoded in the latent factors. Furthermore, a gene expression predictor
may be useful in hypothesis generation settings, to assist in prioritizing potential RNA-seq experiments or
in investigation of the expression behavior of a small number of genes across many cell types for which
epigenomic data has been generated. These studies have approached the problem either as a classification
task, where the goal is to predict a thresholded RNA-seq or CAGE-seq signal [17, 18], or a regression task,
where the goal is to predict RNA-seq or CAGE-seq signal directly [19].

We approach the prediction of gene expression as a classification task and evaluate the ability of the
different feature sets derived from the promoter region of a gene to predict whether or not that gene is
expressed. This evaluation is carried out in a 20-fold cross validation setting in each cell type individually,
and we report the mean average precision (MAP), which is one technique for calculating the area under a
precision-recall curve, across all 20 folds. Genes are considered to be active in a cell if the average RNA-seq
value across the gene body is greater than 0.5.

We find that the Avocado latent factors yield the best models in 34 of 47 cell types (Fig. 4a, Supplementary
Table S2). In 11 of these 13 cell types, models trained using the Avocado latent factors are only beaten by
those trained using the full Roadmap compendium, and in two cell types (E053 and E054; Cortex derived
and ganglionic eminence derived neurosphere cultured cells) Avocado is also beaten by models trained using
ChromImpute’s imputed epigenomic marks. In no cell type do models trained using the primary data,
the typical input for this prediction task, outperform those trained using the Avocado latent representation
(unadjusted two-sided paired t-test p-value of 4.62e-153), performing worse by between 0.005 and 0.148 MAP.
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Figure 4: The performance of each feature set when used to for genomic prediction tasks. In each task, a
supervised machine learning model is evaluated separately for each cell type using a 20-fold cross-validation
strategy, with the mean average precision reported and standard error of the mean shown in the error bars.
Each task considers only genomic loci in chromosomes 1 through 22. The tasks are predicting (a) expressed
genes, (b) promoter-enhancer interactions, (c) replication timing, and (d) FIREs. In panel (a) the coloring
corresponds to the standard error with the mean average precision lying in the middle, whereas in the other
panels the mean average precision is shown as the colored bar with standard error shown in black error bars.
The statistical significances of differences observed in this figure are assessed in Supplementary Tables S2–S5.
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Additionally, models built using Avocado’s latent representation outperform those built using PREDICTD’s
latent representation in every cell type, ranging from an improvement of 0.002 to an improvement of 0.087
(p-value of 3.86e-101). Overall, the models built using the Avocado latent factors perform 0.006 MAP
better than those built using the full Roadmap compendium (p-value of 9.75e-21) and only perform 0.001
MAP worse, on average, in those 13 cell types where they perform worse. While this improvement initially
appears to be minor, we note that all feature sets yield models that perform extremely well in most cell
types, suggesting that there are cell types where gene expression prediction is simple and those in which it
is difficult. Accordingly, when focusing on cell types where prediction is more difficult we notice that the
difference in performance between the feature sets is more pronounced. Indeed, when we consider the seven
cell types where the majority baseline is lowest, we find that those models trained using the Avocado latent
factors outperform those trained using the full Roadmap compendium on average by 0.026 MAP and those
built using only Roadmap measurements for a specific cell type by 0.107 MAP. These results show that
models built using the Avocado latent representation outperform or are comparable to any other feature set
considered.

2.3.2 Promoter-enhancer interactions

One of the many ways that gene expression is regulated in human cell lines is through the potentially long-
range interactions of promoters with enhancer elements. Physical promoter-enhancer interactions (PEIs) can
be experimentally identified by 3C-based methods such as Hi-C or ChIA-PET. However, the resolution of
genome-wide 3C methods can be problematic because high resolution contact maps are expensive to acquire.
Consequently, predicting PEIs from more widely available and less expensive data types would be immensely
valuable. Accordingly, a wide variety of methods for predicting PEIs have been proposed (reviewed by Mora
et al. [20]), including those that pair enhancers with promoters using distance along the genome [21], that use
correlations between epigenetic signals in the promoter and enhancer regions [22–24], and that use machine
learning approaches based on epigenetic features extracted from both the promoter and enhancer regions [8].

We consider the task of predicting physical PEIs as a supervised machine learning problem using features
derived from both the promoter and enhancer regions. We employ a set of PEIs that were originally created
for training TargetFinder [8], a machine learning model that predicted whether given promoter-enhancer
pairs interact with each other using epigenomic measurements derived from both regions. These PEIs
correspond to ChIA-PET interactions from each of four cell types (HeLa-S3, IMR90, K562, and GM12878)
in chromosomes 1 through 22. We further process this data set to remove a source of bias that has been found
since the publication of the original data set [25] (Supplementary Note 3). TargetFinder was not developed
to predict interactions in cell types for which contact maps have not been collected, but rather to better
understand the connections within existing contact maps. Likewise, we train our classifier to predict PEIs
within each cell type, evaluating a regularized logistic regression model in a cross validation setting. For
comparison, we use the same collection of real and imputed data types that we used for the gene expression
prediction task.

We find that models trained to predict PEIs using the Avocado latent factors perform better than any
other feature set that we considered (Fig. 4b) in IMR-90, GM12878, and HeLa-S3. In K562 using the Avocado
latent factors is second only to using the PREDICTD latent factors. These improvements in average precision
over the full Roadmap compendium range from 0.007 in K562 to 0.035 in HeLa-S3 (p-values ranging from
6.97× 10−18 to 9.45× 10−32, Supplementary Table S3). Interestingly, the PREDICTD latent representation
also outperforms the full Roadmap compendium in every cell type (p-value of 2.43× 10−22).

2.3.3 Replication timing

The human genome replicates in an orderly replication timing program, in a process that is associated with
gene expression and closely linked to the three dimensional structure of the genome [26, 27]. Patterns of
replication timing along the genome can be quantified using experimental assays such as Repli-Seq [28], which
can be used to segregate loci into early- and late-replicating regions. Because of the slowly varying nature
of replication timing along the genome, we choose to make predictions of early- and late-stage replication at
40 kbp resolution.

Consistent with previous tasks, the Avocado latent representation outperforms both primary and imputed
epigenomic data from the cell type of interest (Fig. 4c). However, in contrast to the previous tasks, the Av-
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ocado and PREDICTD latent representations perform similarly to each other. While the Avocado latent
representation yields models whose improvement over the PREDICTD latent representation is statistically
significant (p-value of 0.004, Supplementary Table S4), the effect is small (average precision of 0.9453 vs
0.9442). Further, models that use the full Roadmap compendum yield the best performing models. Taken
together, these results suggest that using epigenomic measurements across several cell types can be informa-
tive for making predictions even for a single cell type. Additionally, it appears that aggregating these latent
spaces to a much coarser resolution (from 25 bp to 40 kbp) may sacrifice valuable information.

2.3.4 Frequently interacting regions

The three-dimensional structure of the genome can be characterized by experimental techniques that iden-
tify contacts between pairs of loci in the genome in a high-throughput manner. In particular, the Hi-C
assay [29] produces a contact map that encodes the strength of interactions between all pairs of loci in the
genome. Within a typical contact map, blocks of increased pairwise contacts called “topologically associat-
ing domains” (TADs) segment the genome into large functional units, where the boundaries are enriched for
house-keeping genes and certain epigenetic marks such as the CTCF transcription factor [30]. Recently, a
related phenomenon, called “frequently interacting regions” (FIREs), has been identified [9]. These regions
are enriched for contacts with nearby loci after computationally accounting for many known forms of bias
in experimental contact maps. FIREs are typically found within TADs and are hypothesized to be enriched
in super-enhancers [9].

Accordingly, we investigate the utility of the Avocado latent representation in predicting FIREs. Our
gold standard is derived from Hi-C measurements in seven human cell types at 40 kbp resolution [9]. We
frame each task as a binary prediction task, classifying each genomic locus as a FIRE or not. Note that any
state-of-the-art predictive model for elements of chromatin architecture would likely include CTCF data,
because this mark is highly enriched at structural elements. However, we do not include this factor in our
feature set because transcription factors were not included in the Roadmap compendium and thus not used
to train the Avocado model. Further, our goal is not to train a state-of-the-art model for predicting FIREs,
but to evaluate the relative usefulness of these feature sets.

The results for predicting FIREs are similar to the results from the replication timing task, with models
trained using the Avocado latent factors outperforming both those trained using cell type specific epigenomic
data (p-value of 6.13 × 10−8) and the PREDICTD latent factors (p-value of 2.4 × 10−4) (Fig. 4d and
Supplementary Table S5). The models trained using the full Roadmap compendium outperform those that
use the Avocado latent factors in every cell type except H1 (p-value of 1.85 × 10−33). This observation
suggests that the inclusion of epigenomic measurements across cell types is important when predicting
elements of chromatin architecture, as it was for replication timing, but further suggests that aggregations
of these factor values across large genomic loci is not as informative as it was for predicting gene expression
or promoter-enhancer interactions.

2.4 Avocado’s genomic representation encodes most peaks
We next aim to understand why the Avocado latent representation is such an informative feature set across
a diversity of tasks. A well-known downside of neural networks is that they are not as easily interpretable
as simpler models due to the larger number of parameters and non-linearities involved in the model. In
order to understand these models better, feature attribution methods have recently emerged as a means to
understand predictions from complex predictive models. These methods, such as LIME [31], DeepLIFT [32],
SHAP [33], and integrated gradients [34], attempt to quantify how important each feature is to a specific
prediction by attributing to it a portion of the prediction. A useful property of these attributions is that
they sum to the resulting prediction, or the difference between the prediction and some reference value.

We chose to inspect the Avocado model using the integrated gradients method, due to its simplicity, in
order to understand the role that the various factors play in making predictions. When we run integrated
gradients, the input is the set of concatenated latent factors that would be used to make a prediction at
a specific position, and the output is the attribution to each factor for that prediction, specifically, the
imputed signal at a genomic position for an assay in a cell type. However, the individual factors are unlikely
to correspond directly to a distinct biological phenomena. Conveniently, since the attributions sum to the
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Figure 5: The predicted H3K4me3 signal and corresponding attributions for two cell types in the same
region of chromosome 20. (a) The prediction and attributions for GM12878, where a tall peak on the right
is paired with two much smaller peaks to the left. Many short regions have a positive genomic attribution
but a negative cell type attribution that masks them. (b) The prediction and attributions for deuodenum
smooth muscle. A prominent peak is now predicted on the left, corresponding with a swap from a negative
cell type attribution to a positive one. The same short regions that previously were masked by the cell type
attributions now have positive cell type attributions and exhibit peaks in the imputed signal.

final prediction (minus a reference value), we can sum these attributions over all factors belonging to each
component of the model. This aggregation allows us to divide the imputed signals into the cell type, assay,
and the three scales of genome attributions.

Upon inspection of many genomic loci, most peaks are encoded in the genomic latent factors, while the
cell type and assay factors serve primarily to sharpen or silence peaks. An illustrative example of the role
each component plays is to consider a pair of nearby regions in chromosome 20 where a H3K4me3 peak with
high signal is imputed near a much weaker peak for GM12878 with a very narrow spike between them (Fig 5a)
Within the imputed peaks the genome factors predominantly increase the signal, whereas the assay factors
appear to increase the signal at the cores of both peaks but dampen the signal on the flanks, effectively
sharpening the peaks. Interestingly, the weaker peak appears to have a more prominent signal from the
genomic latent factors that is mitigated by a large negative signal from the cell type axis. This indicates to
us that this region exhibits a peak in some cell types but is being silenced in GM12878. To confirm that
this region engages in a peak in some cell types we looked at the same region in deuodenum smooth muscle
cells (E078, Fig 5b) and observed a strong peak (maximum value 3.70 compared to 1.05 in GM12878) that
is bolstered by the cell type factors. In addition, there are many smaller peaks that exist in the deuodenum
signal that are masked by a negative cell type attribution. This suggests that, while the cell type and assay
factors can have positive attributions, they do not fully encode peaks themselves.

We next systematically evaluate the attributions of each component of the model to better understand
how Avocado works. Our approach for this analysis is similar to that of analyzing the accuracy of the
imputation methods at regions of cellular variability. Specifically, we first segregate positions into bins
based on the number of cell types that exhibit a peak at that location, then for each bin we calculate the
average attribution in those cell types for which a peak does or does not occur (Supplementary Figure S5).
In this manner we can analyze each of the five components of the model in each assay. What we find is
that the average cell type attributions are uniformly negative across assays and variability of position when
peaks are not present. Additionally, these average attributions typically have a larger magnitude at those
variable loci in cell types for which a peak is not present, suggesting that the cell type factors are involved in
silencing these peaks in the resulting imputations. The only context in which average cell type attributions
are positive are when peaks are present at loci that infrequently exhibit peaks suggesting that the cell type
factors may encode infrequent peaks. In contrast, the genomic factors typically have positive values when
peaks are present, with negative values correspondingly occuring in infrequent peaks and when peaks are
not present. If these rare peaks are a result of technical noise rather than real biology, then this suggests
one reason that the genomic factors frequently yield better machine learning models than experimental data.
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However, this also suggests that the genomic factors may not be useful at identifying biological phenomena
that are indicated by these rare peaks. Interestingly, while the assay attribution values can either be positive
or negative, these attributions are higher when peaks are not exhibited rather than when they are. It is
unclear why this phenomenon occurs, but it further indicates that the genomic components of the model are
a critical driver of Avocado predicting a peak.

3 Discussion
Avocado is a multi-scale deep tensor factorization model that learns a latent representation of the human
epigenome. We find that, when used as input to machine learning models, Avocado’s latent representation
improves performance across a variety of genomics tasks relative to models trained using either experimen-
tally collected epigenomic measurements or the full set of imputed measurements. This representation is
more informative than the one learned through the linear factorization approach taken by PREDICTD,
suggesting that latent representations can vary in utility and that more work will need to be done to un-
derstand them fully. Additionally, in the context of replication timing and FIRE prediction, we found
that aggregating both the PREDICTD and the Avocado latent spaces to much lower resolutions by av-
eraging factor values appeared to diminish their utility, suggesting that perhaps these latent spaces are
not linearly interpolatable. We have made the Avocado latent representation available for download from
https://noble.gs.washington.edu/proj/avocado/.

We hypothesized that a primary reason that this latent representation is so informative is that it distills
epigenomic data from all available cell types, rather than representing measurements for only a single cell
type. Indeed, feature attribution methods suggest that the genomic latent factors encode information about
peaks from all cell types and assays. However, while verifying this hypothesis, we also found that, contrary
to common usage, models that exploit the full Roadmap compendium consistently outperform those that
use only measurements available in a single cell type. One explanation for this observation is that cellular
context can serve as an implicit regularizer for machine learning models, in the sense that the model can
learn to discount peaks that appear in exactly one cell type due to experimental noise or technical error.

Although the Avocado latent representation does not outperform using the Roadmap compendium on
all tasks, Avocado is much more practical to use. Avocado’s representation consists of only 110 features,
whereas the full Roadmap compendium has 1,014 experiments. Accordingly, we observed that models could
be trained from Avocado’s learned genomic representation five to ten times faster than those trained using the
full Roadmap compendium. This speedup becomes especially important when the input to a machine learning
model is not a single genomic window, but multiple adjacent windows of measurements, as is frequently the
case when modeling gene expression. For example, if one were to describe a promoter as eight adjacent
250-bp windows spanning ±2 kb from a transcription start site, then the Avocado representation would
have only 565 features due to its multi-scale nature, whereas the Roadmap compendium would comprise
8,112 features. We anticipate that the benefits of a low dimensional representation will become even more
important once this strategy is applied to even richer data sets, such as the ENCODE compendium, which is
composed of >10,000 measurements. This number of measurements would make building machine learning
models very difficult.

A natural desire is to inspect the Avocado latent representation in order to better understand the genome.
Unfortunately, we found that such inspection was difficult, in part because the latent factors do not individ-
ually correspond to meaningful biological phenomena. An avenue for future studies is to better understand
these latent factors through methods that aim to connect learned latent spaces to interpretable concepts [35].
Potentially, one might apply a semi-automated genome annotation method like ChromHMM [1] or Segway
[36] to the latent representation directly, with the goal of producing a model that can translate the latent
representation into a cell type-independent annotation of the genome.

This is not the first time that latent representations have been trained on one task with the goal of being
broadly useful for other tasks. For example, word embeddings have been used extensively in the domain of
natural language processing. These embeddings can be calculated in a variety of manners, but two popular
approaches, GLoVE [37] and word2vec [7], involve learning word representations jointly with a machine
learning model that is trained to model natural language. In this respect, these embedding approaches are
similar to ours because the Avocado latent representation is learned as a result of a machine learning model
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being trained to impute epigenomic experiments.
Our approach is not the only approach one could take to reducing the dimensionality of the data. Po-

tentially, one could use a technique like principal component analysis or an autoencoder to project the 1,014
measurements down to 110 dimensions. Alternatively, one might consider using a model similar to DeepSEA
[38] or Basset [39] that trains an embedding of the genome jointly with a neural network. However, these
types of approaches would not easily allow for transfer learning between cell types, would not allow for the
imputation of epigenomic experiments, and would not incorporate information about local genomic context
through the use of multiple scales of genomic factors. Furthermore, generalizing an unsupervised embedding
approach to make cross-cell type predictions would be difficult, whereas Avocado’s genomic and cell type
factors can be combined in a straightforward way to address such tasks.

In this work, we have only explored the Avocado hyperparameter space with respect to the single dataset
employed here; thus, generalizing to a new dataset will require repeating this search. Furthermore, in cases
where computational efficiency is critical, our results (Supplementary Figure S7) suggest that models with
fewer latent factors might perform nearly as well as the full Avocado model. In such settings, it may be
sensible to design an objective function for the hyperparameter search that trades off the predictive accuracy
of the model versus the model complexity.

We have emphasized the utility of Avocado’s latent genome representation, but the model also solves the
primary task on which it is trained—epigenomic imputation—extremely well. In particular, we found that
Avocado produced the best imputations when compared with ChromImpute and PREDICTD as measured by
five of six performance measures based on MSE for individual tracks, and that these imputed measurements
captured pairwise relationships between histone modifications better than either of the other approaches.
While investigating why Avocado performed worse than ChromImpute on one of the performance measures,
we found that, for all three imputation approaches, much of the empirical error derives from regions where
peaks are exhibited in some, but not all, cell types. In the context of identifying which cell types exhibit
peaks at these regions of high variability, ChromImpute had the highest recall but the lowest precision,
suggesting that it over-calls peaks at a specific region by predicting peaks in more cell types than they
actually occur in. In contrast, both Avocado and PREDICTD had lower recall but higher precision, with
Avocado frequently managing to balance the two to produce the lowest MSE. Given that these regions are
likely the most important for explaining cell type variability, these results suggest that future evaluations
of imputation methods should stratify results, as we have done, according to the cell-type specificity of the
observed signals. Such investigations might suggest different Avocado hyperparameter settings, focusing on
either improved precision or recall, depending upon the end user’s needs.

4 Methods

4.1 Datasets
The Roadmap ChIP-seq and DNase-seq epigenomic data was downloaded from http://egg2.wustl.edu/
roadmap/data/byFileType/signal/consolidated/macs2signal/pval/. Only cell types that had at least
five experiments done, and assays that had been run in at least five cell types, were used. These criteria
resulted in 1,014 histone modification ChIP-seq tracks spanning 127 cell types and 24 assays. The assays
included 23 histone modifications and DNase sensitivity. RNA-seq measurements for 47 cell types were also
downloaded for the purpose of downstream analyses, rather than for inclusion in the imputation task. The
full set of 24 assays imputed by ChromImpute were downloaded from http://egg2.wustl.edu/roadmap/
data/byFileType/signal/consolidatedImputed/, and the full set of 24 assays from PREDICTD were
downloaded from the ENCODE portal at https://www.encodeproject.org/.

The specific ChIP-seq measurements downloaded were the − log10 p-values. These measurements cor-
respond to the statistical significance of an enrichment at each genomic position, with a low signal value
meaning that there is unlikely to be a meaningful enrichment at that position. Tracks that encode statistical
significance, such as the − log10 p-value of the signal compared to a control track, typically have a higher
signal-to-noise ratio than using fold enrichment. Furthermore, to reduce the effect of outliers on the model,
Avocado uses the arcsinh-transformed signal

sinh−1 x = ln
(
x+

√
1 + x2

)
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for both training and all evaluations presented here. Other models, such as PREDICTD [5] and Segway [36],
also use this transformation, because it sharpens the effect of the shape of the signal while diminishing the
effect of large values.

Gene bodies were defined as GENCODE v19 gene elements (https://www.gencodegenes.org/releases/
19.html) from chromosomes 1 through 22 that had one of their transcripts annotated as the primary tran-
script for that gene. This resulted in 16,724 gene bodies per cell type.

Promoter-enhancer interactions were obtained from the public GitHub repository for [8], avail-
able at https://github.com/shwhalen/targetfinder/tree/master/paper/targetfinder/combined/
output-epw. This data set includes promoter-enhancer interactions as defined by ChIA-PET interactions for
four cell lines—GM12878, HeLa-S3, IMR90, and K562. To correct a recently identified bias in this particular
benchmark [25], the data set was further processed as described in Supplementary Note 3.

Replication timing data was downloaded from http://www.replicationdomain.org. The resulting
tracks encode early- and late-stage timing as continuous values, which are subsequently binarized using a
threshold of 0.

FIRE scores were obtained from the supplementary material of [9] for the seven cell lines TRO, H1,
NPC, GM12878, MES, IMR90, and MSC. These measurements are composed of binary indicators at 40 kbp
resolution, resulting in 72,036 loci for each cell type.

4.2 Network topology
Avocado is a deep tensor factorization model, i.e., a tensor factorization model that uses a neural network
instead of a scalar product to combine factors into a prediction. The tensor factorization component is
comprised of five matrices of latent factors, also known as embedding matrices, that encode the cell type,
assay, 25 bp genome, 250 bp genome, and 5 kbp genome factors. These matrices represent each element as a
set of latent factors, with 32 factors per cell type, 256 factors per assay, 25 factors per 25-bp genomic position,
40 factors per 250-bp genomic position, and 45 factors per 5-kbp genomic position. For a specific prediction,
the factors corresponding to the respective cell type, assay, and genomic position, are concatenated together
and fed into a simple feed-forward neural network. This network has two intermediate dense hidden layers
that each have 2,048 neurons before the regression output, for a total of three weight matrices to be learned.
The network uses the ReLU activation function, ReLU(x) = max(0, x), on the hidden layers and no activation
function on the prediction. The training process jointly optimizes the latent factors in the tensor factorization
model and the neural network, rather than switching between optimizing each.

The model was implemented using Keras [40] with the Theano backend [41], and experiments were run
using Tesla K40c and GTX 1080 GPUs. For further background on neural network models, we recommend
the comprehensive review by J. Schmidhuber [42].

4.3 Inputs and outputs
Avocado takes as input the indices corresponding to a genomic position, assay, and cell type, and outputs
an imputed data value. The indices for each dimension are a set of sequential values that uniquely represent
each of the possibilities for that dimension, e.g., a specific cell type, assay, or genomic position. Any data
value in the Roadmap compendium can thus be uniquely represented by a triplet of indices, specifying the
cell type, index, and assay.

4.4 Training
Avocado is trained using standard neural network optimization techniques. The model was fit using the
ADAM optimizer due to its widespread adoption and success across several fields [43]. Avocado’s loss
function is the global mean-squared error (MSE). Most training hyperparameters are set to their default
values in the Keras toolkit. For the ADAM optimizer, this corresponds to an initial learning rate of 0.01,
beta1 of 0.9, beta2 of 0.999, epsilon of 10−8, and a decay factor of 1 − 10−8. The embedding matrices are
initialized with random uniform weights in the range [−0.5, 0.5]. Dense layers are initialized using the “glorot
uniform” setting [44]. Using these settings, our experiments show that performance, as measured by MSE,
was similar across different model initializations.
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Avocado does not fit a single model to the full genome because the genome latent factors could not fit
in memory. Instead, training is performed in two steps. First, the model is trained on the selected training
tracks but with the genomic positions restricted to those in the ENCODE Pilot Regions [45]. Second, the
weights of the cell type factors, assay factors, and neural network parameters are frozen, and the genome
factors are trained for each chromosome individually. This training strategy allows the model to fit in memory
while also ensuring consistent parameters for the non-genomic aspects of the model across chromosomes, and
for the latent factors learned on the genomic axis to be comparable across cell types.

The two steps of training have the same initial hyperparameters for the ADAM optimizer but are run
for different numbers of epochs. Each epoch corresponds to a single pass through the genomic axis such
that each 25 bp position is seen exactly once, with cell type and assays chosen randomly for each position.
This definition of “epoch” ensures that the entire genome is seen the same number of times during training.
Training is carried out for 800 epochs on the ENCODE Pilot regions and 200 epochs on each chromosome.
No early-stopping criterion is set, because models converge in terms of validation set performance for all
chromosomes in fewer than 200 epochs but do not show evidence of over-fitting if given extra time to train.

4.5 Evaluation of variable genomic loci
For each assay, we evaluated the performance of Avocado, PREDICTD, and ChromImpute, at genomic
positions segregated by the number of cell types in which that genomic locus was called a peak by MACS2.
We first calculated the number of cell types that each genomic locus was called a peak by summing together
MACS2 narrow peak calls across chromosome 20 and discarded those positions that were never a peak. This
resulted in a vector where each genomic locus was represented by the number of cell types in which it was
a peak, ranging between 1 and the number of cell types in which that assay was performed. For each value
in that range, we calculated the MSE, the recall, and the precision, for each technique. Because precision
and recall require binarized inputs, the predictions for each approach were binarized using a threshold on
the -log10 p-value of 2, corresponding to the same threshold that Ernst and Kellis used to binarize signals
as input for ChromHMM.

4.6 Supervised machine learning model training
We performed three tasks that involved training a gradient boosted decision tree model to predict some
genomic phenomenon across cell types. In each task, we used a 20-fold cross validation procedure, where the
data from a single cell type is split into 20 folds, 19 are used for training and 1 is used for model evaluation.
This procedure was performed for each cell type, feature set, and task. These models were trained using
XGBoost [46] with a maximum of 5000 estimators, a maximum depth of 6, and an early stopping criterion
that stopped training if performance on a held out validation set, one of the 19 folds used for training, did
not improve after 20 epochs. No other regularization was used, and the remaining hyperparameters were
kept at their default values.

For the task of predicting promoter-enhancer interactions, we used logistic regression as an additional
safeguard against the bias issue described in Supplementary Note 3. Rather than perform 20-fold cross-
vallidation, we performed 5-fold cross-validation 20 times, shuffling the data set after each cross-validation.
We adopted this approach due to the small number of positive samples in each cell type, such that there
would be fewer than 10 positive samples in each fold of a 20-fold cross-validation. Additionally, we tuned
the regularization strength in the default manner for scikit-learn, which considers 10 regularization strengths
evenly spaced logarithmically between 10−4 and 104 and choosing the strength that performs best on an
internal 3-fold cross-validation on the training set.

We evaluate each model in each task according to the average precision (AP) on the test set, which
summarizes a precision-recall curve in a single score. The score is calculated as

AP =
∑
n

(Recalln − Recalln−1)Precisionn

where Recalln and Precisionn are the recall and the precision at the n-th calculated threshold, with one
threshold for each data point.
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Data availability
The ChIP-seq and DNase-seq experiments analyzed in this study are currently hosted by the Roadmap
Epigenomics Consortium (http://www.roadmapepigenomics.org/) and can be accessed directly at https://
egg2.wustl.edu/roadmap/data/byFileType/signal/consolidated/macs2signal/pval/. The data sets
generated during this study and the resulting model can be found at https://noble.gs.washington.edu/
proj/avocado/. The authors place no restrictions on the download and use of our generated data sets or
model.

Code availability
The Avocado code and documentation are available under the Apache 2.0 License at https://bitbucket.
org/noblelab/avocado.
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