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Abstract 15 

Predictive coding postulates that we make (top-down) predictions about the world and that we 16 
continuously compare incoming (bottom-up) sensory information with these predictions, in order to 17 
update our models and perception so as to better reflect reality. That is, our so-called ‘Bayesian brains’ 18 
continuously create and update generative models of the world, inferring (hidden) causes from 19 
(sensory) consequences. Neuroimaging datasets enable the detailed investigation of such modelling 20 
and updating processes, and these datasets can themselves be analysed with Bayesian approaches. 21 
These offer methodological advantages over classical statistics. Specifically, any number of models 22 
can be compared, the models need not be nested, and the ‘null model’ can be accepted (rather than only 23 
failing to be rejected as in frequentist inference). This methodological paper explains how to construct 24 
posterior probability maps (PPMs) for Bayesian Model Selection (BMS) at the group level using 25 
electroencephalography (EEG) or magnetoencephalography (MEG) data. The method has only 26 
recently been used for EEG data, after originally being developed and applied in the context of 27 
functional magnetic resonance imaging (fMRI) analysis. Here, we describe how this method can be 28 
adapted for EEG using the Statistical Parametric Mapping (SPM) software package for MATLAB. The 29 
method enables the comparison of an arbitrary number of hypotheses (or explanations for observed 30 
responses), at each and every voxel in the brain (source level) and/or in the scalp-time volume (scalp 31 
level), both within participants and at the group level. The method is illustrated here using mismatch 32 
negativity (MMN) data from a group of participants performing an audio-spatial oddball attention task. 33 
All data and code are provided in keeping with the Open Science movement. In so doing, we hope to 34 
enable others in the field of M/EEG to implement our methods so as to address their own questions of 35 
interest.  36 
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1 Introduction 37 

The statistical testing of hypotheses originated with Thomas Bayes (Neyman and Pearson, 1933), 38 
whose famous eponymous theorem (Bayes and Price, 1763) can be written in terms of probability 39 
densities as follows: 40 

𝒑𝒑(𝜽𝜽|𝒚𝒚) =  
𝒑𝒑(𝒚𝒚|𝜽𝜽)𝒑𝒑(𝜽𝜽)

𝒑𝒑(𝒚𝒚)
          (𝑬𝑬𝑬𝑬.𝟏𝟏) 41 

where θ denotes unobserved parameters, y denotes observed quantities, and p(θ|y) denotes the 42 
probability p of the unknown parameters θ, given (“|”) the set of observed quantities y. More generally, 43 
p(event|knowledge) denotes the probability of an event given existing knowledge. In other words, 44 
Bayes conceptualises statistics as simply the plausibility of a hypothesis given the knowledge available 45 
(Meinert, 2012). 46 

Bayes’ theorem allows one to update one’s knowledge of the previously-estimated (or “prior”) 47 
probability of causes, to a new estimate, the “posterior” probability of possible causes. This process 48 
can be repeated indefinitely, with the prior being recursively updated to the new posterior each time. 49 
This gives rise to multiple intuitive and useful data analysis methods, one of which is the explained in 50 
detail in this paper.  51 

Even when it first appeared, Bayes’ theorem was recognised as an expression of “common sense,” a 52 
“foundation for all reasonings concerning past facts,” (Bayes and Price, 1763). Centuries later, 53 
neuroscientific evidence suggests that Bayes theorem may not only explain our “common sense” and 54 
internal reasoning processes, but may be common to all our senses: it can actually explain the way in 55 
which we use our various senses to perceive the world. That is, Bayesian statistics can be used to 56 
accurately model and predict the ways in which our own brains process information (Dayan et al., 57 
1995; Feldman and Friston 2010; Friston, 2012; Hohwy, 2013). This has given rise to the concepts of 58 
predictive coding and the Bayesian brain. In this context, it is unsurprising that Bayesian approaches 59 
to statistics have high face validity (Friston and Penny, 2003). This allows for intuitive descriptions of 60 
probability and enables experimental results to be relatively easily understood and communicated both 61 
within and between scientific communities, as well as to the general public (Dunson, 2001).  62 

Despite the intuitiveness of Bayesian approaches, however, the mainstay of hypothesis-testing since 63 
the twentieth century (Vallverdú, 2008) has instead been classical or frequentist statistics, which 64 
conceptualises probability as a ‘long-run frequency’ of events, and which has dominated most 65 
approaches to neuroimaging analysis to date (Penny et al., 2007). For example, creating statistical 66 
parametric maps (SPMs), which is a popular method of analysing neuroimaging data, mainly involves 67 
frequentist approaches (Friston and Penny, 2003).  68 

In frequentist statistics, the null hypothesis (that there is no relationship between the causes and the 69 
data) is compared with one alternative hypothesis; the null is then either rejected in favour of the 70 
alternative hypothesis, or it fails to be rejected – it can never be directly “supported.” Rejection of the 71 
null depends on the somewhat unintuitive p-value, which communicates how likely it is that the effect 72 
(of at least the size seen in the experiment), would be seen in the absence of a true effect, if the 73 
experiment were repeated many times. This is a more complex and counterintuitive way of 74 
communicating results compared to Bayesian statistics (where the probability of the hypothesis in 75 
question is what is being estimated and communicated). 76 
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Also, unfortunately, multiple different models cannot be compared at once, and the null and the 77 
alternative models need to be nested for frequentist statistical tests to be feasible (Rosa et al., 2010). 78 
These features cause frequentist statistics to be less useful in certain contexts, compared to the 79 
approaches enabled by Bayesian statistics. 80 

In recent decades, Bayesian approaches are becoming increasingly recognised for their superior utility 81 
for addressing certain questions and in specific data analysis situations, as explained below (Beal, 2003; 82 
Rosa, et al., 2010; Penny and Ridgway, 2013). Importantly, with Bayesian approaches to data analysis, 83 
any number of models can be compared, the models need not be nested, and the ‘null model’ can be 84 
accepted (Rosa et al., 2010). The fact that Bayesian hypothesis-testing also allows researchers to 85 
evaluate the likelihood of the null hypothesis is crucially important in light of the replication crisis in 86 
psychology and neuroscience (Hartshorne, 2012; Larson and Carbine, 2017; Szucs et al., 2017). 87 
Importantly, results supporting the null hypothesis are equally noteworthy or reportable as other results 88 
within Bayesian statistics. The use of Bayesian statistics may also ameliorate some statistical power-89 
related problems documented in the literature (Dienes, 2016).  90 

Even though Bayesian statistics has gained popularity in the context of ‘accepting the null’, its strength 91 
lies beyond this, in the sense that it enables the relative quantification of any number of alternative 92 
models (or hypotheses). In Bayesian Model Selection (BMS), models are compared based on the 93 
probability of observing a particular dataset given each model’s parameters. The probability of 94 
obtaining observed data, y, given model m, p(y|m), is known as the model evidence. In BMS, an 95 
approximation of the model evidence is calculated for multiple models; the model evidences are then 96 
compared to determine which model returns the highest probability of generating the particular dataset 97 
in question (Rosa et al., 2010).  98 

A computationally efficient and relatively accurate (Penny et al., 2009) method of approximating the 99 
model evidence is to use variational Bayes (VB). If each participant in the dataset is assumed to have 100 
the same model explaining their data, then this is called a fixed effects (FFX) approach. If, on the other 101 
hand, every participant is permitted to have their own (potentially different) model, this is called a 102 
random effects (RFX) approach. 103 

An elegant approach to succinctly communicating results is to use Posterior Probability maps (PPMs), 104 
which provide a visual depiction of the spatial and/or temporal locations in which a particular model 105 
is more probable than the alternatives considered, given the experimental data in question. The 106 
development of PPMs is essentially the Bayesian alternative to the creation of SPMs (Friston and 107 
Penny, 2003). PPMs may display the posterior probability of the models (the probability that a model 108 
explains the data), or, alternatively, they may be displayed as Exceedance Probability Maps (EPMs), 109 
which  are maps of the probabilities that a model (say k) is more likely compared to all other (K) models 110 
considered (Rosa et al., 2010). (EPMs will be identical to posterior probability maps in cases where 111 
there are only two models being considered, as in this study.) EPMs are useful in that they allow us to 112 
directly quantify which model is more probable than the other/s considered. 113 

The data analysis method that forms the focus of this paper is Posterior Probability Mapping with an 114 
RFX approach to VB. First introduced (Rosa et al., 2010) for functional magnetic resonance imaging 115 
(fMRI), the method has recently been adapted for inference using electroencephalography (EEG) data 116 
(Garrido et al., 2017). In their study, Garrido and colleagues (2017) used variational Bayes to 117 
approximate the log of the model evidence for each voxel (in space and time) in every participant, in 118 
order to construct PPMs at the group level. They did this in the context of comparing between two 119 
computational models describing the relationship between attention and prediction in auditory 120 
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processing. While that paper focused on using this Bayesian methodology to address an important 121 
neuroscientific question, the precise way in which Rosa and colleagues’ (2010) methods were adapted 122 
for use with EEG data have not been formally described to date – leading to the purpose of this paper.  123 

Here, we describe in a tutorial-like manner how to build and compare PPMs for EEG and/or 124 
magnetoencephalography (MEG) data (M/EEG), using an RFX approach to VB. This approach 125 
provides useful ways of displaying the probabilities of different models at different times and brain 126 
locations, given any set of neuroimaging data (as done in (Garrido et al., 2017)) using the Statistical 127 
Parametric Mapping (SPM) software package for MATLAB. Furthermore, in keeping with the Open 128 
Science movement, we provide the full EEG dataset (https://figshare.com/s/1ef6dd4bbdd4059e3891) 129 
and the code (https://github.com/ClareDiane/BMS4EEG) to facilitate future use of the method. In so 130 
doing, we hope that this paper and its associated scripts will enable others in the field of M/EEG to 131 
implement our methods to address their own questions of interest. 132 

2 Theory 133 

In frequentist hypothesis testing, what is actually being tested is the null hypothesis (i.e. that there is 134 
no relationship between the variables of interest; Friston, 2007b). If it is assumed that there is a linear 135 
relationship between the causes and data, then the relationship between the causes (x) and data (y) can 136 
be represented as below (Friston, 2007b): 137 

𝒚𝒚 = 𝒙𝒙𝒙𝒙 +  𝜺𝜺          (𝑬𝑬𝑬𝑬.𝟐𝟐) 138 

where y denotes data, x denotes causes and ε is an error term. The null hypothesis is that the relationship 139 
between the causes and data does not exist, that is, θ = 0.  The null hypothesis is compared to one 140 
alternative hypothesis; the null is then either rejected in favour of the alternative hypothesis, or it fails 141 
to be rejected – it can never be directly “supported.”  142 

Using the frequentist framework, one cannot test multiple models at once (unlike what can be done 143 
when using Bayesian approaches). (In this setting, a model corresponds to a particular mixture of 144 
explanatory variables in the design matrix x.) Even if one only wishes to test one model against the 145 
null, however, frequentist statistics still gives rise to problems unless the null and alternate models are 146 
nested. When the variables in one model cannot be expressed as a linear combination of the variables 147 
in another model, the two models are said to be non-nested (McAleer, 1995). Non-nested models 148 
usually arise when model specifications are subject to differences in their auxiliary assumptions or in 149 
their theoretical approaches, and can still be dealt with by making specific modifications to frequentist 150 
approaches (McAleer, 1995; Horn, 1987). However, there are many situations where Bayesian 151 
approaches are more appropriate for non-nested models than adapted frequentist inference (Rosa et al., 152 
2010). Indeed, Penny et al. (2007), showed that functional magnetic resonance imaging (fMRI) 153 
haemodynamic basis sets are best compared using Bayesian approaches to non-nested models (Penny 154 
et al., 2007).  155 

Furthermore, Bayesian approaches to statistics have long been recognised for their relative advantages 156 
outside of the realm of neuroimaging. In clinical trials, Bayesian experimental design techniques and 157 
interim analyses have been found to improve trials’ statistical power, cost-effectiveness and clinical 158 
outcomes (e.g. Trippa et al., 2012; Connor et al., 2013), compared to when classical approaches are 159 
used alone. Bayesian statistics are also especially useful in the worlds of computational physics 160 
(Mohammad-Djafari, 2002) and biology (Needham et al., 2007), and in machine learning (Lappalainen 161 
and Miskin, 2000).  162 
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The aim of BMS is to adjudicate between models using each one’s model evidence. Also written as 163 
p(y|m), the model evidence is defined as the probability (p) of obtaining observed data (denoted y) 164 
given the model (denoted m). It is given by the following integral: 165 

𝒑𝒑(𝒚𝒚|𝒎𝒎) =  �𝒑𝒑(𝒚𝒚|𝜽𝜽,𝒎𝒎)𝒑𝒑(𝜽𝜽|𝒎𝒎)𝒅𝒅𝒅𝒅          (𝑬𝑬𝑬𝑬.𝟑𝟑) 166 

This integral is usually intractable, so numerous methods have been developed to approximate it. As 167 
Blei et al., (2017) succinctly summarise, there are two main ways to solve the problem of 168 
approximating the integral above. One is to sample a Markov chain (Blei et al., 2017), and the other is 169 
to use optimisation. The conversion of an integration problem into an optimisation problem is due to 170 
Richard Feynman, who introduced variational free energy in the setting of path integral problems in 171 
quantum electrodynamics (Feynman et al., 2010; Feynman and Brown, 1942). By inducing a bound on 172 
the integral above – through an approximate posterior density (please see below) – one converts an 173 
intractable integration problem into a relatively straightforward optimisation problem, that can be 174 
solved using gradient descent. 175 

Some of the specific approximation methods that have been used to date include Annealed Importance 176 
Sampling (AIS; Neal, 1998; Penny and Sengupta, 2016), Bayesian Information Criterion (BIC) 177 
measures (Rissanen, 1978; Penny, 2012), Akaike Information Criterion (AIC) measures (Akaike, 1980; 178 
Penny, 2012), and finally, the variational Free Energy (F), which was first applied to the analysis of 179 
functional neuroimaging time series by Penny, Kiebel and Friston (2003) and which is explained in 180 
this paper (Rosa et al., 2010). These methods have varying degrees of accuracy and computational 181 
complexity, and have been studied in detail elsewhere (Beal and Ghahramani, 2003; Penny et al., 2004; 182 
Penny, 2012). The variational Free Energy provides a relatively high level of accuracy, without a great 183 
computational cost (Rosa et al., 2010), and so it is unsurprising that it is widely used in neuroimaging 184 
(Rosa et al., 2010). The Free Energy formula is (Penny et al., 2003): 185 

𝑭𝑭 =  �𝒒𝒒(𝜽𝜽|𝒚𝒚)𝒍𝒍𝒍𝒍𝒍𝒍
𝒑𝒑(𝒚𝒚,𝜽𝜽)
𝒒𝒒(𝜽𝜽|𝒚𝒚)

𝒅𝒅𝒅𝒅         (𝑬𝑬𝑬𝑬.𝟒𝟒) 186 

where q(θ|y) is an (initially) arbitrary distribution of the parameters θ given the data at each voxel y, 187 
p(y,θ) denotes the joint probability of the data and the parameters occurring, and dθ simply denotes 188 
that the integral given by F is with respect to the model parameters θ. 189 

The “variational” term in variational Free Energy, and in variational Bayes (VB), refers to the branch 190 
of calculus (the calculus of variations) that deals with maximising or minimising functionals, or 191 
integrals. The utility of variational calculus in neuroimaging analysis has been reviewed in numerous 192 
other papers (Friston et al., 2008). In brief, the aim in variational Bayes is to maximise the functional 193 
given by the equation above. The reason for doing this is that it provides information about the model 194 
evidence. More specifically, the Free Energy relates to the log of the model evidence (or log-model 195 
evidence) as described by the following equation, known as the fundamental equation of variational 196 
Bayes (Penny et al., 2003):  197 

𝐥𝐥𝐥𝐥𝐥𝐥 𝒑𝒑(𝒚𝒚|𝒎𝒎) = 𝑭𝑭(𝒎𝒎) + 𝑲𝑲𝑲𝑲(𝒒𝒒(𝜽𝜽)||𝒑𝒑(𝜽𝜽|𝒚𝒚,𝒎𝒎))         (𝑬𝑬𝑬𝑬.𝟓𝟓) 198 

where log p(y|m) is the log-model evidence, F is the variational Free Energy, and KL(q(θ)||p(θ|y,m)) is 199 
the Kullback-Leibler divergence, or relative information, with respect to the approximate distribution 200 
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q(θ) and the distribution that is diverging from it, namely the true distribution, p(θ|y,m), as further 201 
described below. 202 

The reason why Free Energy can be used as an approximation of the model evidence is better 203 
understood in light of the meaning of the second term in the fundamental VB equation, the Kullback-204 
Leibler (KL) divergence (Penny et al., 2003). The equation for this is:  205 

𝑲𝑲𝑲𝑲 =  �𝒒𝒒(𝜽𝜽|𝒚𝒚)𝒍𝒍𝒍𝒍𝒍𝒍
𝒒𝒒(𝜽𝜽|𝒚𝒚)
𝒑𝒑(𝜽𝜽|𝒚𝒚)

𝒅𝒅𝒅𝒅          (𝑬𝑬𝑬𝑬.𝟔𝟔) 206 

where all terms listed here have the same meanings as defined in earlier paragraphs. The KL divergence 207 
is also known as KL information, and this is because it is a measure of the information “difference” or 208 
divergence between two distributions. It can be derived by considering the so-called cross-entropy and 209 
entropy of the two distributions respectively, as outlined below (Carter, 2011). The concept of “relative 210 
entropy” is essentially “average information,” with “information” being defined as Shannon (1984) 211 
originally introduced: 212 

𝑰𝑰(𝒑𝒑) = 𝒍𝒍𝒍𝒍𝒍𝒍𝒃𝒃 �
𝟏𝟏
𝒑𝒑
� =  −𝒍𝒍𝒍𝒍𝒍𝒍𝒃𝒃(𝒑𝒑)         (𝑬𝑬𝑬𝑬.𝟕𝟕) 213 

where I(p) is the information given by observation of an event of probability p, and logb(1/p) is the 214 
logarithm (in base b) of the inverse of the probability of that event. The formula above is used to derive 215 
the “average information,” also sometimes referred to a relative entropy, from a set of events. A related 216 
concept is the “cross entropy” between two distributions (see Carter, 2011); and the difference between 217 
the cross entropy and the entropy of the original/true distribution is equivalent to the KL divergence. 218 
Being a measure of information, the KL divergence has the property that it is non-negative; 219 
consequently, the lowest value it can take is zero. 220 

The KL divergence between two distributions is zero only if the two distributions are equivalent. The 221 
closer KL is to zero, the less dissimilar the two distributions are. Thus, minimising KL is equivalent to 222 
maximising F, and F is said to provide a lower bound on the log-evidence. The aim of VB learning is 223 
to maximise F so that the approximate posterior thereby becomes as close as possible to the true 224 
posterior (Penny et al., 2007).  225 

If (and only if) the KL divergence is zero, then F is equal to the log-model evidence. The free energy 226 
thus provides a lower bound on the log-evidence of the model, which is why iteratively optimising it 227 
allows us to proceed with BMS using F as an approximation of the log-model evidence (Penny et al., 228 
2007). As the KL divergence is minimised by an iterative process of optimisation, F becomes an 229 
increasingly “tighter” lower bound on the desired (actual) log-model evidence; owing to this, BMS can 230 
proceed using F as a “surrogate” for the log-model evidence (Rosa et al., 2010). The iterations continue 231 
until improvements in F are very small (below some desired threshold). This method of estimating the 232 
log-model evidence is implemented in the second script described in the Implementation section 233 
(“BMS2_ModelSpec_VB.m”). 234 

Although it has been summarised here, it is also worth noting that VB is further fleshed out in multiple 235 
other research papers (Penny et al., 2003; Friston et al., 2007; Friston and Penny, 2007; Penny et al., 236 
2007) and tutorials (Lappalainen and Miskin, 2000). In Statistical Parametric Mapping, Friston 237 
(2007a) provides the mathematical derivations for the fundamental equation of variational Bayes, and 238 
his colleagues provide a full explanation of its application to BMS (Penny et al., 2007). 239 
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The application of VB in the context of fMRI analysis has been described in detail elsewhere (Rosa et 240 
al., 2010; Stephan et al., 2009; Penny et al., 2007). Penny and colleagues (2007) used Bayesian 241 
spatiotemporal models of within-subject log-model evidence maps for fMRI data, in order to make 242 
voxel-wise comparison of these maps and thereby to make inferences about regionally specific 243 
effects.  Rosa and colleagues (2010) developed their approach by combining the methods described by 244 
Penny et al. (2007) with those of Stephan et al. (2009), who used an RFX approach to VB, as described 245 
below.  246 

After the log-model evidence has been estimated as described above, given uniform priors over models, 247 
one can then estimate posterior model probabilities by comparing model-evidences between models. 248 
The ratio between model evidences, or Bayes factor (BF), can be used to estimate posterior model 249 
probabilities. A BF greater than 20 is equivalent to a posterior model probability greater than 0.95 250 
(Kass and Raftery, 1995), which is reminiscent of the typical p-value smaller than 0.05. The product 251 
of Bayes factors over all subjects is called the Group Bayes Factor (GBF), and it gives the relative 252 
probability that one model (relative to another) applies to the entire group of subjects. That is, it rests 253 
on the assumption that the data were generated by the same model for all participants, and that data are 254 
conditionally independent over subjects. This is known as fixed effects (FFX) inference, and it is not 255 
as robust to outliers as random effects (RFX) inference, which does not assume that the data were 256 
necessarily generated by the same model for each participant (Stephan et al., 2009). 257 

Stephan et al. (2009) developed a novel VB approach for group level methods of Bayesian model 258 
comparison that used random effects instead of fixed effects analysis at the group level. They did this 259 
by treating models as random variables whose probabilities can be described by a Dirichlet distribution 260 
(which is conjugate to the multinomial distribution) with parameters that are estimated using the log-261 
model evidences over all models and subjects (as described below). Once the optimal Dirichlet 262 
parameters have been estimated, they can be used to calculate posterior probabilities or exceedance 263 
probabilities of a given model for a randomly-selected participant. This is what is done in the third 264 
script (“BMS3_PPMs.m”, described in the Implementation section below), and the underlying 265 
mathematics is explained briefly below. 266 

In the RFX approach introduced by Stephan et al. (2009), we assume that the probabilities of the 267 
different models (or hypotheses) are described by the following Dirichlet distribution: 268 

𝑝𝑝(𝑟𝑟|𝛼𝛼) = 𝐷𝐷𝐷𝐷𝐷𝐷(𝑟𝑟,𝛼𝛼) =  1
𝑍𝑍(𝛼𝛼)

∏ 𝑟𝑟𝑘𝑘
𝛼𝛼𝑘𝑘−1

𝑘𝑘   269 

𝑍𝑍(𝛼𝛼) =  
∏ Γ(𝛼𝛼𝑘𝑘)𝑘𝑘

Γ(∑ 𝛼𝛼𝑘𝑘𝑘𝑘 )
 270 

where r represents the probabilities r = [r1, …., rK] of K different models (or hypotheses), and 𝛼𝛼 = [𝛼𝛼1 271 
, …., 𝛼𝛼𝐾𝐾] are related to unobserved “occurrences” of models in the population. This distribution is part 272 
of a hierarchical model: the next level depends on model probabilities, r, which are described by the 273 
Dirichlet distribution.  274 

In the next level of the hierarchical model, we assume that the probability that a particular model 275 
generated the data of a particular subject, is given by a multinomial variable 𝑚𝑚𝑛𝑛 whose probability 276 
distribution is as follows: 277 

(𝑬𝑬𝑬𝑬.𝟖𝟖) 
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𝑝𝑝(𝑚𝑚𝑛𝑛|𝑟𝑟) =  �𝑟𝑟𝑚𝑚𝑛𝑛𝑛𝑛

𝑘𝑘

         (𝑬𝑬𝑬𝑬.𝟗𝟗) 278 

where 𝑚𝑚𝑛𝑛is the multinomial variable that describes the probability that model k generated the data of 279 
subject n given the probabilities r. 280 

Finally, in the lowest level of this hierarchical model, the probability of the data in the nth subject, 281 
given model k, over all parameters (ϑ) of the selected model (i.e. the marginal likelihood of the data in 282 
the nth subject, obtained by integrating over the parameters of the model) is given by: 283 

𝑝𝑝(𝑦𝑦𝑛𝑛|𝑚𝑚𝑛𝑛𝑛𝑛) = �𝑝𝑝(𝑦𝑦|𝜗𝜗)𝑝𝑝(𝜗𝜗|𝑚𝑚𝑛𝑛𝑛𝑛)𝑑𝑑𝑑𝑑          (𝑬𝑬𝑬𝑬.𝟏𝟏𝟏𝟏) 284 

The goal is to invert this hierarchical model, that is, work backwards from data (yn) find the parameters 285 
of the Dirichlet distribution (which then allows the calculation of the expected posterior probability of 286 
obtaining the kth model for any randomly selected subject, as shown below). This model inversion is 287 
done using a VB approach in which the Dirichlet distribution is approximated with a conditional 288 
density, q(r) = 𝐷𝐷𝐷𝐷𝐷𝐷(𝑟𝑟,𝛼𝛼). Stephan et al. (2009) show that the following algorithm yields the optimal 289 
parameters of the conditional density q(r) = 𝐷𝐷𝐷𝐷𝐷𝐷(𝑟𝑟,𝛼𝛼): 290 

𝛼𝛼 =  𝛼𝛼0 291 

Until convergence 292 

𝑢𝑢𝑛𝑛𝑛𝑛 = 𝑒𝑒𝑒𝑒𝑒𝑒�ln𝑝𝑝(𝑦𝑦𝑛𝑛|𝑚𝑚𝑛𝑛𝑛𝑛) + Ψ(𝛼𝛼𝑘𝑘) −Ψ��𝛼𝛼𝑘𝑘
𝑘𝑘

�� 293 

𝛽𝛽𝑘𝑘 =  �
𝑢𝑢𝑛𝑛𝑛𝑛

∑ 𝑢𝑢𝑛𝑛𝑛𝑛𝑘𝑘𝑛𝑛

 294 

𝛼𝛼 =  𝛼𝛼0 +  𝛽𝛽 295 

end         296 

where 𝛼𝛼 are “occurrences” of models in the population; 𝛼𝛼0is the Dirichlet prior, which, on the 297 
assumption that no models have been “seen” a priori, is set as 𝛼𝛼0 = [1,...,1] so that all models are 298 
equally probable to begin with; 𝑢𝑢𝑛𝑛𝑛𝑛 is the non-normalised belief that model k generated the data yn for 299 
subject n (for the derivation of this line, please see Stephan et al., 2009); Ψ is the digamma function 300 
Ψ(𝛼𝛼𝑘𝑘) =  𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿Γ(𝛼𝛼𝑘𝑘)

𝛿𝛿𝛼𝛼𝑘𝑘
; 𝛽𝛽𝑘𝑘is the expected number of subjects whose data are believed to be generated by 301 

model k (so-called “data counts”); and the last line, 𝛼𝛼 =  𝛼𝛼0 +  𝛽𝛽 essentially obtains the parameters of 302 
the Dirichlet distribution by starting with the Dirichlet prior 𝛼𝛼0and adding on “data counts” 𝛽𝛽 (Stephan 303 
et al., 2009). 304 

Once the Dirichlet parameters have been optimised as per the algorithm above, this can be used for 305 
model comparisons at the group level. One way of comparing models is to simply compare the 306 
parameter estimates 𝛼𝛼. Another way is to calculate the multinomial parameters, 〈𝑟𝑟𝑘𝑘〉, that encode the 307 
posterior probability of model k being selected for a randomly chosen subject in the group: 308 

(𝑬𝑬𝑬𝑬.𝟏𝟏𝟏𝟏) 
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〈𝑟𝑟𝑘𝑘〉 =  𝛼𝛼𝑘𝑘/(𝛼𝛼1 + ⋯+  𝛼𝛼𝐾𝐾)         (𝑬𝑬𝑬𝑬.𝟏𝟏𝟏𝟏) 309 

where rk is the probability of the model; the numerator of the fraction, 𝛼𝛼𝑘𝑘, is the “occurrence” of model 310 
k; and the denominator (𝛼𝛼1 + ⋯+  𝛼𝛼𝐾𝐾) is the sum of all model “occurrences.” This was how the PPMs 311 
were generated in the third script (“BMS3_PPMs.m”) below. 312 

Another option for comparing models after the optimal Dirichlet parameters have been found, is to 313 
calculate the exceedance probability for a given model, as follows: 314 

𝜑𝜑𝑘𝑘 =  𝑝𝑝��𝑟𝑟𝑘𝑘 > 𝑟𝑟𝑗𝑗|𝑦𝑦;𝛼𝛼
𝑗𝑗 ≠ 𝑘𝑘

�          (𝑬𝑬𝑬𝑬.𝟏𝟏𝟏𝟏) 315 

where 𝜑𝜑𝑘𝑘is the exceedance probability for model k, that is, the probability that it is more likely than 316 
any of the other models considered; 𝑟𝑟𝑘𝑘 is the probability of model k; 𝑟𝑟𝑗𝑗  is the probability of all other 317 
models considered; y represents the data and 𝛼𝛼 represents the Dirichlet parameters. 318 

Having introduced this RFX approach to VB, Stephan and colleagues (2009) then used both simulated 319 
and empirical data to demonstrate that when groups are heterogeneous, fixed effects analyses fail to 320 
remain sufficiently robust. Crucially, they also showed that RFX is robust to outliers, which can 321 
confound inference under FFX assumptions, when those assumptions are violated. Stephan et al. thus 322 
concluded that although RFX is more conservative than FFX, it is still the best method for selecting 323 
among competing neurocomputational models.  324 
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3 Methods 325 

3.1 Experimental design 326 

This experiment is a direct replication of that performed by Garrido et al. (2017), apart from the 327 
omission of a ‘divided attention’ condition. As they describe in greater detail in their paper, Garrido et 328 
al. (2017) utilised a novel audio-spatial attention task during which attention and prediction were 329 
orthogonally manipulated; this was done to evaluate the effect of surprise and attention in auditory 330 
processing (Garrido et al., 2017). The authors compared two models (shown in Figure 1) which may 331 
explain the effect attention has on the neural responses elicited by predicted and unpredicted events.  332 

[Figure 1 about here] 333 

The original study supported the model in which attention boosts neural responses to both predicted 334 
and unpredicted stimuli, called the Opposition Model (Garrido et al., 2017). Prediction attenuates 335 
neural activity, while attention enhances this activity. Since these effects occur in opposite directions 336 
or have opposing effects, the researchers named the model (describing these effects) the Opposition 337 
Model. According to this model, attention improves the accuracy of predictions by precision weighting 338 
prediction errors more heavily. Thus, in light of this model, attention and prediction work together (in 339 
opposite directions) to improve our ability to make more accurate representations of the sensorium.    340 

Our current study attempted to replicate the above-mentioned study with an independent dataset and 341 
employing the Bayesian methods that resembled the original study as closely as possible. The only 342 
difference was that the divided-attention condition was not administered because it was not required 343 
for the implementation and description of the BMS steps. It is hoped that the detailed description of 344 
our methods, adapted from those originally developed for fMRI by Rosa et al. (2010), prove to be 345 
useful for other EEG and/or MEG researchers. Furthermore, a replication study such as this one has 346 
the additional benefit of being responsive to the persisting replication crisis that  continues to pose a 347 
significant problem for neuroscience and psychology (Hartshorne, 2012; Larson and Carbine, 2017; 348 
Szucs et al., 2017).  349 

To this end we employed BMS to adjudicate between two competing hypotheses (see Figure 1), 350 
namely:  351 

(1) Attention increases (boosts) neural responses to both predicted and unpredicted stimuli. This is 352 
formalised in the Methods section and is then called Model One – the Opposition Model. 353 

(2) Attention boosts neural responses to predicted stimuli more than it boosts responses to unpredicted 354 
stimuli. This causes predicted attended stimuli to generate the highest neural responses, followed by 355 
attended unpredicted stimuli. This is formalised in the Methods section and is then called Model Two 356 
– the Interaction Model.  357 
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3.2 Participants 358 

Twenty-one healthy adults (aged between 19-64 years, M = 25.00 years, SD= 9.83, nine females) were 359 
recruited via the University of Queensland’s Psychology Research Participation Scheme (SONA). 360 
Exclusion criteria included any history of mental or neurological disease, any previous head injury 361 
resulting in unconsciousness, or an age outside the prescribed range (18-65 years). All participants 362 
gave both written and verbal informed consent to both the study and to having their de-identified data 363 
made available in publicly distributed databases. Participants completed practice blocks of stimulus 364 
presentation prior to undergoing the EEG recording, in order to enable them to withdraw if they found 365 
the task unpleasant or excessively challenging. (No participants wished to withdraw.) Participants were 366 
monetarily compensated for their time. This study was approved by the University of Queensland 367 
Human Research Ethics Committee. 368 

3.3 Task description 369 

Participants wore earphones with inner-ear buds (Etymotic, ER3) and were asked to follow instructions 370 
on a computer screen. Participants were asked to pay attention to the sound stream in either the left or 371 
the right ear (ignoring the sounds that were being played in the other ear). Gaussian white noise was 372 
played to both ears and an oddball sequence was played to one of the ears. During a given block, 373 
participants were tasked with listening carefully for gaps in the white noise on the side to which they 374 
had been asked to attend. They were asked to press a “1” on the numbered keyboard when they heard 375 
a single gap (lasting 90 ms) in the white noise, and a “2” when they heard a double gap (two 90 ms 376 
gaps separated by 30 ms of white noise). They were asked to ignore any tones played on both the 377 
attended and the opposite ear. This task is described in further detail, including pictorial 378 
representations, in Garrido et al., (2017). 379 
 380 
Participants listened to eight different blocks, each 190 seconds in duration. Each block contained a 381 
total of 30 targets (15 single gaps and 15 double gaps, randomly distributed across the block, but never 382 
occurring within 2.5 seconds of each other and never occurring at the same time as a tone). Throughout 383 
each block there were also 50-ms-long pure tones being played in one of the ears, with a 450 ms inter-384 
stimulus interval. In each block there were two tones: the standard tone (either 500 Hz or 550 Hz 385 
counterbalanced between blocks) that occurred 85% of the time, and the deviant (either 550 Hz or 500 386 
Hz, the opposite of the standard tone and counterbalanced across blocks) that occurred 15% of the 387 
time. All sound files were created using MATLAB (RRID:SCR_001622; The MathWorks, Inc.; 388 
http://www.mathworks.com) with sound recordings done using Audacity ® (Audacity: Free Audio 389 
Editor and Recorder, RRID:SCR_007198) as previously described by Garrido et al., (2017). The order 390 
was counterbalanced such that no two participants received the same order of blocks. 391 
 392 
Prior to and during the practice block/s, the volume of sound delivery was adjusted until the participant 393 
stated that they were able to hear the white noise well enough to complete the task. For each participant, 394 
an accuracy level was calculated, consisting of the percentage of white noise gaps that were correctly 395 
identified (as single or double) and responded to promptly (i.e. within two seconds of the gap/s). This 396 
was calculated separately for the practice block, which was repeated if a participant did not achieve at 397 
least 50% accuracy. Once participants achieved above 50% accuracy, they were invited to participate 398 
in the rest of the experiment. At the end of the experiment each participant’s accuracy was again 399 
calculated to ensure their accuracy level remained at least 50% (otherwise they were excluded from 400 
the study). This was to ensure that participants were attending to the task as instructed. 401 
  402 
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3.4 EEG data acquisition 403 

Using a standardised nylon head cap fitted tightly and comfortably over the scalp, 64 silver/silver 404 
chloride (Ag/AgCl) scalp electrodes were placed according to the international 10-10 system for 405 
electrode placement. As is usual for this system, electrodes were placed above and below the left eye 406 
and just lateral to the outer canthi of both left and right eyes, to generate the vertical electrooculogram 407 
(VEOG) and horizontal electrooculogram (HEOG) recordings respectively. Continuous EEG data were 408 
recorded using a Biosemi Active Two system at a sampling rate of 1024 Hz. The onset of targets, 409 
standards and deviants were recorded with unique trigger codes at the time of delivery to the 410 
participant. Within each block, the target triggers were used for accuracy calculations, while the 411 
standard and deviant triggers were kept as the time points around which to epoch the data at a later 412 
stage.   413 

3.5 EEG preprocessing 414 

Following the collection of the raw EEG data, preprocessing was completed using Statistical 415 
Parametric Mapping (SPM) software (SPM12, RRID:SCR_007037; Wellcome Trust Centre for 416 
Neuroimaging, London; http://www.fil.ion.ucl.ac.uk/spm/). EEG data preprocessing included 417 
referencing data to the common average of all electrodes; downsampling to 200 Hz; bandpass filtering 418 
(between 0.5 to 40 Hz); eyeblink correction to remove trials marked with eyeblink artefacts (measured 419 
with the VEOG and HEOG channels); epoching using a peri-stimulus window of -100 to 400 ms; 420 
artefact rejection (with 100 uV cut-off); low-pass filtering (40 Hz; to remove any high frequency noise 421 
from the robust averaging step) and baseline correction (-100 to 0 ms window). 422 

Source Reconstruction 423 

For source BMS, SPM12 software was used to obtain source estimates on the cortex by reconstructing 424 
the scalp activity using a single-shell head model. The forward model was then inverted with multiple 425 
sparse priors (MSP) assumptions for the variance components (Friston et al., 2008) under group 426 
constraints (Litvak and Friston, 2008). The entire time window of 0 to 400 ms was used to infer the 427 
most likely cortical regions that generated the data observed during this time. Images for each 428 
participant and each condition were obtained from the source reconstructions and were smoothed at 429 
full width at half maximum (FWHM) 12 x 12 x 12 mm. This source reconstruction step is available as 430 
an online script (named “BMS1_Source_ImCreate.m” and available at 431 
https://github.com/ClareDiane/BMS4EEG). 432 

3.6 Bayesian Model Selection Maps: Implementation for M/EEG 433 

For all data analysis steps (Table 1), we used SPM12 software package for MATLAB. We wrote in-434 
house MATLAB scripts, integrated with SPM12 and now available online 435 
(https://github.com/ClareDiane/BMS4EEG). The online scripts are divided into three BMS scripts. In 436 
the first script (BMS1_ST_ImCreate.m for spatiotemporal BMS and BMS1_Source_ImCreate.m for 437 
source BMS), we call the preprocessed EEG data and then create images for every trial, for every 438 
condition, and for every participant. The second script (BMS2_ModelSpec_VB.m) specifies the 439 
hypotheses and implements variational Bayes (as described in the Theory section). The last script 440 
(BMS3_PPMs.m) then creates Posterior Probability Maps.  441 

In the model specification and VB script (BMS2_ModelSpec_VB.m), we changed individual 442 
participants’ data file structures in order to match the format that SPM typically requires to read fMRI 443 
data. This is done by first loading the relevant file path and then changing the file structure. Once these 444 
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newly-structured files had been saved, we next specified the models to be compared: this was done by 445 
assigning covariate weights to describe both models (please see the instructions contained within 446 
BMS2_ModelSpec_VB.m on Github). The Opposition Model was assigned weights of [1, 2, 2, and 3] 447 
for the unattended predicted, attended predicted and unattended unpredicted, and attended unpredicted, 448 
respectively. The Interaction Model was assigned weights of [1, 4, 2, and 3] for the same conditions.  449 

These covariate weights essentially describe the assumed relationship between the different conditions 450 
according to a given model. For example, using [1, 2, 2, and 3] as employed in the Opposition Model, 451 
means that according to the Opposition Model, the unattended predicted condition (the first condition 452 
with an assigned weight of 1) evokes the smallest activity, whereas the attended unpredicted (the fourth 453 
condition with a weight of 3) has the greater activity, and both attended predicted and unattended 454 
unpredicted (second and third conditions with an equal weight of 2) are in between the former two 455 
conditions and indistinguishable in magnitude from each other.  456 

We then created log-evidence images, representing the log-model evidences, for both models 457 
(separately), for every participant (individually) at every voxel. In the case of spatiotemporal (scalp-458 
level) BMS, each voxel was representative of a specific spatiotemporal location within the peristimulus 459 
time window (0 to 400 ms) and topologically across the scalp, such that the first two dimensions of the 460 
voxel refer to the space across the scalp and the third dimension is time (as shown in Figure 2). 461 
Conversely, in the source BMS (which began with the source reconstruction steps described above), 462 
each voxel was representative of an inferred location in three-dimensional source space. Once log 463 
evidence images had been created, these were smoothed with a 1 mm half-width Gaussian kernel.  464 

In summary, one can create posterior probability maps or log evidence maps in sensor or source space. 465 
In sensor space, this involves creating a two-dimensional image over the scalp surface and equipping 466 
the space with a peristimulus time dimension. This creates posterior probability maps over the scalp 467 
surface and peristimulus time, enabling one to identify regionally and temporally specific effects due 468 
to a particular model, relative to other contrasts. Alternatively, one can create three-dimensional 469 
posterior probability maps in source space, following source reconstruction.  470 

The core SPM script that allows VB to be used on fMRI data is named spm_spm_vb.m and is found 471 
in the SPM12 package, downloadable from the SPM site. This core script was edited in order to adapt 472 
the VB method for EEG, as follows. Changes were made such that different data structures could be 473 
read in the same way that fMRI data would usually be read. Furthermore, high-pass filtering steps were 474 
removed as these only apply to low-frequency drifts associated with fMRI data. The specific changes 475 
made between the original script and the altered one to be used for spatiotemporal BMS are accessible 476 
online (goo.gl/ZVhPT7). For the source BMS steps, the same changes were left in place as outlined 477 
above, and in addition, the required minimum cluster size was changed from 16 voxels to 0 voxels to 478 
allow for visualisation of all clusters of any size. The specific differences between the original and 479 
source BMS versions of the spm_spm_vb script are accessible online (goo.gl/WXAo67).   480 

In the final step (BMS3_PPMs.m), the SPM Batch Editor was used to apply a random effects approach 481 
to the group model evidence data in a voxel-wise manner, thus translating the log-evidence images 482 
from the previous step into Posterior Probability Maps (similar to how Penny at al. (2007) and Rosa et 483 
al., (2010) have produced PPMs previously for fMRI data). The maps, displayed in the Figures 2, 3 484 
and 4, were generated by selecting threshold probabilities of 75% for the spatiotemporal maps (Figure 485 
2) and 50% for the source maps (Figures 3 and 4). This threshold can be adjusted by the user. EPMs 486 
can also be displayed by selecting the relevant setting in the final script (please see the instructions on 487 
Github). 488 
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[Table 1 about here] 489 
 490 

4 Results 491 

The raw dataset for this study can be found on Figshare (EEG_Auditory_Oddball_Raw_Data 492 
repository, https://figshare.com/s/1ef6dd4bbdd4059e3891).  493 

The preprocessed dataset for this study can also be found on Figshare 494 
(EEG_Auditory_Oddball_Preprocessed_Data repository, 495 
https://figshare.com/s/c6e1f9120763c43e6031). 496 

4.1 Scalp - Spatiotemporal 497 

Figure 2 shows scalp (spatiotemporal) PPMs of the two competing models over space and time. These 498 
maps display all posterior probabilities exceeding 75% over space and time for both models. As can 499 
be seen in the figure, spatiotemporal BMS results revealed that Model One (the Opposition Model) 500 
was by and large the superior model. The Opposition Model had model probabilities exceeding 75% 501 
across the majority of later time points (with most significant clusters between 225-360 ms), and over 502 
most frontocentral and bilateral channel locations, as shown in (A). On the other hand, as shown in 503 
(B), the Interaction Model did have over 75% model probability centrally between 175-185 ms, which 504 
is within the mismatch negativity (MMN) time window. These findings replicate those of Garrido et 505 
al., (2017), and strongly support the implications discussed in great depth in that paper. 506 

 [Figure 2 about here] 507 

4.2 Source 508 

As shown in Figures 3, 4 and 5, source BMS results also favoured the Opposition Model, with higher 509 
model probability over the left supramarginal gyrus (with 91% model probability over a relatively large 510 
cluster, KE = 6115), the right superior temporal gyrus (with 87% model probability over a cluster with 511 
KE = 5749) as well as over parts of the left inferior parietal lobe, right inferior parietal lobe and left 512 
postcentral gyrus. Having said this, the Interaction Model also had two large clusters, albeit with lower 513 
model probabilities compared to the Opposition Model’s highest-probability clusters: specifically, the 514 
Interaction Model had a cluster of size KE = 6346 over the left inferior parietal lobe and a cluster of 515 
size KE = 5353 over the right inferior parietal lobe (with 74% model probability in both places).  516 

[Figure 3 about here] 517 

[Figure 4 about here] 518 

[Figure 5 about here] 519 

Figures 3 and 4 show that different brain regions are likely to perform different computations best 520 
described by the Opposition and Interaction Models, respectively. Furthermore, Figure 5 compares the 521 
magnitude of the calculated posterior probabilities, at the locations of the highest probability cluster 522 
for both models. The possible functional reasons for the different anatomical locations that emerge for 523 
the two different models may be an interesting subject for future study, but fall outside the scope of 524 
this methods paper. In any case, the usefulness of this probability mapping approach illustrated in 525 
Figures 2, 3 and 4, lies in the ability of pinpointing where and when given computations are likely to 526 
be performed in the brain. 527 
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5 Discussion 528 

This paper shows how to use RFX Bayesian model selection mapping methods for M/EEG data 529 
analysis. This method was originally developed for fMRI by Rosa and colleagues (2010), and provides 530 
a way of displaying the probabilities of different cognitive models at different timepoints and brain 531 
locations, given a neuroimaging dataset. We aimed to provide an in-depth explanation, written in a 532 
didactical manner, of the BMS and posterior probability mapping steps that were successfully used by 533 
Garrido et al. (2017) in their recent EEG paper.  534 

Being a Bayesian approach to hypothesis-testing, the method described here provides multiple 535 
advantages over frequentist inference methods. The first of these advantages is that VB allows for 536 
comparisons between non-nested models. Consequently, it is especially useful in the context of model-537 
based neuroimaging (Montague et al., 2004; O’Doherty et al., 2007; Rosa et al., 2010; Garrido et al., 538 
2017). Another advantage is that the probability of the null hypothesis itself can be assessed (instead 539 
of simply being, or failing to be, rejected). A final advantage is that, although only two models were 540 
compared here, the same method can also be applied to any arbitrary number of models. For example, 541 
the analyses described here could proceed slightly differently, based on the same data but introducing 542 
another (or multiple other) model/s against which to compare the Opposition and Interaction Models. 543 
Potentially, any number of theoretically motivated models could be considered. Considering all of 544 
these advantages, the method described here should prove useful in a wide variety of M/EEG 545 
experiments.  546 

In summary, we have shown here how to adapt Bayesian Model Selection maps, originally developed 547 
for fMRI data by Rosa and colleagues (2010), to M/EEG data analysis. It is hoped that the reporting of 548 
analytical methods such as these, as well as the availability of all the code and dataset, will not only 549 
contribute to the Open Science movement, but may also encourage other researchers to adopt this novel 550 
M/EEG data analysis method in a way that is useful for addressing their own neuroscience questions. 551 
We postulate that the use of this Bayesian model mapping of M/EEG data to adjudicate between 552 
competing computational models in the brain, both at the scalp and source level, will be a significant 553 
advancement in the field of M/EEG neuroimaging and may provide new insights in cognitive 554 
neuroscience.  555 
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12 Figures 754 

Figure 1 755 

 756 

 757 

Figure 1: The two competing models that were evaluated using BMS. Reprinted with permission from 758 
Garrido et al. (2017) DOI: 10.1093/cercor/bhx087. Figure Published by Oxford University Press. All 759 
rights reserved. Available online at: https://academic.oup.com/cercor/advance-760 
article/doi/10.1093/cercor/bhx087/3571164?searchresult=1. This figure is not covered by the Open-761 
Access licence of this publication. For permissions contact Journals.permissions@OUP.com 762 
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Figure 2 764 

 765 

[Panels from left to right: A, B, C and D] 766 

Figure 2: Scalp Posterior Probability Maps of the two competing models over space and time. (The 767 
scalp images include the participant’s nose, pointing upwards, and ears, visible as if viewed from 768 
above.) These maps display all posterior probabilities exceeding 75% over space and time for both 769 
models. The left sides of both panels (A) and (C) both depict the temporal information, showing the 770 
model probabilities at each point in time from 0 ms (when the tone was played, at the top of the 771 
diagrams) to 400 ms after the stimulus presentation (at the bottom of the diagram), across the surface 772 
of the scalp (which traverses the width of the panels). The right sides (B) and (D) show the spatial 773 
locations of the probability clusters which exceeded the threshold of 75% probability. 774 
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Figure 3 775 

 776 

[Panels from left to right and then top to bottom: A, B, C and D] 777 

Figure 3: Source Posterior Probability Map for the Opposition Model (that is, reconstructed images 778 
representing the model inference at the group level for this model), thresholded at >50% posterior 779 
probability. (A): view from the left side. (B): view from the left side, from the posterior (back) end. 780 
(C): view from the right side. (D): view from above. 781 
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Figure 4 783 

 784 

[Panels from left to right and then top to bottom: A, B, C and D] 785 

Figure 4: Source Posterior Probability Map for the Interaction Model (that is, reconstructed images 786 
representing the model inference at the group level for this model), thresholded at >50% posterior 787 
probability. (A): view from the left side. (B): view from the left side, from the posterior (back) end. 788 
(C): view from the right side. (D): view from above. 789 
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Figure 5  791 

 792 

Figure 5: Comparison of the posterior probabilities for the two models at the location of the highest-793 
probability cluster of the Opposition Model (left) and the location of the highest-probability cluster of 794 
the Interaction Model (right). The left supramarginal gyrus cluster, which was the highest probability 795 
cluster for the Opposition Model (left), was located at Montreal Neurological Institute (MNI) 796 
coordinates (62, -42, 30), while the left inferior parietal lobe cluster, which was the highest probability 797 
cluster for the Interaction Model, was located at MNI coordinates (-54, -32, 46).  798 
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13  Table 799 

Table 1: Step-by-step summary of method 

Task: Suggested steps: 

Saving the correct 
spm_spm_vb.m 
files 

1. Find and open the spm12 folder on your computer. 
2. Find the spm_spm_vb.m script in that folder, and rename this to 
spm_spm_vb_fMRI.m. Then add the spm_spm_vb_ST.m and 
spm_spm_vb_source.m scripts (saved in the associated Github repository) to 
your spm12 folder. 
3. Before undertaking either the spatiotemporal BMS or source BMS 
steps, rename the currently-relevant script from the above step to 
spm_spm_vb.m. Once you have finished the BMS steps, rename the script 
back to its original name, to re-identify it as being for either the spatiotemporal 
(‘spm_spm_vb_ST.m’) or source BMS (‘spm_spm_vb_source.m’). In this 
way, you will keep track of which spm_spm_vb.m script to use for whichever 
BMS steps you are about to do. 

Creating 
spatiotemporal 
(“scalp”) PPMs: 
 
 

1. BMS script 1: Change the file paths to reflect the location of ERP data.  
2. Run BMS script 1: BMS1_ST_ImCreate.m. 
3. Ensure the correct spm_spm_vb.m file is saved in SPM12 folder. 
4. Run BMS script 2: BMS2_ModelSpec_VB.m. 
5. Run BMS script 3: BMS3_PPMs.m. Threshold is set to 0.75 and 
adjustable. 

Creating source 
PPMs: 

1. BMS script 1: Change the file paths to reflect location of source 
reconstructed images. 
2. Run BMS script 1: BMS1_Source_ImCreate.m. 
3. Ensure the correct spm_spm_vb.m file is saved in SPM12 folder. 
4. Run BMS script 2: BMS2_ModelSpec_VB.m. 
5.  Replace NaNs with zeros in the LogEv.nii files: 
BMS2b_Source_NaNtoZeros.m. 
6.  Run BMS script 3: BMS3_PPMs.m. Adjust probability threshold as 
desired. 
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