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Abstract 

Auditory prediction errors, i.e. the mismatch between predicted and actual auditory input, are 

generated by a hierarchical functional network of cortical sources. This network is also 

interconnected by auditory white matter pathways. Hence it would be reasonable to assume 

that these structural and functional networks are quantitatively related, which is what the 

present study set out to investigate. Specifically, whether structural connectivity of auditory 

white matter pathways enables effective connectivity of auditory prediction error generation. 

Eighty-nine participants underwent diffusion weighted magnetic resonance imaging. 

Anatomically-constrained tractography was used to extract auditory white matter pathways, 

namely the bilateral arcuate fasciculus, the inferior occipito-frontal fasciculi (IOFF), and the 

auditory interhemispheric pathway, from which Apparent Fibre Density (AFD) was 

calculated. The same participants also underwent a stochastic oddball paradigm, which was 

used to elicit prediction error responses, while undergoing electroencephalographic 

recordings. Dynamic causal modelling (DCM) was used to investigate the effective 

connectivity of auditory prediction error generation in brain regions interconnected by the 

above mentioned auditory white matter pathways. Brain areas interconnected by all auditory 

white matter pathways best explained the dynamics of auditory prediction error responses. 

Furthermore, AFD in the right IOFF and right arcuate fasciculus significantly predicted the 

effective connectivity parameters underlying auditory prediction error generation. In 

conclusion, the generation of auditory prediction errors within an effectively connected, 

fronto-temporal network was found to be facilitated by the structural connectivity of auditory 

white matter pathways. These findings build upon the notion that structural connectivity 

facilitates dynamic interactions within brain regions that are effectively connected. 
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Significance statement 

The brain continuously generates and updates hypotheses that predict forthcoming sensory 

input. Within the auditory domain, it has repeatedly been reported that these predictions 

about the auditory environment are facilitated by specific functional cortical connections. 

These functionally connected brain regions are also structurally connected via auditory white 

matter pathways. For the first time, this study provides quantitative evidence for a structural 

basis along which this functional network of auditory prediction error generation operates. 

This finding provides evidence for the notion that the functional connectivity of dynamically 

interacting brain areas is facilitated by structural connectivity amongst these brain areas.  
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Introduction  

Auditory prediction errors are elicited by unexpected auditory events and result from 

a mismatch between predictions about forthcoming auditory sensations (which are based on 

past experiences), and actual auditory input (Friston, 2005). Previous studies used dynamic 

causal modelling (DCM) to investigate the effective connectivity of auditory prediction errors 

and identified a three-level hierarchical network comprised of connections from bilateral 

primary auditory cortex (A1) to the planum temporale (PT), and from the PT to the right 

inferior frontal gyrus (IFG) (Garrido et al., 2007; Garrido et al., 2008). This network included 

intrinsic (within source) connections within A1 and extrinsic (between-sources), forward and 

backward, connections between A1, PT and IFG. Interestingly, these effectively connected 

brain areas are also structurally connected via the auditory white matter pathways of the 

arcuate fasciculus, inferior occipito-frontal fasciculus (IOFF), and auditory interhemispheric 

pathway. It therefore seems feasible that auditory prediction errors are facilitated through 

dynamic interactions along these white matter tracts.  

The arcuate fasciculus directly connects speech production areas in the IFG to 

auditory perception areas in the PT and also has shorter, indirect connections consisting of an 

anterior pathway which connects IFG to the inferior parietal lobule (IPL), and a posterior 

pathway which connects IPL to PT (Catani et al., 2005). While the posterior pathway has 

been reported to be involved in auditory comprehension, the anterior pathway is thought to be 

involved in the vocalization of semantic information (Catani et al., 2005). The IOFF connects 

areas in the frontal lobe (including IFG) with temporal areas (including PT and A1) and 

occipital areas (Martino et al., 2010) and has been reported to be involved in semantic 

language processing (Duffau et al., 2005). The auditory interhemispheric pathway is part of 

the corpus callosum, linking bilateral A1s and PTs and is thought to be involved in the 

integration of prosodic and syntactic information (Wigand et al., 2015).  
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Only few studies to date have attempted to directly associate measures derived from 

diffusion magnetic resonance imaging (MRI) with effective connectivity inferred from 

functional MRI (fMRI) data. A study combining DCM and diffusion weighted imaging 

(DWI) investigated cognitive control along the fronto-thalamic-cerebellar circuitry associated 

with symptoms in schizophrenia and found that fractional anisotropy in the anterior limb of 

the internal capsule was significantly correlated with fronto-thalamic effective connectivity in 

schizophrenia (Wagner et al., 2015). A study by Stephan et al. (2009) used probabilistic 

tractography from DWI to anatomically inform priors for DCM models. It was found that the 

DCMs that used anatomically informed priors outperformed DCMs without anatomically 

informed priors, which was taken to indicate that structural connectivity improves inferences 

about effective connectivity. Lastly, a study by Rae et al. (2015) correlated effective 

connectivity between IFG, pre-supplementary motor area (preSMA), subthalamic nucleus 

(STN) and primary motor cortex during an inhibitory control task with structural connectivity 

measures of white matter tracts connecting these regions and found a positive relationship of 

mean diffusivity and effective connectivity between preSMA and STN (Rae et al., 2015). 

While these studies provide evidence for an association between effective and structural 

connectivity, they fMRI data to infer effective connectivity. However, to date, no study has 

investigated whether structural connectivity predicts effective connectivity inferred from 

electrophysiological data, which, due to its higher temporal resolution, is more suited to 

investigate whether structural connectivity enables fast brain dynamics, such as auditory 

prediction error generation (which occur approximately 100 to 250ms after stimulus onset). 

Here, we set out to investigate the relationship between structural connectivity (from 

DWI) and effective connectivity from Electroencephalographic (EEG) data, in the context of 

auditory prediction error generation. It was hypothesized that the effective connectivity 

network underlying auditory prediction error generation would include connections along all 
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three auditory white matter pathways of the bilateral arcuate fasciculus, IOFF as well as the 

auditory interhemispheric pathway. It was furthermore hypothesized that the effective 

connectivity underlying auditory prediction error generation could be predicted from 

structural connectivity of the auditory white matter pathways.  
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Methods 

Participants 

Eighty-nine healthy participants (18 – 63 years, M = 25.02, SD = 10.34, 92.3% right-

handed, and 57% female) were recruited through the online recruitment system - SONA and 

a weekly newsletter distributed to staff and alumni at the University of Queensland, 

Australia. All participants gave written informed consent and were monetarily reimbursed for 

their time. The study was approved by the University of Queensland Research Ethics 

Committee.  

 

Procedure  

 In the first part of the experiment, participants completed a set of questions about their 

demographic details. In the second part of the experiment, participants were seated in a quiet, 

dimly lit room, where they underwent an electroencephalography (EEG) recording. The 

experimental design consisted of an auditory frequency oddball paradigm (Garrido et al., 

2013a) and a simultaneous N-back task (Sweet, 2011). Participants listened to a stream of 

sounds with log-frequencies sampled from two Gaussian distributions with equal means 

(500Hz) and different standard deviations (narrow: σn = .5 octaves; broad: σb = 1.5 octaves). 

All tones were played with duration of 50ms, including 10ms smooth rise and fall periods 

and inter-stimulus intervals of 500ms. 10% of the tones were defined as standard tones, 

which were played at 500Hz, i.e. at the mean of both distributions, and 10% of the tones were 

defined as deviant tones, which were played at 2000Hz, i.e. at the tails of the distributions 

and hence outliers. Standard and deviant tones were inserted into the sound stream pseudo-

randomly with the Gaussian contributing 80% of the tones. Participants were told to 

disregard the tones and to focus on the visual N-back task, in which they were instructed to 

press a button every time they saw the same letter was played 2 trials beforehand. The 
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timings of the sounds and the visual N-back task were independent of each other in order to 

avoid motor and attention artefacts. The overall experiment lasted approximately 30 minutes 

and was divided into 4 blocks. The narrow and broad distribution conditions were presented 

in separate blocks and the order of the blocks was counter-balanced across participants.   

 In the third part of the experiment, participants underwent diffusion-weighted and T1-

weighted magnetic resonance imaging (MRI) scans.  

 

Data acquisition and pre-processing 

Electroencephalography (EEG) 

Continuous EEG was recorded with a 64 Ag/AgCl BioSemi ActiView system at a 

sampling rate of 1024Hz. External electrodes were placed on the outer canthi of both eyes, 

below and above the left eye and on both mastoids. Pre-processing and data analysis were 

performed using SPM12 (Wellcome Trust Centre for Neuroimaging, London; 

http://www.fil.ion.ucl.ac.uk/spm/) with MATLAB (MathWorks). Data were referenced to the 

common average reference and high-pass filtered above 0.5Hz. Eye blinks were detected and 

removed with the vertical electro-oculogram (VEOG) and horizontal electro-oculogram 

(HEOG) channels. The data were epoched offline into 500ms intervals with 100ms pre- and 

400ms post-stimulus onset. Trials containing artefacts exceeding ±50µV were rejected. The 

remaining artefact free trials were robustly averaged to event-related potentials (ERPs), low-

pass filtered below 40Hz and baseline corrected using the -100 to 0ms pre-stimulus interval.  

 

Diffusion-Weighted Imaging (DWI) 

Two diffusion-weighted (DW) image series were acquired on a Siemens Trio 3T 

system (Erlangen, Germany) using an echo-planar imaging (EPI) sequence. The first DW 

image series consisted of a high b-value data set with field-of-view (FoV) of 220mm, phase 
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partial Fourier (PPF) 6/8, parallel acceleration factor 2, 55 slices, 2mm isotropic resolution, 

64 diffusion-sensitization directions at b=3000s/mm2 with two b=0 volumes, TR=8600ms, 

TE=116ms, and 10min acquisition time. The second DW image series consisted of a low b-

value data set with FoV 220mm, PPF 6/8, parallel acceleration factor 2, 55 slices, 2mm 

isotropic resolution, 33 diffusion-sensitization directions at b=1000s/mm2 with one b=0 

volumes, TR=8600ms, TE=116ms, and 5min acquisition time. A T1-weighted image data set 

was acquired with the magnetisation-prepared two rapid acquisition gradient echo 

(MP2RAGE) sequence (Marques et al., 2010) with FoV 240mm, 176 slices, 0.9mm isotropic 

resolution, TR=4000ms, TE=2.92ms, TI1=700ms, TI2=2220ms, first flip angle=6°, second 

flip angle=7°, and 5min acquisition time. Three b=0 images were acquired interspersed 

between the DW image series and the MPRAGE sequence, with reversal of the acquisition 

direction along the phase-encoded axis for one of the three images and acquisition time of 

30ms each.  

DW images were corrected for signal intensity inhomogeneities (Zhang et al., 2001) 

as well as head movements and eddy current distortions using the FSL TOPUP (Smith et al., 

2004) and EDDY (Andersson and Sotiropoulos, 2016) tools. The remaining processing steps 

were conducted using tools implemented in MRtrix3 (Tournier et al., 2012). DW and T1-

weighted images were co-registered using boundary-based registration (Greve and Fischl, 

2009). A five-tissue-type segmented image (cortical grey matter, sub-cortical grey matter, 

white matter, cerebrospinal fluid, pathological tissue) was generated from the structural 

images pre-processed using the recon-all command in FeeSurfer (Dale et al., 1999). Response 

functions were estimated using the multi-shell, multi-tissue algorithm implemented in 

MRtrix3 (Jeurissen et al., 2014). Multi-tissue constrained spherical deconvolution was 

applied to obtain fiber orientation distributions (FOD; (Jeurissen et al., 2014). Anatomically-

constrained tractography (ACT; (Smith et al., 2012)) was used to generate probabilistic 
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streamlines of the auditory interhemispheric pathway, bilateral IOFF, and bilateral arcuate 

fasciculus with a maximum path length of 200mm, a minimum path length of 4mm, step size 

of 1mm and back-tracking (see Figure 3A). Spherical deconvolution Informed Filtering of 

Tractograms (SIFT2) is a filtering algorithm to remove inadequacies resulting from the 

reconstruction method to create tracts that are more biologically plausible (Smith et al., 

2013). SIFT2 provides a cross-sectional area multiplier for each streamline, such that the 

contribution of each streamline to the tractogram can be weighted, whilst simultaneously 

retaining all reconstructed streamlines (Smith et al., 2015). Contrary to the traditional 

diffusion tensor model, which estimates average values across an entire voxel, the apparent 

fibre density (AFD) is a metric derived from the FOD lobe parallel to the direction of the 

streamline and therefore provides a sub-voxel, tract specific measure (Raffelt et al., 2012). 

The AFD integral for a specific FOD lobe in a specific direction is approximately 

proportional to the intra-axonal volume of the corresponding white matter fibre bundle 

oriented in that direction. AFD can therefore be defined as the fraction of space occupied by a 

white matter fibre bundle (Wright et al., 2017). The apparent fibre density (AFD) related to 

the total intra-axonal tract volume was calculated by summing the integrals for all FODs 

associated with the tract streamlines and dividing it by the streamline length (Raffelt et al., 

2012).  

 

Source reconstruction and analysis 

 Source images were created from the scalp activity using a Boundary Element 

Method (BEM) and a standard MNI template for the cortical mesh. Reconstructed images 

were obtained for the conditions Standard Narrow, Deviant Narrow, Standard Broad and 

Deviant Broad in each participant and smoothed at FWHM 8x8x8 mm3. A mixed analysis of 

variance (ANOVA) was conducted with the within-subjects factors surprise 
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(standards/deviants) and variance (narrow/ broad) and significant main effects and 

interactions were followed-up with t-statistic contrasts. Effects are displayed at an 

uncorrected threshold of p < .05. 

 

Dynamic causal modelling (DCM)  

 DCM is based on a generative spatiotemporal model for EEG responses elicited by 

experimental stimuli (Kiebel et al., 2008). DCM uses neural mass models to make inferences 

about source activation as well as the dynamic interactions, or connectivity, amongst these 

sources (Jansen and Rit, 1995; David and Friston, 2003). In DCM, nodes are hierarchically 

organized and interconnected via forward, backward and lateral connections (Felleman and 

Van Essen, 1991; David et al., 2005; Kiebel et al., 2007). DCMs are defined to test 

theoretically informed hypotheses about several connectivity models which define alternative 

networks that explain (or predict) the generation of ERP signals (Garrido et al., 2008).  

 

Bayesian model selection and averaging 

Bayesian Model Selection (BMS) was used to compare several plausible network 

connections by estimating the probability of the data given a particular model within the 

space of models compared (Penny et al., 2004). The winning model is the one, which 

displays the best balance between accuracy maximisation and complexity minimization. 

 The posterior probability of each model was calculated over all participants using a 

random effects approach (RFX; (Stephan et al., 2009), which quantifies the probability that a 

particular model generated the data for any randomly chosen participant. The reported 

exceedance probability is the probability that one model is more likely than any other model, 

given the group data (Stephan et al., 2010). The main conclusions of the family comparisons 

are based on inferences with RFX exceedance probabilities of .89 on average (ranging from 
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.78-1). The Bayesian omnibus risk (BOR) directly measures the probability that all model 

frequencies are indistinguishable, which quantifies the risk incurred when performing 

Bayesian model selection (Rigoux et al., 2014). The BOR is defined by a value between 0 

and 1, whereby a value close to 1 indicates that the models are indistinguishable and a value 

close to 0 indicates that the models are well distinguishable from each other. In order to make 

inferences on individual connections, we used random-effects Bayesian Model Averaging 

(BMA) which computes a weighted average estimate of the individual connections across all 

models and participants, such that each model contributes to the overall estimate according to 

its posterior probability (Stephan et al., 2009). 

  

DCM specification  

The models compared in the present study include up to 10 bilateral brain regions, 

which were hierarchically organized into four levels. These alternative models were 

motivated by brain regions, which have previously been shown to be implicated in auditory 

prediction errors (Garrido et al., 2013b), appeared in the source reconstruction of the present 

data and are interconnected by the auditory white matter pathways of the arcuate fasciculus, 

the auditory interhemispheric pathway and the inferior occipito-frontal fasciculus (IOFF). 

The bilateral primary auditory cortex (A1) was defined as the input node of auditory 

information. The arcuate fasciculus comprises a direct pathway between planum temporale 

(PT) and inferior frontal gyrus (IFG) as well as two indirect pathways, namely the anterior 

pathway, which connects inferior parietal lobule (IPL) with IFG and the posterior pathway, 

which connects PT with IPL. The IOFF interconnects IFG with PT and the occipital lobe 

(OL). Lastly, the auditory interhemispheric pathway connects A1 to PT in the left hemisphere 

to A1 and PT in the right hemisphere. The coordinates were chosen based on previous studies 

on MMN generation for STG, IFG (Opitz et al., 2002) and A1 (Rademacher et al., 2001) and 
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language processing for IPL (Bitan et al., 2005) and PT (Osnes et al., 2011). The mean 

locations for the nodes were based on the Montreal Neurological Institute (MNI) coordinates 

for left A1 (-52, -19, 7), right A1 (50, -21, 7), left PT (-57, -20, 1), right PT (54, -19, 1), left 

IPL (-53, -32, 33), right IPL (51, -33, 34), left IFG (-48, 13, 17), right IFG (49, 12, 17), left 

OL (-45, -75, 11) and right OL (44, -75, 5; see Figure 1 (Lacadie et al., 2008)). 

 A model space of 50 models was considered, including symmetric and non-symmetric 

hierarchical models, with and without interhemispheric connections between the left and 

right A1 and PT, with and without indirect connections between PT and IFG via IPL as well 

as models with and without connections to OL (for a full description of the model space see 

Figure 1 – note that 25 model architectures are displayed, which were tested with and without 

interhemispheric connections). All models included modulations of intrinsic connectivity at 

the level of A1 and were individually estimated and compared to each other using BMS. To 

investigate whether auditory prediction errors operate along interhemispheric connections in 

addition to unilateral connections, a family including all models with interhemispheric 

connections (i.e. lateral connections family) was compared to a family without 

interhemispheric connections (i.e. no lateral connections family). Lastly, to investigate 

whether connections along individual white matter tracts or a combination of all tracts were 

more likely to be utilized during auditory prediction error generation, the models were 

partitioned into four different families, namely the auditory interhemispheric pathway family, 

the IOFF family, the arcuate fasciculus family, and the auditory interhemispheric pathway + 

IOFF + arcuate fasciculus family (see Figure 1). Each of the 50 models was fitted to every 

participant’s mean ERP response in the time window of 0-400ms after stimulus onset. The 

Standard Narrow condition elicited the lowest ERP amplitude in the MMN time window 

(100-200ms after stimulus onset) and was used as the baseline condition (weight = 0), 
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followed by increasing ERP amplitudes in the Standard Broad (weight = 1) Deviant Broad 

(weight = 2) and Deviant Narrow (weight = 3) conditions (see Figure 2A).  

 

INSERT FIGURE 1 AND 2 ABOUT HERE 

Predicting effective connectivity from structural connectivity  

A multivariate normal regression implemented in Matlab (Meng and Rubin, 1993; 

Little and Rubin, 2002) was fit to the DCM connectivity parameters derived from the BMA 

(26 outcome variables: intrinsic connections within left and right A1, interhemispheric 

connections between left and right A1, and left and right STG; reciprocal – forward and 

backward - connections linking A1 and PT, PT and IPL, IPL and IFG, PT and IFG, as well as 

PT and OL) where the effect of AFD was tested (5 independent variables: AFD of the right 

arcuate fasciculus, left arcuate fasciculus, right IOFF, left IOFF and the auditory 

interhemispheric pathway). In case of significant contributions of individual white matter 

pathways in predicting effective connectivity of auditory prediction error generation across 

the whole network, the association between the structural connectivity of those individual 

white matter pathways and their respective effective connectivity parameters was tested. For 

this purpose, multivariate linear regressions were performed with the AFD of the individual 

pathways as outcome variables and the corresponding DCM connectivity parameters defined 

along those pathways as predictor variables. Bonferroni corrections were used to correct for 

multiple comparisons. 
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Results 

The event-related potential (ERP) waveforms of the prediction errors responses, 

derived by subtracting the standards from the deviants, are displayed for the broad and 

narrow conditions in Figure 2B.  

 

Source Level 

Putative EEG sources were reconstructed from the scalp activity in order to infer the 

cortical sources most likely to have generated the observed EEG signal. A surprise*variance 

interaction effect was observed across right temporal (peak-level F = 9.44, puncorr = .002), left 

occipital (peak-level F = 8.43, puncorr = .004) and central (peak-level F = 5.32, puncorr = .021) 

regions and a main effect of surprise was observed across left frontal (peak-level F = 5.09, 

puncorr = .024), right frontal (peak-level F = 4.66, puncorr = .031) and left occipital regions 

(peak-level F = 5.11, puncorr = .024). These source activations are in line with previous 

findings in studies using MMN paradigms (Doeller et al., 2003; Garrido et al., 2013b) and are 

interconnected by auditory white matter pathways (see Figure 3A). 

 

INSERT FIGURE 3 ABOUT HERE 

 

DCM analysis 

In a first step, all 50 models with and without interhemispheric connections between 

bilateral A1 and PT were individually compared to each other. Results indicated that the best 

model included bilateral forward and backward connections between A1 and PT, PT and IPL, 

PT and OL, IPL and IFG, direct connections between PT and IFG as well as interhemispheric 

connections between left and right A1 and left and right PT (exceedance probability = .51; 

BOR = 9x10-6; see Figure 2C).  
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In order to investigate whether auditory prediction errors engage interhemispheric 

connections in addition to unilateral connections, a family including all models with 

interhemispheric connections was compared to a family without interhemispheric 

connections. BMS revealed that the lateral connections family was more likely than the no 

lateral connections family (exceedance probability = .78). 

To test for specific hypotheses as to whether connections along individual white 

matter pathways or a combination of connections along all pathways are more likely to be 

engaged during prediction error generation, the models were partitioned into four different 

families as described in the method section (see Figure 1B). BMS of these families indicated 

that the auditory interhemispheric + IOFF + arcuate fasciculus family was the winning 

family (exceedance probability = .86), indicating that effective connectivity of auditory 

prediction errors is best explained by regions that are interconnected by all three auditory 

white matter pathways as opposed to one particular tract.  

 

Predicting effective connectivity from structural connectivity  

 Six statistical outliers (3 in the right arcuate fasciculus, one in the auditory 

interhemispheric pathway and 2 in the left arcuate fasciculus), defined as having AFD values 

greater than 3 standard deviations from the mean were excluded from further analyses.  

A multivariate normal regression was conducted in order to investigate whether the 

effective connectivity that underpins auditory prediction error generation could be predicted 

based on the structural connectivity of auditory white matter pathways. This was done using 

the AFD values from the bilateral IOFF, arcuate fasciculus, as well as the auditory 

interhemispheric pathway, as predictors and the twenty-six connectivity parameters derived 

with BMA over all DCMs as outcome variables. The structural connectivity of the right IOFF 

(95% CI [.000048, .000254]) and the right arcuate fasciculus (95% CI [.000346, .006974]) 
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showed significant associations with the effective connectivity of the whole network, 

indicating that effective connectivity of auditory prediction error generation increases with 

increasing structural connectivity (i.e. AFD) in the right IOFF and arcuate fasciculus. 

In order to follow up these association, we ran two multivariate linear regression 

analyses. In the first regression analysis, AFD of the right IOFF was entered as the outcome 

variable and the DCM connectivity parameters defined along the IOFF as the independent 

variables (i.e., PT to IFG, IFG to PT, PT to OL, and OL to PT). The overall model explained 

12% of the variance of AFD of the right IOFF but did not remain significant after Bonferroni 

correction (R2 = .120, Bonferroni corrected p = .078). In the second regression analysis, AFD 

of the right arcuate fasciculus was entered as the outcome variable and the DCM connectivity 

parameters defined along the arcuate fasciculus as the independent variables (i.e. PT to IFG, 

IFG to PT, IPL to IFG, IFG to IPL, PT to IPL, IPL to PT). The overall model explained 27% 

of the variance of AFD of the right arcuate fasciculus (R2 = .266, Bonferroni corrected p = 

.001; see Figure 3B). Specifically, the AFD of the right arcuate fasciculus was trend-level 

predicted by the forward connection from PT to IFG (95% CI [-.149, 11.880]) and 

significantly predicted by the forward connection from PT to IPL (95% CI [.858, 9.028]), the 

backward connection from IPL to PT (95% CI [-20.053, -2.534]), and the backward 

connection from IFG to IPL (95% CI [5.789, 19.360]). This indicates that the structural 

connectivity along the arcuate fasciculus predicts the effective connectivity amongst the 

cortical regions that lie within it, namely PT, IPL and IFG. 
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Discussion 
 

 The first aim of this study was to explore whether brain regions that are effectively 

connected during auditory prediction error generation operate along auditory white matter 

pathways. As hypothesized, the winning DCM model comprised brain regions interconnected 

by all included auditory white matter pathways, namely the bilateral arcuate fasciculus, 

bilateral IOFF and auditory interhemispheric pathway. The second aim of this study was to 

investigate whether the underlying effective connectivity could be predicted from the 

structural connectivity. We found that the white matter microstructure of the right IOFF and 

right arcuate fasciculus were significant predictors of effective connectivity across the whole 

network. Moreover, the backward connections from the inferior parietal lobule to the planum 

temporale, and the inferior frontal gyrus to the inferior parietal lobule, as well as the forward 

connections from planum temporale to inferior parietal lobule individually predicted the 

microstructure of the right arcuate fasciculus. These findings indicate that auditory prediction 

errors are generated along a fronto-temporal auditory network that is both structurally and 

effectively connected.  

In line with previous findings, the results of the present study indicate that auditory 

prediction errors are generated by hierarchically organised cortical brain regions including 

intrinsic connections and extrinsic forward and backward connections (Garrido et al., 2007; 

Garrido et al., 2008). Specifically, the model that best explained auditory prediction error 

generation included intrinsic connections at A1, interhemispheric connections between 

bilateral A1s and PTs, as well as forward and backward connections between A1 and PT, PT 

and IPL, PT and IFG, PT and OL, and IPL and IFG. The present study refined previously 

employed models, which included recurrent connections between A1, PT and IFG, by now 

including recurrent connections between PT and OL, PT and IPL, and IPL and IFG. These 

areas were included due to the fact that they are structurally interconnected by the auditory 
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white matter pathways of the arcuate fasciculus, IOFF, and the auditory interhemispheric 

pathway. Furthermore, a study by (Garrido et al., 2013b) employed source reconstruction on 

MEG data using the same MMN paradigm as used in the present study and found that the OL 

and IPL were engaged in prediction error generation. It is therefore not surprising that the 

winning model of the present study outperforms those with a simpler architecture used in 

previous studies (Garrido et al., 2007; Garrido et al., 2008).  

The current study is one of the few studies to integrate structural neuroimaging 

measures with electrophysiological brain function measures (Salisbury et al., 2007; Fusar-

Poli et al., 2011; Whitford et al., 2011) and, to the best of our knowledge, the first to integrate 

structural connectivity with EEG derived connectivity, within the same sample. We observed 

that the microstructure of the right IOFF and the right arcuate fasciculus significantly 

predicted the effective connectivity underlying auditory prediction errors. Additionally, we 

found that the effective connectivity parameters along the right arcuate fasciculus accounted 

for a significant amount of variance (27%) of the right arcuate fasciculus microstructure. In 

line with previous studies (Garrido et al., 2007; Garrido et al., 2008), the current study also 

found that auditory prediction error generation is facilitated by an effective network of 

intrinsic connections within primary auditory cortex, forward and backward connections from 

bilateral primary auditory cortex to bilateral superior temporal gyrus (i.e. planum temporale, 

more specifically). Contrary to previous studies however, which reported reciprocal 

connections from the superior temporal gyrus (i.e. planum temporale) to the inferior frontal 

gyrus (Garrido et al., 2007; Garrido et al., 2008) on the right hemisphere only, we observed 

reciprocal connections from superior temporal gyrus to planum temporale bilaterally, which 

could be explained by the fundamentally different nature of the statistical regularity violation 

posed by the paradigm used here (Garrido et. al, 2013). Nevertheless, our finding of 

structural connectivity within the right IOFF and right arcuate fasciculus predicting effective 
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connectivity of auditory prediction error generation supports the previous findings of a right 

lateralized network.  

Most of the effective connectivity parameters showed a positive association with the 

AFD values of the corresponding white matter pathways, such that effective connectivity 

increased as structural connectivity. This indicates that strong microstructural integrity of the 

right arcuate fasciculus facilitates improved effective connectivity of auditory prediction 

error generation. However, the backward connection from inferior parietal lobule to planum 

temporale showed a negative association with the microstructure in the right arcuate 

fasciculus. This finding of decreased structural connectivity with increasing effective 

connectivity may seem counter intuitive. AFD is a measure of intra-axonal volume fraction 

(Raffelt et al., 2012), which can be interpreted such that high AFD values correspond to a 

high axonal density and low values indicate a reduction of axonal density. According to this 

interpretation, AFD values should increases with increasing effective connectivity, as 

opposed to decrease. One potential explanation for this finding is that since AFD is 

normalized by the total fibre length, participants with well-preserved longer-fibre 

communication and diverse branching might show decreased fibre density. 

The winning DCM model included brain areas along all auditory white matter 

pathways. However, the regression model did not confirm individual significant contributions 

of structural connectivity of the auditory interhemispheric pathway for predicting effective 

connectivity engaged in the generation of auditory prediction errors. The interhemispheric 

pathway has mainly been associated with the integration of prosody and syntax (Wigand et 

al., 2015). The IOFF and the arcuate fasciculus on the other hand, have been implicated in 

auditory and language processing more generally (Catani and Thiebaut de Schotten, 2008). 

The paradigm used in the present study consisted of simple tones instead of speech sounds 

and participants were passively listening to tones, rather than generating sounds themselves. 
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It is therefore possible that even though the winning DCM model included areas along all of 

the auditory white matter tracts, areas interconnected by the IOFF and particularly the arcuate 

fasciculus, play stronger roles in auditory prediction error generation than the auditory 

interhemispheric pathway.  

In conclusion, we found that a functional network along the auditory white matter 

pathways of the bilateral arcuate fasciculus, bilateral IOFF and the auditory interhemispheric 

pathway best explained the generation of auditory prediction errors in a statistical oddball 

paradigm. Critically, we observed, for the first time, that the structural connectivity (i.e. 

AFD) within the right IOFF and the right arcuate fasciculus significantly predicted the 

effective connectivity of this functional network. These auditory white matter pathways 

interconnect dynamically interacting brain regions and therefore provide a structural basis 

along which auditory prediction error generation can functionally operate. Taken together, 

these findings indicate that in a stochastic environment, auditory prediction errors recruit 

brain regions that are effectively and structurally connected by auditory white matter 

pathways.  
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Figure legends 

Figure 1. A) Prior mean locations for the DCM nodes and model space. The MNI coordinates 

include for the prior mean node locations: left A1 (-52, -19, 7), right A1 (50, -21, 7), left PT 

(-57, -20, 1), right PT (54, -19, 1), left IPL (-53, -32, 33), right IPL (51, -33, 34), left IFG (-

48, 13, 17), right IFG (49, 12, 17), left OL (-45, -75, 11) and right OL (44, -75, 5). B) Model 

space. Models 1-25 excluded interhemispheric connections between the A1s and PTs and 

models 26-50 included interhemispheric connections between the A1s and PTs. These 50 

models were defined to test different hypotheses about the effective anatomy of auditory 

prediction error generation. The models were combined to 4 families including the auditory 

interhemispheric pathway family (model 1-4 and 26-29), the IOFF family (models 5-8 and 

30-33), the arcuate fasciculus family (models 9-20 and 34-45), and the auditory 

interhemispheric pathway + IOFF + arcuate fasciculus family (models 21-25 and 46-50). C) 

Model exceedance probability for auditory prediction error generation. Bayesian model 

selection (random effects) over the whole model space indicated that auditory prediction 

error generation was best explained by a model with intrinsic connections within A1, 

interhemispheric connections between left and right A1 and interhemispheric connections 

between left and right PT, as well as recurrent (forward and backward) connections between 

A1, PT, IPL, OL, IPL and IFG (model number 48). 

 

Figure 2. Event-related potentials (ERPs) elicited by A) the Standard Narrow (light blue), 

Standard Broad (dark blue), Deviant Broad (magenta), and Deviant Narrow (green) 

conditions and B) mismatch negativity (MMN) waveforms (difference between responses to 

deviant and standard tones) for the broad (purple) and narrow (cyan) conditions extracted 

from electrode Fz. ERPs are time-locked to the onset of tones. Solid lines indicate the mean 

and lighter shading indicates standard error of the mean.  
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Figure 3. A) Auditory white matter pathways overlaid on source reconstructed images for the 

interaction between surprise and variance. The inferior occipito-frontal fasciculus (IOFF) 

connects IFG, PT and OL (left), the auditory interhemispheric pathway connects bilateral 

A1s and PTs (middle) and the arcuate fasciculus connects IFG, IPL and PT (right). B) 

Regression analysis. Observed apparent fibre density (AFD) plotted against the predicted 

AFD of the right arcuate fasciculus.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365072doi: bioRxiv preprint 

https://doi.org/10.1101/365072


 24

References 
 

Andersson JLR, Sotiropoulos SN (2016) An integrated approach to correction for off-

resonance effects and subject movement in diffusion MR imaging. Neuroimage 

125:1063-1078. 

Bitan T, Booth JR, Choy J, Burman DD, Gitelman DR, Mesulam MM (2005) Shifts of 

effective connectivity within a language network during rhyming and spelling. J 

Neurosci 25:5397-5403. 

Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for 

virtual in vivo dissections. Cortex 44:1105-1132. 

Catani M, Jones DK, ffytche DH (2005) Perisylvian language networks of the human brain. 

Annals of Neurology 57:8-16. 

Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and 

surface reconstruction. Neuroimage 9:179-194. 

David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal 

dynamics. Neuroimage 20:1743-1755. 

David O, Harrison L, Friston KJ (2005) Modelling event-related responses in the brain. 

Neuroimage 25:756-770. 

Doeller CF, Opitz B, Mecklinger A, Krick C, Reith W, Schröger E (2003) Prefrontal cortex 

involvement in preattentive auditory deviance detection:: neuroimaging and 

electrophysiological evidence. NeuroImage 20:1270-1282. 

Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate 

cerebral cortex. Cerebral Cortex 1:1-47. 

Friston KJ (2005) A theory of cortical responses. Philosophical transactions of the Royal 

Society of London 360. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365072doi: bioRxiv preprint 

https://doi.org/10.1101/365072


 25

Fusar-Poli P, Crossley N, Woolley J, Carletti F, Perez-Iglesias R, Broome M, Johns L, 

Tabraham P, Bramon E, McGuire P (2011) White matter alterations related to P300 

abnormalities in individuals at high risk for psychosis: an MRI-EEG study. Journal of 

psychiatry & neuroscience : JPN 36:239-248. 

Garrido MI, Sahani M, Dolan RJ (2013a) Outlier responses reflect sensitivity to statistical 

structure in the human brain. PLoS Computational Biology 9:234-237. 

Garrido MI, Sahani M, Dolan RJ (2013b) Outlier Responses Reflect Sensitivity to Statistical 

Structure in the Human Brain. PLoS Comput Biol 9:e1002999. 

Garrido MI, Kilner JM, Kiebel SJ, Stephan KE, Friston KJ (2007) Dynamic causal modelling 

of evoked potentials: A reproducibility study. NeuroImage 36:571-580. 

Garrido MI, Friston KJ, Kiebel SJ, Stephan KE, Baldeweg T, Kilner JM (2008) The 

functional anatomy of the MMN: a DCM study of the roving paradigm. NeuroImage 

42:936-944. 

Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary-based 

registration. Neuroimage 48:63-72. 

Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a 

mathematical model of coupled cortical columns. Biological Cybernetics 73:357-366. 

Jeurissen B, Tournier J-D, Dhollander T, Connelly A, Sijbers J (2014) Multi-tissue 

constrained spherical deconvolution for improved analysis of multi-shell diffusion 

MRI data. NeuroImage 103:411-426. 

Kiebel SJ, Garrido MI, Friston KJ (2007) Dynamic causal modelling of evoked responses: 

the role of intrinsic connections. Neuroimage 36:332-345. 

Kiebel SJ, Garrido MI, Moran RJ, Friston KJ (2008) Dynamic causal modelling for EEG and 

MEG. Cognitive Neurodynamics 2:121-136. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365072doi: bioRxiv preprint 

https://doi.org/10.1101/365072


 26

Lacadie CM, Fulbright RK, Arora J, Constable RT, Papademetris X (2008) Brodmann Areas 

defined in MNI space using a new Tracing Tool in BioImage Suite. In: Human Brain 

Mapping. 

Little RJA, Rubin DB (2002) Statistical Analysis with Missing Data, 2nd Edition: John Wiley 

& Sons, Inc. 

Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele P-F, Gruetter R (2010) 

MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-

mapping at high field. NeuroImage 49:1271-1281. 

Martino J, Brogna C, Robles SG, Vergani F, Duffau H (2010) Anatomic dissection of the 

inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. 

Cortex 46:691-699. 

Meng X-L, Rubin DB (1993) Maximum likelihood estimation via the ECM algorithm: A 

general framework. Biometrika 80:267-278. 

Opitz B, Rinne T, Mecklinger A, von Cramon DY, Schroger E (2002) Differential 

contribution of frontal and temporal cortices to auditory change detection: fMRI and 

ERP results. Neuroimage 15:167-174. 

Osnes B, Hugdahl K, Specht K (2011) Effective connectivity analysis demonstrates 

involvement of premotor cortex during speech perception. Neuroimage 54:2437-

2445. 

Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic causal models. 

Neuroimage 22:1157-1172. 

Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, Zilles K 

(2001) Probabilistic mapping and volume measurement of human primary auditory 

cortex. Neuroimage 13:669-683. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365072doi: bioRxiv preprint 

https://doi.org/10.1101/365072


 27

Rae CL, Hughes LE, Anderson MC, Rowe JB (2015) The prefrontal cortex achieves 

inhibitory control by facilitating subcortical motor pathway connectivity. J Neurosci 

35:786-794. 

Raffelt D, Tournier JD, Rose S, Ridgway GR, Henderson R, Crozier S, Salvado O, Connelly 

A (2012) Apparent Fibre Density: A novel measure for the analysis of diffusion-

weighted magnetic resonance images. NeuroImage 59:3976-3994. 

Rigoux L, Stephan KE, Friston KJ, Daunizeau J (2014) Bayesian model selection for group 

studies - revisite. Neuroimage 84:971-985. 

Salisbury DF, Kuroki N, Kasai K, Shenton ME, McCarley RW (2007) Progressive and 

interrelated functional and structural evidence of post-onset brain reduction in 

schizophrenia. Arch Gen Psychiatry 64:521-529. 

Smith R, Tournier J-D, Calamante F, Connelly A (2012) Anatomically-constrained 

tractography: Improved diffusion MRI streamlines tractography through effective use 

of anatomical information. NeuroImage 62:1924-1938. 

Smith RE, Tournier JD, Calamante F, Connelly A (2013) SIFT: Spherical-deconvolution 

informed filtering of tractograms. Neuroimage 67:298-312. 

Smith RE, Tournier JD, Calamante F, Connelly A (2015) SIFT2: Enabling dense quantitative 

assessment of brain white matter connectivity using streamlines tractography. 

Neuroimage 119:338-351. 

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, 

Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, 

Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and 

structural MR image analysis and implementation as FSL. NeuroImage 23:S208-

S219. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365072doi: bioRxiv preprint 

https://doi.org/10.1101/365072


 28

Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model 

selection for group studies. Neuroimage 46:1004-1017. 

Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ (2010) Ten 

simple rules for dynamic causal modeling. NeuroImage 49:3099-3109. 

Sweet LH (2011) N-Back Paradigm. In: Encyclopedia of Clinical Neuropsychology 

(Kreutzer JS, DeLuca J, Caplan B, eds), pp 1718-1719. New York, NY: Springer New 

York. 

Tournier JD, Calamante F, Connelly A (2012) MRtrix: Diffusion tractography in crossing 

fiber regions. International Journal of Imaging Systems and Technology 22:53-66. 

Wagner G, De la Cruz F, Schachtzabel C, Güllmar D, Schultz CC, Schlösser RG, Bär K-J, 

Koch K (2015) Structural and functional dysconnectivity of the fronto-thalamic 

system in schizophrenia: A DCM-DTI study. Cortex 66:35-45. 

Whitford TJ, Mathalon DH, Shenton ME, Roach BJ, Bammer R, Adcock RA, Bouix S, 

Kubicki M, De Siebenthal J, Rausch AC, Schneiderman JS, Ford JM (2011) 

Electrophysiological and diffusion tensor imaging evidence of delayed corollary 

discharges in patients with schizophrenia. Psychol Med 41:959-969. 

Wigand M, Kubicki M, Clemm von Hohenberg C, Leicht G, Karch S, Eckbo R, Pelavin PE, 

Hawley K, Rujescu D, Bouix S, Shenton ME, Mulert C (2015) Auditory verbal 

hallucinations and the interhemispheric auditory pathway in chronic schizophrenia. 

The World Journal of Biological Psychiatry 16:31-44. 

Wright DK, Johnston LA, Kershaw J, Ordidge R, O'Brien TJ, Shultz SR (2017) Changes in 

Apparent Fiber Density and Track-Weighted Imaging Metrics in White Matter 

following Experimental Traumatic Brain Injury. Journal of Neurotrauma 34:2109-

2118. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365072doi: bioRxiv preprint 

https://doi.org/10.1101/365072


 29

Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden 

Markov random field model and the expectation-maximization algorithm. IEEE 

transactions on medical imaging 20:45-57. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365072doi: bioRxiv preprint 

https://doi.org/10.1101/365072


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365072doi: bioRxiv preprint 

https://doi.org/10.1101/365072


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365072doi: bioRxiv preprint 

https://doi.org/10.1101/365072


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365072doi: bioRxiv preprint 

https://doi.org/10.1101/365072

