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Abstract  9 

Co-expression analysis has been extensively used in genomics studies and tools for 10 

over two decades. To date, most methods for such analysis are unsupervised and 11 

symmetric. Such methods cannot infer causality and are prone to both overfitting and 12 

false negatives resulting from differences between cells in bulk studies. Here we 13 

present a new, supervised method based on convolutional neural networks (CNNs) 14 

for co-expression analysis. We use a normalized histogram image of gene pair 15 

co-expression as the input to the CNN. Testing our method on several co-expression 16 

prediction tasks we show that it outperforms prior methods and that scRNA-Seq data 17 

leads to more accurate results when compared to bulk data. The method can be 18 

directly extended to integrate sequence and epigenetic data and to infer causal 19 

relationships.   20 

 21 

Supporting website with software and data: https://github.com/xiaoyeye/CNNC. 22 
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Introduction 30 

Co-expression analysis, which seeks to identify genes that are correlated or 31 

anti-correlated across a large number of samples or time points, has been a key 32 

research area of computational genomics for almost two decades1-5. In addition to the 33 

identification of pairs of related genes, co-expression analysis serves as an initial step 34 

in many of the most widely used computational methods for the analysis of genomics 35 

data including various clustering methods6, network inference and reconstruction 36 

approaches7-11, methods for classification based on genes expression3 and many 37 

more. 38 

Given its centrality for several downstream applications, much work has focused on 39 

improving the ability to infer correlated and anti-correlated genes. The most popular 40 

method is based on Pearson correlation analysis12. Such analysis focuses on shared 41 

trends rather than exact values. Other popular and widely used methods involve 42 

mutual information (MI)13-15, nonparametric methods, for example Spearman 43 

correlation16 methods based on alignment17 and more18-20.  44 

While the above methods were shown to be useful in many applications, they also 45 

suffer from serious drawbacks. The first major issue is overfitting. Given the large 46 

number of genes that are profiled, and the often relatively small (at least in 47 

comparison) number of samples, several genes that are determined to be 48 

co-expressed may only reflect chance or noise in the data21. In addition, to date most 49 

co-expression analysis utilized bulk gene expression data (either array or RNA-Seq). 50 

In such data, correlations may be obscured by the different cell populations such that 51 

even if two genes appear highly correlated, it may be that they are actually never 52 

expressed in the same cell at the same time22. Finally, most of the widely used 53 

co-expression analysis methods are symmetric which means that each pair has only 54 

one co-expression value. While this is advantageous for some applications (for 55 

example, clustering) it may be problematic for methods that aim at inferring causality 56 

(for example, network reconstruction methods).   57 

To address these issues we developed a new tool, CNNC which provides a 58 
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supervised way (that can be tailored to the condition / question of interest) to perform 59 

co-expression analysis. The method utilizes both bulk and single cell RNA-Seq 60 

(scRNA-Seq) data from tens of thousands of experiments, allowing us to overcome 61 

cell population confounders. Our method utilizes CNNs which we tailor for the gene 62 

expression analysis by representing input data for each pair of genes as an (image) 63 

histogram. The network is trained with positive and negative examples for the specific 64 

domain of interest (for example, known targets of a TF in a specific cell type, known 65 

pathways in a specific biological process etc.). Depending on the input data the 66 

training can be either symmetric or directed (for example, training the network to infer 67 

that TF A regulate gene B but not vice versa). To reduce overfitting CNNC determines 68 

specific thresholds based on the training for calling a pair correlated or anti-correlated 69 

or for inferring causality. 70 

We applied CNNC to data from tens of thousands of single cell and bulk experiments. 71 

We noticed that scRNA-Seq data greatly improves performance when compared to 72 

bulk RNA-Seq. Using the same expression data to learn different CNNs (by varying 73 

the labels based on the specific domain the network was applied to) we show that 74 

CNNC outperforms prior co-expression analysis methods both for directly inferring 75 

interactions (including TF-gene and protein-protein interactions) and as a component 76 

in algorithms for the reconstruction of known pathways and clustering. Finally, we 77 

discuss the accuracy of the directionality predictions which are unique to CNNC and 78 

shown that these predictions provide important information for determining missing 79 

interactions in known pathways. 80 

 81 

 82 

 83 

 84 

 85 

 86 
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Results 88 

We developed a general computational framework for supervised co-expression 89 

analysis (Fig. 1). CNNC is based on CNN which is used to analyze summarized 90 

co-expression histograms from pairs of genes from bulk and scRNA-Seq data. Given 91 

a relatively small labeled set of positive pairs (with either negative or random pairs 92 

serving as negative) the CNN learns to discriminate between interacting and / or 93 

causal pairs and negative pairs. Once trained the CNN can be used to predict 94 

co-expression scores for all gene pairs. 95 

 96 

Learning a CNNC model 97 

We used processed scRNA-Seq data that was collected from over 500 different 98 

studies representing a wide range of cell types, conditions etc23. All raw data was 99 

uniformly processed and assigned to a pre-determined set of more than 20,000 100 

mouse genes (Methods). We also used bulk RNA-Seq RPKM data from Encyclopedia 101 

of DNA Elements (ENCODE) project24, which contains 58 mouse tissues or cell types. 102 

For both datasets we first generated a normalized empirical probability distribution 103 

function (NEPDF) for each gene pair (genes a and b) based on their expression in the 104 

scRNA-Seq or bulk RNA-Seq data (Fig. 1, left). We calculated their normalized 2- 105 

dimension (2D) histogram and fixed its size at 32X32, where columns represent gene 106 

a expression levels and rows represent gene b such that entries in the matrix 107 

represent the (normalized) co-occurrences of these values. See Methods for details. 108 

Bulk and sc NEPDF were then either used separately or concatenated to form a 109 

combined NEPDF with dimension of 32X64. Next, the histogram matrix is used as 110 

input to a CNN which is trained using a N-dimension (ND) output label vector, where 111 

N depends on specific tasks. In our case N can either be 1 (interacting or not) or 3 in 112 

which case label 0 indicates that genes a and b are not interacting and label 1 (2) 113 

indicates that gene a (b) regulates gene b (a). Because of the final ‘softmax’ layer 114 

classification utilized by CNNs, for a three-label task CNNC’s output is a vector 115 

consisting of three respective probabilities, [p0, p1, p2], which sum to 1. In general, 116 
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our CNN model consists of one 32X32 or 32X64 input layer, ten intermediate layers 117 

including six convolutional layers, three maxpooling layers, one flatten layer, and a 118 

final ND ‘softmax’ layer or one scalar ‘Sigmoid’ layer (Methods and Supplementary 119 

Fig. 1).  120 

In addition to gene expression data, we can easily integrate other data types including 121 

Dnase-seq, PWM, etc. For this, we concatenated the additional information as a 122 

vector to the intermediate output of the gene expression data and continued with the 123 

standard CNN architecture. See Methods and Supplementary Fig. 1 for complete 124 

details and Supplementary Table 1 for information on training and run time. 125 

 126 

Using CNNC to predict TF-gene interactions 127 

Chromatin immunoprecipitation (ChIP)-seq has been widely used as a gold standard 128 

for studying cell-specific protein-DNA interactions25. Here we first evaluated CNNC’s 129 

performance on regulator-target prediction based on data from the GTRD ChIP-seq 130 

database26. 131 

We extracted data from GTRD for 41 TFs for which ChIP-seq experiments were 132 

performed in mouse embryonic stem cell (mESC). To determine targets for each TF 133 

based on the ChIP-seq data from GTRD, we followed ref 27 and 28 27, 28 and defined 134 

the promotor region as 10KB upstream to 1KB downstream from the transcription 135 

start site (TSS) for each gene. If a TF X has at least one detected peak signal with 136 

p-value smaller than 10-300 in or overlapping the promotor region of gene Y, we say 137 

that TF X regulates gene Y. We also used this data to compare CNNC with the two 138 

most popular co-expression analysis methods: Pearson correlation (PC) and mutual 139 

information (MI) and to compare the accuracy of predictions based on the sc and bulk 140 

RNA-Seq data. Since the prior methods used for comparison are symmetric, we 141 

focused here on the two labels setting (interacting or not). We later discuss causality 142 

inference on this data. To compare the methods and data types we performed 143 

leave-one-TF-out cross validation analysis. For each of the 41TFs, we trained CNNC 144 

with all other TFs and used the left out TF for testing (Methods). 145 
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Fig. 2 presents the results of this comparison analysis. First, we see that for all 146 

methods scRNA-Seq data (left column) provides much more information when 147 

compared to bulk (middle column). Note that while we had more scRNA-Seq profiles 148 

in our training set when compared to bulk experiments, these actually represent much 149 

fewer cells and conditions than those used in the bulk data. We have also tested the 150 

performance when using the same number of bulk and scRNA profiles 151 

(Supplementary Fig. 2). We found that even with this very small number of 152 

scRNA-Seq profiles (with much fewer cells than the bulk) CNNC performs better when 153 

using scRNA-Seq. These results support prior claims about convolution effects 154 

resulting from population of cells that make target inference harder when using bulk 155 

data22, 29. Still, bulk data did include some useful information and for all methods since 156 

the joint sc and bulk data performed best when compared to individual data type on its 157 

own. As for the methods themselves, for all types of input data, CNNC outperforms 158 

the other two methods. This is especially noticeable when using the scRNA-Seq (and 159 

combined) data where CNNC is 15% more accurate than MI and close to 20% more 160 

accurate than PC. The difference is even more pronounced for the top ranked 161 

predictions. Here, for CNNC we see almost no false negatives for the first 15% of 162 

ranked pairs (inset, Fig. 2i). 163 

 164 

Data Integration further improves TF target gene prediction 165 

The above analysis was only based on using expression values. However, as noted 166 

above, gene co-expression is often used as a component in more extensive 167 

procedures that often integrate different types of genomics data. To test how the use 168 

of the NN based method can aid such procedures we combined the co-expression 169 

values obtained by our method and the other methods with sequence and DNase 170 

hypersensitivity data. For sequence, we used PWMs for the TFs we tested from the 171 

Jaspar website30. We have also used Dnase-seq data for the same cell line from the 172 

mouse ENCODE project24. While there are several different methods for integrating 173 

expression, sequence and DNase data, since our main focus here is on the 174 
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co-expression analysis methods we used a simple strategy for processing the PWM 175 

and DNase data (Methods) which resulted in an additional 2D vector as input for 176 

each pair which we embedded to create a 512D vector (Fig. 1 and Methods). We 177 

next extended the CNN to utilize the additional data by concatenating it with the 178 

NEPDF’s 512D vector in the flatten layer to form a 1024D vector as shown in Fig. 1 179 

and Supplementary Fig. 1. 180 

Results, presented in Fig. 2j, show that these additional data sources indeed improve 181 

the ability to predict TF-gene interactions. However, as before a combined framework 182 

utilizing our CNNC method for co-expression analysis outperformed a method that 183 

used both MI and PC. Thus, the NN based approach can successfully replace other 184 

methods as a component in a more elaborated systems biology framework for 185 

inferring interactions.  186 

 187 

CNNC can predict pathway regulator-target gene pairs 188 

While TFs usually directly impact the resulting expression profile of their target genes 189 

(and so co-expression analysis seems like a natural option to study such interactions) 190 

several methods have also utilized RNA-Seq data to infer pathways that combine 191 

protein-protein and protein-DNA interactions31-35. To test whether CNNC can serve as 192 

a component in pathway inference methods we selected two representative pathway 193 

databases, KEGG36 and Reactome37 as gold standard and used these to train and 194 

test our co-expression framework. Since we are interested in causal relationships we 195 

only used directed edges with activation or inhabitation edge types and filtered out 196 

cyclic gene pairs where genes regulate each other mutually (to allow for a unique 197 

label for each pair). As for the negative data, here we limited the negative set to a 198 

random set of pairs where both genes appear in pathways in the database but do not 199 

interact. Here leave-one-gene-out cross validation strategy requires extremely large 200 

computing resources due to the large number of genes with outgoing directed edges 201 

(3,057 for KEGG and 2,519 for Reactome). Instead, we performed a three-fold cross 202 

validation where we kept the set of genes for which we predicted interactions 203 
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completely separated (so a gene in the test set does not have any interaction in the 204 

training set). The positive data was uniformly divided by the outgoing gene into three 205 

equal sized outgoing subsets, CNNC was trained using any two subsets and 206 

evaluated using the left subset, and then the test ROCs for each outgoing gene in the 207 

three subsets were calculated (Methods). Results are presented in Fig. 3. As can be 208 

seen, CNNC performs very well on the KEGG pathways (See Supplementary Fig. 3 209 

for the different folds) and also performs quite well on Reactome pathways (see also 210 

Supplementary Fig. 3). In contrast, the other co-expression analysis methods do not 211 

perform as well on these datasets (Supplementary Fig. 4). 212 

 213 

Using CNNC for casualty prediction 214 

So far we focused on general interaction predictions, which is what most symmetric 215 

co-expression analysis are aimed at. However, as discussed above CNNC can also 216 

be used to infer directionality by changing the output of the NN.  217 

We next used CNNC to infer causal edges for all three datasets we studied (for 218 

TF-gene interactions causal relationships are clear, for the pathway database we only 219 

analyzed directed edges and so had the ground truth for that data as well). As can be 220 

seen in Fig. 4, when using the TF GTRD dataset, CNNC achieves a median AUROC 221 

of 0.8227 (Fig. 4a), with 32 of the 41 TFs obtaining an AUROC of more than 0.5 on 222 

this leave-one-TF-out classification task. Interestingly, as can be seen in 223 

Supplementary Fig. 5, when only using bulk RNA-Seq data performance on the 224 

GTRD data prediction is very weak. Thus, for the causality inference task scRNA-Seq 225 

data is the only one that can provide enough information. For KEGG, CNNC is very 226 

successful achieving a median AUROC of 0.9949 (Fig. 4c) (See Supplementary Fig. 227 

6 for the different folds).  For Reactome (Fig. 4e) we see that the most confident 228 

predictions are correct, but beyond the top predictions performance levels off (See 229 

Supplementary Fig. 6 for the different folds). To try to understand the process used 230 

by the NN to distinguish causal directions we plotted two NEPDF inputs to the NN 231 

(Figs. 4g and 4h) which were correctly predicted as two different labels (1 for 4g and 232 
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2 for 4h). As can be seen, in both inputs the two genes display partial correlations and 233 

there are places where both are up or down concurrently. However, the main 234 

difference between the histograms in 4g and 4h are cases where one gene is up and 235 

the other is not. In 4g gene 2 is up while gene 1 is not indicating that the causal 236 

relationship is likely g1 -> g2. The opposite holds for 4h and so the method infers that 237 

g2 -> g1 for that input. Thus, unlike the prior symmetric methods, the NEPDF that 238 

serves as input provides important clues that the NN can utilize to infer both 239 

interactions and causality. 240 

 241 

Pathway application 242 

Given the results for KEGG we asked whether we can use the CNNC method to infer 243 

missing edges in current pathways. There have been several attempts to utilize 244 

expression and other data to further refine known pathways and many of these are 245 

based on co-expression analysis9, 19-21, 32, 33, 38, 39. Since our method provides both 246 

direction and score we can extract all predicted directed edges above a certain score 247 

and compare the resulting pathway to the database pathway to see if any additional 248 

edges, that do not appear in the database, are predicted by our method. For this we 249 

focused on the interleukin 17 (IL-17) pathway from KEGG database, which plays 250 

crucial roles in inflammatory responses. We extracted 6 proteins and 4 directed edges 251 

from this pathway by only using directed edges with activation or inhabitation edge 252 

types and filtering out cyclic gene pairs (Fig. 5a). We applied CNNC trained on all 253 

database pathway edges that do not contain any of these 6 proteins. As can be seen 254 

in Supplementary Fig. 7, CNNC predicted 8 of the possible 30 edges for this path 255 

(15 pairs with two possible directions each). 4 of these 8 were the original 4 directed 256 

edges annotated in the database itself. The other 4 edges were not present in the 257 

KEGG as causal interactions for this pathway. However, all are either supported by 258 

their presence in other KEGG pathways or by recent publications (we reiterate that 259 

interactions for all six proteins in other KEGG pathways were excluded from the 260 

training data as mentioned above so these predictions are not contaminated by their 261 
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presence in other pathways in KEGG). Specifically, (traf6, nfkb1) and (map3k7, nfkb1) 262 

have been annotated as causal pairs in KEGG’s ‘Pertussis pathway’ and ‘RIG-I-like 263 

receptor signaling pathway’36, respectively. (rela, nfkb1) is the known p50/p65 264 

heterodimer of NF-κB40. As for the (nfkbia, traf6) pair, it was found that traf6’s binding 265 

to MAP3K7 activates ikbkb which in turn phosphorylates nfkbia41.  266 

 267 

CNNC output as a similarity matrix for clustering  268 

To evaluate CNNC’s performance on the downstream analysis, we used it to generate 269 

a gene-gene similarity matrix. We next used this matrix as an input for a hierarchical 270 

clustering algorithm.  271 

We extracted the top 2,000 (top 1,000, see Supplementary Fig. 8) differentially 272 

expressed genes based on the expression data used in this paper using fano factor 273 

(FF) (Supplementary Note). Since we have trained CNNC using the KEGG database, 274 

we removed KEGG genes from the test set. Next we performed hierarchical 275 

clustering42 using CNNC and PC based on all sc and bulk data (Fig. 5b, and 5c). For 276 

comparison, we selected the top 8 clusters for the resulting hierarchical clustering tree 277 

for all inputs (see also Supplementary Fig. 8). Next, for each input we calculated the 278 

significant GO terms (q-values < 0.05)43 and plotted the results in Fig. 5d. As can be 279 

seen, using CNNC as the input led to the identification of more significant GO terms 280 

for the same set of genes indicating that the clustering obtained using this input is 281 

more aligned with current biological knowledge.  282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 
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Discussion and conclusion 291 

Gene co-expression analysis has been a widely successful method for the analysis of 292 

gene expression data starting over two decades ago with the introduction of 293 

microarrays. Several methods have been suggested for this task and several other 294 

methods use co-expression analysis as a component in a more elaborate modeling 295 

framework. 296 

While co-expression analysis performs well in some cases, it suffers from a number of 297 

drawbacks that often led to overfitting (false positives) or missing key relationships 298 

(false negatives). The former can be attributed to the unsupervised nature of most 299 

co-expression methods making it hard to ‘train’ them on a labeled dataset. The latter 300 

often resulted from the nature of the data used for co-expression analysis (bulk or 301 

population of cells data) which led to masking of relationships that existed in single 302 

cells. Moreover, while certain more sophisticated methods attempted to utilize gene 303 

expression to infer causality (for example, Bayesian network based methods 44) these 304 

were only able to detect directed interactions, were based on very specific 305 

probabilistic modeling assumptions, and did not directly provide a confidence score 306 

for the resulting edges.  307 

To address these issues we presented CNNC, a general framework for co-expression 308 

analysis which is based on convolutional NN (CNN). The key idea here is to convert 309 

the input data into a co-expression histogram which is very suitable for CNNs. Unlike 310 

most prior methods our method is supervised which allows the CNN to zoom in on 311 

subtle differences between positive and negative pairs. Supervision also helps fine 312 

tune the scoring function based on the different application. For example, different 313 

features may be important for analyzing TF-gene interactions when compared to 314 

inferring proteins in the same pathway. In addition to the supervised approach the fact 315 

that the network can utilize the large volumes of scRNA-Seq data allows it to better 316 

overcome masking issues reducing false negative. 317 

Analysis of several different interaction prediction tasks indicates that CNNC can 318 

improve upon prior, unsupervised methods. It can also be naturally extended to 319 
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integrate complementary data including epigenetic and sequence information. Finally, 320 

CNNC is easy to use either with general data or with condition specific data. For the 321 

former, users can download the data and implementation from the supporting website 322 

(Supplementary Fig. 9), provide a list of labels (positive and negative pairs for their 323 

system of interest) and retrieve the scores for all possible gene pairs. These in turn 324 

can be used for any downstream application including clustering, network analysis 325 

etc. 326 

In addition to comparing CNNC to prior methods we have also used it to evaluate the 327 

advantages conferred by scRNA-Seq data. Models trained with scRNA-Seq data 328 

outperformed those trained with bulk data for all systems we looked at. This supports 329 

prior findings45, 46 and addressed a key criticism of co-expression analysis – that many 330 

interactions are observed or missed due to aggregation effects from the collection of 331 

cells rather than because they truly represent specific molecular events. While the 332 

scRNA-Seq data we used contained two orders of magnitude more samples, the total 333 

number of cells profiled is smaller (each bulk experiment often profiles at least three 334 

orders of magnitude more cells than a single scRNA-Seq profile47). In addition, 335 

scRNA-Seq coverage is often two orders of magnitude less than bulk experiments so 336 

that total number of reads in the two datasets is not very different. Even when 337 

comparing with the same number of profiles for bulk and sc we find that CNNC 338 

performs better when using scRNA-Seq data. This result seems to indicate that 339 

despite the much greater noise associated with scRNA-Seq, such data can provide 340 

more accurate models for the same overall costs, coverage and sample size.  341 

CNNC is implemented in Python and both data and an open source version of the 342 

software are available from the supporting website. We hope that this method would 343 

become a useful component in future co-expression studies. 344 

 345 

 346 

 347 

 348 
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Online methods 349 

Dataset sources and pre-process pipelines 350 

We used mouse scRNA-Seq dataset collected by Alavi et al23. The dataset consists of 351 

uniformly processed 43,261 expression profiles from over 500 different scRNA-Seq 352 

studies. For each profile, expression values are available for the same set of 20,463 353 

genes. Mouse bulk RNA-Seq dataset were downloaded from Mouse Encode project 354 
24. That data included 249 samples and we only utilized genes that are present in the 355 

scRNA-Seq dataset leading to the same number of genes for both datasets. mESC 356 

Dnase data was also downloaded from Mouse Encode project24 357 

(ENCFF096WRW.bed). Mouse TF motif information is from TRANSFAC database48. 358 

PWM values were calculated by Python package ‘Biopython’49.  359 

For the DNase and PWM analysis we followed prior papers and defined the 360 

transcription start site (TSS) region as 10KB upstream to 1KB downstream from the 361 

TSS for each gene27, 28. For each TF and gene pair, using Biopython package we 362 

calculated the score between the TF motif sequence and both the ‘+/-’ sequences at 363 

all possible positions along the TSS region of the gene, and then selected the 364 

maximum one as the final PWM score. The maximum Dnase peak signal in the TSS 365 

region was calculated as the scalar Dnase value for each gene. 366 

 367 

Labeled data: 368 

mESC ChIP-seq peak region data was downloaded from GTRD database, and we 369 

used peaks with threshold p value < 10-300. If one TF X has at least one ChIP-seq 370 

peak signal in or partially in the TSS region of gene Y, as defined above, we say that X 371 

regulates Y.  372 

KEGG and Reactome pathway data were downloaded by the R package ‘graphite’50. 373 

KEGG contains 290 pathways and Reactome contains 1581 pathways. For both, we 374 

only select directed edges with either activation or inhabitation edge types and filter 375 

out cyclic gene pairs where genes regulate each other mutually (to allow for a unique 376 

label for each pair). In total, we have 3,057 proteins with outgoing directed edges in 377 
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KEGG and the total number of directed edges is 33,127. For Reacotome the 378 

corresponding numbers are 2,519 and 33,641. 379 

 380 

 381 

Constructing the input histogram  382 

For any gene pair a and b, we first log transformed their expression, and then 383 

uniformly divided the expression range of each gene to 32 bins. Next we created the 384 

32X32 histogram by assigning each sample to an entry in the matrix and counting the 385 

number of samples for each entry. Due to the very low expression levels and even 386 

more so to dropouts in scRNA data, the value in zero-zero position is always very 387 

large and often dominates the entire matrix. To overcome this, we added 388 

pseudocounts to all entries. We combined bulk and scRNA-Seq NEPDFs by 389 

concatenating them as a 32X64 matrix to achieve better performance. 390 

 391 

CNN for RPKM data 392 

We followed VGGnet51 to build our convolutional neural networks (CNN) model 393 

(Supplementary Fig. 1). The CNN consists of stacked layers of  3X3 convolutional 394 

filters (equation (1)) (  is a power of 2, ranging from 32 to 64 to 128) and interleaved 395 

layers of 2X2 maxpooling (equation (2)). We used the constructed input data as input 396 

to CNN. Each convolution layer computes the following function: 397 Convolution	 , = ∑ ∑ , ,         (1) 398 

Where X is the input from the previous layer, (i,j) is output position, k is convolutional 399 

filter index and W is the filter matrix of size 3X3. In other words, each convolutional 400 

layer computes a weighted average of the prior layer values where the weights are 401 

determined based on training. The maxpooling layer computes the following function: 402 maxpooling	 , = max	 , , , , , , ,          (2) 403 

Where X is input, (i,j) is output position and k is the convolutional filter index. In other 404 

words, the layer selects one of the values of the previous layer to move forward. 405 

 406 
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Overall structure 407 

The overall structure of the CNN is presented in Supplementary Fig. 1. The input 408 

layer of the CNN is either 32X32 or 32X64 as discussed above. In addition, the CNN 409 

contains 10 intermediate layers and a single one or three-dimension output layer. The 410 

ten layers include both convolutional and maxpooling layers, and the exact 411 

dimensions of each layer are shown in Supplementary Fig. 1. Following ref 52 52 we 412 

used rectified linear activation function (ReLU) as the activation function (equation (3)) 413 

across the whole network, except the final classification layers where ‘sigmoid’ 414 

function (equation (4)) was used for two categories classification and ‘softmax’ 415 

function (equation (5)) for multiple categories classification. These functions are 416 

defined below. 417 ReLU	 = 			 	 ≥ 00		 	 < 0                                     (3) 418 Sigmoid 	 = 1 1 +                                     (4) 419 

Softmax 	 = ∑ …                                 (5) 420 

 421 

 422 

Training and testing strategy 423 

We evaluated the CNN using cross validation. In these, training and test datasets are 424 

strictly separated to avoid information leakage. See Supplementary Note, 425 

Supplementary Fig. 10 and Supplementary Table 1 for details. For the three labels 426 

(causality analysis) we did the following: for each gene, we generated (a, b) (label1) 427 

and (b, a)’s (label2) NEPDF matrices. For the 0 label we generated a (a, N) NEPDF 428 

matrices for GTRD where N was a random gene and a was the TF. 0 labels for KEGG 429 

and Reactome were generated from random (M, N) gene pairs. After training, we 430 

used p1(a, b) + p2(a, b) as the probability that a interacts b, p2(a, b) – p2(b, a) as the 431 

pseudo probability that b regulates a. 432 

 433 
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Integrating expression, sequence and DNase data 434 

To integrate Dnase and PWM data with the processed RNA-Seq data, we first 435 

computed the max value for a PWM scan and DNase accessibility for each promotor 436 

region. We next generated a two-value vector from this data for each pair and 437 

embedded it to a 512D vector using one fully connected layer containing 512 nodes. 438 

Next these are concatenated with the expression processed data to form a 1024D 439 

vector which serves as input to a fully connected 512-node plus 128-node layer neural 440 

network classifier. See Supplementary Fig. 1 for details. Early stopping strategy by 441 

monitoring validation loss function is used to avoid overfitting. 442 

 443 

Selection of edges for the IL-17 pathway analysis 444 

We performed leave-one-pathway-out validation to evaluate CNNC’ performance for 445 

predicting edges for individual pathways. We selected a relatively small pathway 446 

(‘IL-17’ from KEGG) to improve our ability to present it visually. We discuss more 447 

general results for KEGG as well (Fig. 4).  For this analysis we only selected directed 448 

edges with either activation or inhabitation types and filtered out cyclic gene pairs 449 

where genes regulate each other mutually to purify the edge types. In total, we had 6 450 

nodes and 4 directed edges for the IL-17 pathway. Next, we trained CNNC with the 451 

entire KEGG dataset excluding any interactions for the six ‘IL-17’ pathway proteins.  452 

 453 

Hierarchical clustering and GO term enrichment analysis 454 

We performed hierarchical clustering followed by GO term enrichment analysis to 455 

evaluate CNNC’ performance in downstream analysis. We selected the top 2,000 (or 456 

1,000 (Supplementary Fig. 8)) genes with highest Fano factor (Supplementary 457 

Note) We obtained the similarity matrices for the filtered gene list based on CNNC, sc 458 

PC, bulk PC and sc&bulk PC respectively. We cut the tree at 8 clusters for all inputs. 459 

Next, we performed GO term enrichment analysis using fisher’s exact test and 460 

counted the significant GO terms for each of the cluster result. Significance of 461 

difference between different inputs was computed using one-side 462 
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Wilcoxon-Mann-Whitney test for the q-values of the four strategies (Fig. 5d). 463 
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 634 

 635 

 636 

Figure legends 637 

 638 

Figure 1 The CNNC architecture 639 

For each gene pair, expression levels from bulk and sc RNA-Seq are transformed into 640 

two 32X32 normalized empirical probability function (NEPDF) matrices, and the two 641 

are concatenated to form a combined 32X64 NEPDF matrix (left). The combined 642 

NEPDF serves as an input to a convolutional neural network (CNN). The intermediate 643 

layer of the CNN can be further concatenated with input vectors representing 644 

Dnase-seq and PWM data (top). The output layer contains three probability nodes 645 

where p0 is the probability that genes a and b are not interacting, p1 encodes the 646 

case that gene a regulates gene b, and p2 is the probability that gene b regulates 647 

gene a.  648 

 649 
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Figure 2 GTRD TF-target prediction  650 

(a) ROCs for Pearson Correlation (PC) based on scRNA-Seq. Light gray lines 651 

represent the performance for each TF. Black line represents the median ROC, and 652 

light green region represents the 25~75 quantile. (b) PC for bulk RNA-Seq. (c) PC for 653 

combined bulk and scRNA-Seq. (d) ROCs for Mutual Information (MI) when using 654 

scRNA-Seq. (e) MI when using bulk RNA-Seq. (f) MI using the combined bulk and 655 

scRNA-Seq. (g) ROCs for CNNC using scRNA-Seq. (h) CNNC using bulk RNA-Seq. 656 

(i) CNNC for combined data. Inset – Top ranking CNNC pairs are much more likely to 657 

be correct pairs when compared to other methods. (j) Comparison of TF-target 658 

predictions with additional data. Columns 1-3 show median AUROC of PC, MI, and 659 

CNNC using scRNA-Seq, bulk and the combine data, respectively. 4th column shows 660 

prediction of TF-gene interactions using only PWM or Dnase. 5th column shows 661 

performance when integrating expression, sequence and DNase data. 662 

 663 

 664 

 665 

Figure 3 Predicting undirected pathway edges  666 

(a) Overall ROCs for CNNC performance on KEGG pathway undirected edge 667 

prediction with bulk and scRNA-Seq. (b) The Area Under the Receiver Operating 668 

Characteristic curve (AUROC) histogram for (a). (c) The overall ROCs for 669 

performance of CNNC on Reactome pathway undirected edge prediction with bulk 670 

and scRNA-Seq. (d) The AUROC histogram for (c). 671 

 672 

Figure 4 Directed (causal) edge prediction 673 

(a) Overall ROCs for performance of CNNC on GTRD directed prediction with bulk 674 

and scRNA-Seq. (b) The AUROC histogram for (a). (c) Overall ROCs for performance 675 

of CNNC on KEGG pathway directed edge prediction with bulk and scRNA-Seq. (d) 676 

The AUROC histogram for (c). (e) Overall ROCs for performance of CNNC on 677 

Reactome pathway directed edge prediction with bulk and scRNA-Seq. (f) The 678 
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AUROC histogram for (e). (g) A typical NEPDF sample from a KEGG interaction that 679 

is correctly predicted as label 1. (h) A typical NEPDF sample that is correctly predicted 680 

as label 2. 681 

 682 

Figure 5 Downstream applications using CNNC 683 

CNNC can be used as a component in downstream analysis algorithms including for 684 

pathway analysis and clustering. (a) Top: Directed edges annotated in KEGG for the 685 

IL-17 pathway Bottom: predicted directed edges for the pathway. (b) Hierarchical 686 

clustering of top 2,000 DE genes based on CNNC similarity matrix score. The number 687 

under the horizontal line represents the distance between the two groups, and the 688 

black horizontal line shows the resulting eight clusters groups. (c) Hierarchical 689 

clustering based using PC as the input. (d) GO term analysis of the clustering results 690 

from (Figs. 5b, 5c, Supplementary Figs. 8a and 8b). 691 

 692 
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