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Abstract10

In many species a fundamental feature of genetic diversity is that genetic similarity11

decays with geographic distance; however, this relationship is often complex, and may12

vary across space and time. Methods to uncover and visualize such relationships have13

widespread use for analyses in molecular ecology, conservation genetics, evolutionary14

genetics, and human genetics. While several frameworks exist, a promising approach15

is to infer maps of how migration rates vary across geographic space. Such maps16

could, in principle, be estimated across time to reveal the full complexity of population17

histories. Here, we take a step in this direction: we present a method to infer separate18

maps of population sizes and migration rates for different time periods from a matrix19

of genetic similarity between every pair of individuals. Specifically, genetic similarity is20

measured by counting the number of long segments of haplotype sharing (also known21

as identity-by-descent tracts). By varying the length of these segments we obtain22

parameter estimates for qualitatively different time periods. Using simulations, we23

show that the method can reveal time-varying migration rates and population sizes,24

including changes that are not detectable when ignoring haplotypic structure. We25

apply the method to a dataset of contemporary European individuals (POPRES),26

and provide an integrated analysis of recent population structure and growth over27

the last ∼3,000 years in Europe. Software implementing the methods is available at28

https://github.com/halasadi/MAPS.29
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1 Introduction30

Populations exist on a physical landscape and often have limited dispersal. As a result,31

most genetic data exhibit a pattern of isolation by distance (Wright, 1943), which is simply32

to say that populations closer to each other geographically are more similar genetically.33

Furthermore, the degree of isolation by distance can vary across space and time (Manel34

et al., 2003). For instance, in a mountainous area of a terrestrial species’ range, a pair of35

individuals may be more divergent from each other than a pair of individuals separated by36

the same distance in a flat and open area of the habitat. Additionally, the degree of isolation37

by distance can change over time – for example, if dispersal patterns are changing over time.38

Such spatial and temporal heterogeneity is an important aspect of population biology, and39

understanding it is crucial to solving problems in ecology (Turner et al., 2001), conservation40

genetics (Segelbacher et al., 2010), evolution (Rousset, 2004), and human genetics (Rosenberg41

et al., 2005).42

Several methods have been developed to reveal spatial heterogeneity in patterns of isola-43

tion by distance (Womble, 1951; Barbujani et al., 1989; Guillot et al., 2005, 2009; Caye et al.,44

2016; Petkova et al., 2016; Bradburd et al., 2016, 2017). Some methods are based on ex-45

plicitly modeling the spatial structure in the data (Guillot et al., 2005, 2009; Petkova et al.,46

2016; Bradburd et al., 2016, 2017); others take non-parametric approaches (e.g. Womble,47

1951; Barbujani et al., 1989); while other methods ignore the spatial configuration of the48

samples and rely on researchers to make a post hoc geographic interpretation of the results49

(e.g. Pritchard et al., 2000; Patterson et al., 2006). However, none of these methods can be50

flexibly applied to address temporal heterogeneity in isolation by distance patterns, and new51

methods are needed.52

One source of information for inferring changes in demography across time is the density53

of mutations observed in pairwise sequence comparisons (Li and Durbin, 2011; Schraiber54

and Akey, 2015). For example, when individuals are similar along a long segment of their55

chromosomes, it suggests that these segments share a recent common ancestor (Palamara56

et al., 2012). These segments are often called “identity-by-descent” tracts, although here we57

prefer the term “long pairwise shared coalescence” (lPSC) segments (as identity by descent58

traditionally required a definition of a founder generation, which is not clear in most data59

applications). A key feature of these segments is that filtering them by length provides a60

means to interrogate different periods of population history. The longest segments reflect61

the most recent population history, whereas shorter segments reflect longer periods of time.62

Recent analyses using lPSC segments suggest that they can reveal fine-scale spatial and63

temporal patterns of population structure that are not evident with genotype-based methods64
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such as principal components analysis (Ralph and Coop, 2013; Lawson et al., 2012; Leslie65

et al., 2015).66

Here we develop a new method to infer spatial and temporal heterogeneity in population67

sizes and migration rates. The method takes as input geographic coordinates for a set of68

individuals sampled across a spatial landscape, and a matrix of their genetic similarities as69

measured by sharing of lPSC segments. It then infers two maps, one representing dispersal70

rates across the landscape, and another representing population density. Crucially, building71

these maps using different lengths of lPSC segments can help reveal changes in dispersal72

rates and population sizes over time.73

Our method is based on a stepping-stone model where randomly-mating subpopulations74

are connected to neighboring subpopulations in a grid. Such models are parameterized75

by a vector of population sizes ( ~N) and a sparse migration rate matrix (M). Stepping-76

stone models with a large number of demes can approximate spatially continuous population77

models (Barton et al., 2002; Baharian et al., 2016), and this can be exploited to produce78

maps of approximate dispersal rates and population density across continuous space.79

Our method builds upon a method developed for estimating effective migration surfaces80

(EEMS) (Petkova et al., 2016). While EEMS infers local rates of effective migration relative81

to a global average, here we can explicitly infer absolute parameter values by leveraging lPSC82

segments and modeling the recombination process [ ~N and M values in the stepping-stone83

model, and effective spatial density function De(~x) and dispersal rate function σ(~x) in the84

continuous limit]. We call this method MAPS, for inferring Migration And Population-size85

Surfaces.86

We test MAPS on coalescent simulations and apply it to a European subset of 2,22487

individuals from the POPRES data (Nelson et al., 2008). In simulations, we show that MAPS88

can infer both time-resolved migration barriers and population sizes across the habitat. In89

empirical data, we infer dispersal rates σ(~x) and population densities De(~x) across different90

time periods in Europe.91

2 Results92

2.1 Outline of the MAPS method93

MAPS estimates demography using the number of Pairwise Shared Coalescence (PSC) seg-94

ments of different lengths shared between individuals. We define a PSC segment between95

(haploid) individuals to be a genomic segment with a single coalescent time across its length96

(Figure 1A). Long PSC (lPSC) segments tend to have a recent coalescent time, and so man-97
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Figure 1: Schematic overview of MAPS. (a) Coalescent times between a pair of hapolo-
types (A and B) will vary across the genome in discrete segments bordered by recombination
breakpoints. On average, longer segments represent shorter pairwise coalescent times (TAB)
(b) Flow diagram of MAPS. i) We start with a matrix of called genotypes; ii) lPSC segments
between all pairs of chromosomes across the genome are identified from the data using ex-
ternal methods (such as BEAGLE, Browning and Browning (2011)); iii) lPSC segments
between pairs of individuals are aggregated at the levels of pairs of populations; iv) A grid is
constructed and individuals are assigned to the most nearby node; v) The probability of the
PSC sharing matrix can be computed under a stepping-stone model where each node rep-
resents a population and each edge represents symmetric migration; vi) We use an MCMC
scheme to sample from the posterior distribution of migration rates and population sizes.
The final MAPS output is the mean over these posterior samples, and the averaged rates
can be transformed to units of dispersal rate and population density. The diagram does not
show a bootstrapping step used to estimate likelihood weights to account for correlations
between lPSC segments, see Equation (6) in Methods.
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ifest themselves in genotype data as unusually long regions of high pairwise similarity, which98

can be detected by various software packages (Gusev et al., 2009; Browning and Browning,99

2011, 2013; Chiang et al., 2016). Because lPSC segments typically reflect recent coalescent100

events, counts of lPSC segments are especially informative for recent population structure101

(Ringbauer et al., 2017; Palamara et al., 2012; Baharian et al., 2016). And partitioning lPSC102

segments into different lengths bins (e.g. 2-8cM, ≥8cM) can help focus inference on different103

(recent) temporal scales.104

The MAPS model involves two components: i) a likelihood function, which relates the ob-105

served data (genetic similarities, as measured by sharing of lPSC segments) to the underlying106

demographic parameters (migration rates and population sizes); and ii) a prior distribution107

on the demographic parameters, which captures the idea that nearby locations will often108

have similar demographic parameters. The likelihood function comes from a coalescent-109

based “stepping-stone” model in which discrete populations (demes) arranged on a spatial110

grid exchange migrants with their neighbors (Figure 1b). The parameters of this model111

are the migration rates between neighboring demes (Mα,β) and the population sizes within112

each deme (Nα). The prior distribution is similar to that from Petkova et al. (2016), and113

is based on partitioning the habitat into cells using Voronoi tesselations (one for migration114

and one for population size), and assuming that migration rates (or population sizes) are115

constant in each cell. We use an MCMC scheme to sample from the posterior distribution on116

the model parameters (migration rates, population sizes, and Voronoi cell configurations).117

We can summarize these results by surfaces showing the posterior means of demographic118

parameters across the habitat.119

The inferred migration rates and population sizes will depend on the density of the grid120

used. However, using ideas from Barton et al. (2002) and Baharian et al. (2016) we convert121

them to corresponding parameters in continuous space, whose interpretation is independent122

of the grid for suitably dense grids. Specifically, we convert the migration rates to a spatial123

diffusion parameter σ(~x), often referred to as the “root mean square dispersal distance”,124

which can be interpreted roughly as the expected distance an individual disperses in one125

generation; and we convert the population sizes ( ~N) to an “effective population density”126

De(~x) which can be interpreted as the number of individuals per square kilometer. Similar127

to the original grid-based demographic parameters, we can summarize MAPS results by128

surfaces showing the posterior means of σ(~x) and De(~x) across the habitat.129
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2.2 Differences from EEMS130

Our MAPS approach is closely related to the EEMS method from Petkova et al. (2016),131

but there are some important differences. First, the MAPS likelihood is based on lPSC132

sharing, rather than a simple average genetic distance across markers. This was primarily133

motivated by the fact that, by considering lPSC segments in different length bins, MAPS134

can interrogate demographic parameters across different recent time periods. However, this135

change also allows MAPS, in principle, to estimate absolute values for the parameters M and136

~N , whereas EEMS can estimate only “effective” parameters which represent the combined137

effects of M and ~N . This ability of MAPS to estimate absolute values stems from its use of138

a known recombination map, which acts as an independent clock to calibrate the decay of139

PSC segments. Finally, MAPS uses a coalescent model, whereas Petkova et al. (2016) uses140

a resistance distance approximation (McRae, 2006).141

2.3 Evaluation of performance under a stepping-stone coalescent142

model143

We assess the performance of MAPS with several simulations, and compare and contrast the144

results with EEMS. We used the program MACS (Chen et al., 2009) to simulate data under145

a coalescent stepping stone model and refinedIBD (Browning and Browning, 2011, 2013)146

to identify lPSC segments. All simulations involved twenty demes, each containing 10,000147

diploid individuals, and each exchanging migrants with their neighbors. We analyzed each148

simulated data set using PSC segments of length 2-6cM and ≥6cM, which correspond to149

time-scales of approximately 50 generations and 12.5 generations respectively (see Lemma150

5.3 in the Supplementary Note). Results for other length bins are qualitatively similar151

(Supplementary Figure S1 & S2).152

Migration Rate Inference153

First, we simulated under a uniform (constant) migration surface with migration rate 0.01154

(Figure 2a), assumed to have stayed constant over time. In this case both EEMS and MAPS155

correctly infer uniform migration (Figure 2a), and MAPS provides accurate estimates of the156

migration rate (posterior mean 0.010 when using segments 2-6cM and 0.0086 using segments157

≥6cM). As noted earlier, EEMS does not estimate the absolute migration rate; it estimates158

only the relative (effective) migration rates.159

Next, we considered a scenario where the migration surface changed across time. Specifi-160

cally the migration surface matches the constant migration scenario (above) until 10 genera-161
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Figure 2: Simulations comparing migration rates inferred with MAPS against ef-
fective migration rates inferred with EEMS. (a) We simulated data under uniform
migration rates equal to 0.01 and applied EEMS and MAPS using PSC segments in the range
2-6cM and ≥6cM. Like EEMS, MAPS correctly infers a uniform migration surface. Addi-
tionally, MAPS provides accurate estimates of the migration rates for both PSC segments
2-6cM (mean 0.01) and PSC segments ≥6cM (mean 0.0086). (b) We simulated a recent
sudden migration barrier formation 10 generations ago. Here, EEMS is unable to infer a
barrier, while MAPS correctly infers the historical uniform surface (2-6cM) and a barrier in
the more recent time scale (≥6cM). (c) We simulated a long-standing migration barrier that
recently dissipated 20 generations ago. EEMS infers a barrier, while MAPS correctly infers
both the historical migration barrier (2-6cM) and the uniform migration surface in the more
recent time scale (≥6cM). In all cases shown here, we simulated a 20 deme stepping stone
model such that the population sizes all equal to 10,000, and 10 diploid individuals were
sampled at each deme.
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tions ago, when a complete barrier to gene flow instantaneously arose (a “vicariance event”,162

Figure 2b). In this setting EEMS again infers a uniform migration surface. This is because163

EEMS is based on pairwise genetic distances, which are negligibly influenced by the recent164

barrier. In contrast, by applying MAPS with different PSC segment lengths, we can see165

both the historically uniform migration surface (for segments 2-6cM) and the recent barrier166

(segments ≥6cM).167

Next we consider a complementary time-varying scenario: an ancestral barrier disap-168

peared 20 generations ago to allow uniform migration (Figure 2c). Here the EEMS results169

again reflect the longer-term processes, and a barrier is evident. And again, by applying170

MAPS with different PSC segment lengths, we can see different migration surfaces cor-171

responding to different time scales, which are here reversed compared with the previous172

scenario: the historical barrier (for segments 2-6cM) and the recent uniform migration (seg-173

ments ≥6cM).174

Population Size Inference175

As noted above, and discussed in (Petkova et al., 2016), EEMS estimates an “effective”176

migration surface that reflects the combined effects of population sizes ~N and migration177

rates M; consequently it cannot distinguish between variation in M and variation in ~N . In178

contrast, MAPS has the potential to distinguish these two types of variation.179

To illustrate this difference we simulate data with a constant migration surface, and a180

population size surface that has a 10-fold “dip” in the middle of the habitat (deme size 1,000181

vs 10,000; Figure 3). Petkova et al. (2016) performed a similar simulation, and showed that182

EEMS estimated an effective migration surface with an “effective barrier” in the middle,183

caused by the dip in population size. As expected, we obtain a similar result for EEMS here.184

Further, the EEMS inferred diversity surface is also approximately constant, because the185

diversity surface reflects changes in within-deme heterozygosity, and these vary little in this186

simulation. In contrast, MAPS is able to separate the influence of migration and population187

sizes: the estimated migration surface is approximately constant (with mean migration rate188

equal to the true value 0.01) and the estimated population size surface shows a dip in the189

middle, with accurate estimates of deme sizes (mean 985 at the center and 9100 at the190

edges). Additional simulations with non-uniform migration rates reinforce these results; see191

Supplementary Figure S3.192
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Figure 3: Simulations comparing population sizes inferred with MAPS and
“diversity-rates” inferred with EEMS. We simulated uniform migration rates of 0.01
and a trough of low population sizes in the center of the habitat such that population sizes
equal to 1,000 at the center and 10,000 otherwise. Under these simulations, EEMS infers a
barrier in effective migration and infers uniform diversity rates. However, MAPS correctly
infers a uniform migration surface (mean 0.01) and provides accurate estimates of deme sizes
(mean 985 at the center and 9100 at the edges)
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2.4 Applying MAPS to the POPRES data193

To illustrate MAPS on real data, we analyze a genome-wide SNP dataset on individuals194

of European ancestry (the “POPRES” study Nelson et al., 2008). Previous analyses of195

these data have shown the strong influence of geography on patterns of genetic similarity196

(Novembre et al., 2008; Lao et al., 2008; Ralph and Coop, 2013). In particular Ralph and197

Coop (2013) analyzed spatial patterns in the sharing of PSC segments across Europe. To198

facilitate comparison with their results, we use their PSC segment calls, focusing on a subset199

of 2224 individuals after filtering (see Methods).200

We applied MAPS to these data using three different PSC segment length bins: 1−5cM,201

5− 10cM, and > 10cM. The longer bins correspond to more recent demography because as202

PSC lengths increase, the average coalescent times decrease. Indeed, the average coalescent203

times for each of these three length bins is inferred to be 90, 23 and 7.5 generations respec-204

tively (Supplementary Note), which correspond to 2700 years, 675 years and 225 years if we205

assume 30 years per generation.206

We note that the accuracy of called PSC segments will vary across these bins: based on207

simulations in Ralph and Coop (2013) PSC segment calls in the smallest bin (1-5cM) will208

likely suffer from both false positives and false negatives, whereas for the longer bins PSC calls209

should be very reliable. Nonetheless, even in the smallest bin, closely-related individuals will210

still tend to show higher PSC sharing, and so the estimated MAPS surfaces should provide211

a useful qualitative summary of spatial patterns of variation even if quantitative estimates212

may be less reliable.213

Inferring dispersal and population density surfaces214

The inferred MAPS dispersal rates (migration rates scaled by grid step size) and population215

densities (population sizes scaled by grid area size) for each PSC length bin are shown in216

Figure 4.217

Largely speaking, the spatial variation in inferred dispersal rates and population densities218

is remarkably consistent across the different time scales (Figure 4). In the MAPS dispersal219

surfaces, several regions with consistently low estimated dispersal rates coincide with geo-220

graphic features that would be expected to reduce gene flow, including the English Channel,221

Adriatic Sea and the Alps. In addition we see consistently high dispersal across the region222

between the UK and Norway, which may reflect the known genetic effects of the Viking223

expansion (e.g Leslie et al., 2015). The MAPS population density surfaces consistently show224

lowest density in Ireland, Switzerland, Iberia, and the southwest region of the Balkans. This225

is consistent with samples within each of these areas having among the highest PSC seg-226
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Figure 4: Inferred Dispersal Surfaces and Population Density Surfaces over time
for Europe. We apply MAPS to a European subset of POPRES Nelson et al. (2008) with
2,234 individuals and plot the inferred dispersal σ(~x) and population density De(~x) surfaces

for PSC length bins (a) > 1cM (b) 5-10cM and (c) >10cM. We transform estimates of ~N
and M to estimates of σ(~x) and De(~x) by scaling the migration rates and population sizes by
the grid step-size and area (see Equations (17) and (18)). Generally, we observe the patterns
of dispersal to be relatively constant over time periods, however, we see a sharp increase in
population density in the most recent time scale (>10cM). Note the wider plotting limits in
inferred densities in the most recent time scale.
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ment sharing (Supplementary Figure S4a). The MAPS inferred country population sizes are227

also highly correlated with estimated current census population sizes from The World Bank228

(2016) and National Records of Scotland (2011) (Supplementary Figure S6).229

The most notable variation among the estimated surfaces from different time scales is a230

dramatic increase in the mean estimated population density in the most recent time scale231

(Figure 4 and Supplementary Figure S7). Indeed, the estimated mean for the last time232

scale – 1.4 individuals per square km – is 6-9 fold higher than those for the earlier time233

scales (0.16 and 0.22 respectively). This increase is consistent with the recent exponential234

growth of human population sizes (Cohen, 1995). The estimates themselves are lower than235

historical estimates of ≈1-30 individuals per square km based on archaeological data (e.g.236

Zimmermann et al., 2009).237

The dispersal surfaces show more minor changes between time periods (Figure 4 and238

Supplementary Figure S7). In particular, the estimated mean dispersal rates are relatively239

constant across time, being 73, 103 and 72 respectively (in units of km in a single genera-240

tion). These mean estimates are consistent with empirical estimates of 10-100 km in a single241

generation compiled by Kaplanis et al. (2018) using pedigrees of individuals living between242

1650 and 1950 AD. We do note the lower estimated dispersal rates between Portugal and243

Spain in the analyses of longer PSC segments (5-10 and > 10cM), and the higher estimated244

dispersal rates through the Baltic Sea (> 10cM segments), possibly reflecting changing gene245

flow in these regions in recent history.246

Comparison to Ringbauer et al. (2017)247

Ringbauer et al. (2017) also estimate a mean dispersal rate and population density from248

the Eastern European subset of the data analyzed here. Their estimates are based on249

PSC segments > 4cM, which is most comparable with our analysis of 5-10cM. Unlike our250

analysis, their estimates are based on a spatially homogeneous model. To compare with their251

estimates we computed the mean of the estimated dispersal rate and population densities252

in Eastern Europe (but based on an analysis of the full data). For the dispersal rate this253

yields an estimate of 88 km in a single generation, which is consistent with the range of254

50-100 given by (Ringbauer et al., 2017). For the population density, it yields an estimate255

of 0.10 individuals per square km, which is somewhat higher than the estimate of 0.05256

obtained under a comparable (time-homogeneous) population model in (Ringbauer et al.,257

2017). Possibly our higher estimate partly reflects the influence of our spatial modeling258

approach, which will tend to shift the estimate for Eastern Europe toward the estimated259

mean across all of Europe (which is 0.22). In addition, the difference in length thresholds260

(> 4cM versus 5-10cM) may also be contributing; if segments in the Ringbauer et al. (2017)261
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analysis are on average shorter and hence older, one would expect lower density estimates,262

based on our results that suggest lower densities in the past (Figure 4).263

Comparison with EEMS264

The EEMS results for these data (Figure S8) show non-trivial differences with the MAPS265

results (Figure 4a). Two potential causes are: i) differences in the summary data used (PSC266

segment sharing vs genetic distances) and hence sensitivity to different timescales; and ii)267

differences in the underlying models (e.g. composite Poisson likelihood vs Wishart likelihood,268

and different parameterizations/approximations to the coalescent model; see Discussion). To269

evaluate the impact of i) we compared the PSC segment sharing and genetic distances, and270

found their correlation to be only modest (Pearson’s ρ = -0.38), with the most notable devi-271

ation for comparisons between countries in Eastern Europe (Figure S9a). Furthermore, most272

of this correlation is due to geographic distance: after controlling for geographic distance the273

correlation is only -0.18, which may be a more relevant metric because inferred spatial het-274

erogeneity in gene flow (barriers and corridors) is driven by departures from simple isolation275

by distance.276

To better assess the impact of ii) we applied EEMS on a distance matrix constructed277

to have the same similarity patterns as the PSC segment sharing matrix input to MAPS278

(1−5cM length bin). The resulting EEMS surface is more similar to the corresponding MAPS279

dispersal surface (Supplementary Figure S9b vs Figure 4a), but there remain substantial280

differences. This investigation confirms what we expected a priori — the two surfaces should281

be different because the underlying models and inferred parameters of MAPS and EEMS282

are different. As noted before, EEMS infers the “effective migration rate” which reflects the283

effects of both the migration rates and population sizes, while MAPS infers them separately.284

3 Discussion285

We developed a method (MAPS) for inferring migration rates and population sizes across286

space and time periods from geo-referenced samples. Our method builds upon a previous287

method developed for estimating effective migration surfaces (EEMS) (Petkova et al., 2016).288

However there are several differences between MAPS and EEMS. Most fundamentally, MAPS289

draws inferences from observed levels of PSC sharing between samples, whereas EEMS draws290

inferences from the genetic distance. These two data summaries capture different information291

about the coalescent distributions: in essence, PSC sharing captures the frequency of recent292

coalescent events, whereas genetic distance captures the mean coalescent time. Consequently293

MAPS inferences largely reflect the recent past (/ 1000 years for human recombination294
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rates and generation times with PSC segments > 2cM), whereas EEMS inferences reflect295

demographic history on a longer timescale across which pairwise coalescence occurs (99% of296

events > 6000 years old, assuming diploid Ne of 10,000 for humans, exponential coalescent297

time distribution).298

Another consequence of modelling PSC sharing, rather than genetic distance, is that299

MAPS can separately estimate demographic parameters related to migration rates (M) and300

population sizes ( ~N), as in Figure 3 for example. In essence MAPS does this by using the301

known recombination map as an additional piece of information to help calibrate inferences.302

In contrast EEMS, which makes no use of recombination maps, cannot separate M and ~N .303

Instead EEMS infers a compound parameter referred to as the “effective migration rate”,304

which is influenced by changes in both M and ~N ; see Figure 3. In principle, if applied305

to sequence data instead of genotype data at ascertained SNPs, the genetic distances used306

by EEMS could perhaps also separately estimate M and ~N by exploiting known mutation307

rates to calibrate inferences. However, this would require non-trivial additional changes308

to the current EEMS likelihood, which was designed to be applicable to ascertained SNPs309

and does not explicitly model variation in population sizes. (The EEMS likelihood instead310

uses a “diversity rate” eq, which reflects within-deme heterozygosity but is not explicitly a311

population size parameter.)312

An additional useful feature of PSC segments is that, by varying the lengths analyzed,313

one can infer parameter values across different time scales. For example, our simulations314

show how by contrasting shorter and longer PSC segments, the method can reveal different315

gene flow patterns in scenarios with recent changes (see Figures 2 and 3). Further support316

comes from our empirical analysis of the POPRES data-set, where we found population sizes317

inferred from longer PSC segments to be more correlated with census sizes The World Bank318

(2015 census 2016) and National Records of Scotland (2011, 2011 census) than sizes inferred319

from shorter segments (e.g. Spearman’s ρ = 0.71 for 1− 5cM and ρ = 0.84 for > 10cM; see320

Supplementary Figures S5 and S6). Also, not surprisingly, PSC segments greatly outperform321

using heterozygosity as an indicator of census population size (the Spearman’s correlation322

coefficient between heterozygosity and census size was insignificant, p-value = 0.25).323

Our estimates of dispersal distances and population density from the POPRES data are324

among the first such estimates using a spatial model for Europe (though see (Ringbauer325

et al., 2017)). The features observed in the dispersal and population density surfaces are in326

principle discernible by careful inspection of the numbers of shared PSC segments between327

pairs of countries (e.g. using average pairwise numbers of shared segments, Supplementary328

Figure S4b, as in Ralph and Coop (2013)). For example, high connectivity across the North329

Sea is reflected in the raw PSC calls: samples from the British Isles share a relatively high330
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number of PSC segments with those from Sweden (Supplementary Figure S4b). Also the low331

estimated dispersal between Switzerland and Italy is consistent with Swiss samples sharing332

relatively few PSC segments with Italians given their close proximity (Supplementary Figure333

S4b). However, identifying interesting patterns directly from the PSC segment sharing data334

is not straightforward, and one goal of MAPS (and EEMS) is to produce visualizations that335

point to patterns in the data that suggest deviations from simple isolation by distance.336

Our results suggest that several features of dispersal in Europe have been relatively stable337

over the last ∼3000 years, whereas the population sizes have been increasing. The relative338

stability of the gene flow patterns is perhaps surprising given ancient DNA results suggest339

a continually dynamic history of population movements. One possibility is that much of340

European population structure may have been established by the end of the Bronze Age341

( 4,000 years ago), with relatively more stable patterns in the intervening period that is342

reflected in lPSC segments. Nonetheless, the dispersal is not completely stable– our results343

suggest changes in Iberia, the Baltic, and to minor degrees in other areas.344

The inferred population size surfaces for the POPRES data show a general increase in345

sizes through time, with small fluctuations across geography; for instance, Polish samples346

have a relatively larger population size in inferred values from the largest length scale (>347

10cM). In our results, the smallest inferred population sizes are in the Balkans and Eastern348

Europe more generally. This is in agreement with the signal seen by Ralph and Coop (2013);349

however, taken at face value, our results suggest that high PSC sharing in these regions may350

be due more to consistently low population densities than to historical expansions (such as351

the Slavic or Hunnic expansions).352

Although consistent with previous results, our estimates of dispersal and population sizes353

do not exactly agree with empirical estimates. For example, our estimates of population354

sizes are consistently lower than the census sizes (Supplementary Figure S6). This is to be355

expected for several reasons. First, census sizes include non-breeding individuals (juvenile356

and post-reproductive age) that do not impact the formation of PSC segments. Second,357

MAPS is fitting a single population size per location, and in a growing population the best358

fit population size will be an under-estimate of contemporary size. Third, in a wide class359

of population genetic models, the effective size, even among reproductive age individuals, is360

lower than the census size because of factors that inflate the variance in offspring number.361

Fourth, some discrepancy is expected simply because the stepping-stone population genetic362

model used here is only a coarse approximation to the complex spatial dynamics of human363

populations. Finally, recombination rate mis-specification can bias the inferred parameters.364

Furthermore, we caution that our results must be interpreted in the light of the fact that we365

have limited spatial sampling across Europe, and only very coarse geographical origin data366
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(country of origin).367

Here, as in Petkova et al. (2016) we use a discrete stepping-stone model to approximate368

a process that might be more naturally modelled as continuously varying in space. Recent369

work (Ringbauer et al., 2017; Baharian et al., 2016) exploits continuous models to estimate370

dispersal and population density parameters from sharing of lPSC segments. However, these371

methods assume that dispersal and population density are constant across space: extending372

them to allow these parameters to vary across space could be an interesting avenue for future373

work.374

A major achievement in method development in population genetics would be to jointly375

infer migration rates and population sizes across both space and time. MAPS is a step376

towards this goal. However, we do not infer demography explicitly as a function of time and377

instead infer surfaces in time blocks defined by PSC length bins. In principle, our method378

allows for inference of demography across time by treating PSC segments as independent379

across length bins, see Equation (S27) in Supplementary Methods. However, this requires380

fitting multiple migration/population surfaces and is computationally unfeasible with our381

current MCMC routine. Other computational techniques (e.g. Variational Bayes or fast382

optimization of the likelihood) might make this goal possible.383

4 Methods384

4.1 MAPS configuration385

For the empirical data analysis, we ran MAPS with 200 demes. The MAPS output was386

obtained by averaging over 20 independent replicates (the number of MCMC iterations in387

each replicate was to set 5e6, number of burn-in iterations set to 2e6, and we thinned every388

2000 iterations). We provide the the MAPS here: https://github.com/halasadi/MAPS,389

and the plotting scripts here: https://github.com/halasadi/plotmaps.390

4.2 Inferring PSC segments from the data391

Our pipeline to call PSC segments for simulations can be found here: https://github.com/392

halasadi/ibd_data_pipeline. We follow the recommendations of Browning and Browning393

(2011, 2013) and Ralph and Coop (2013) by running BEAGLE multiple times and merging394

shorter segments.395

For the empirical data analysis, we use the PSC segments (“IBD”) calls from Ralph and396

Coop (2013), which can be found here: https://github.com/petrelharp/euroibd. We397
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further applied a filter to retain countries with at least 5 sampled individuals, and removed398

Russian and Greek individuals to restrict the habitat to a smaller spatial scale399

4.3 Model400

MAPS assumes a population genetic model consisting of triangular grid of d demes (or401

populations) with symmetric migration. The density of the grid is pre-specified by the402

user with the consideration that the computational complexity is O(d3). We use Bayesian403

inference to estimate the MAPS parameters: the migration rates and coalescent rates M404

and q respectively. Its key components are the likelihood, which measures how well the405

parameters explain the observed data, and the prior, which captures the expectation that406

M and q have some spatial structure (in particular, the idea that nearby edges will tend to407

have similar migration rates and nearby demes have similar coalescent rates).408

MAPS estimate the posterior distribution of Θ = M, q given the data. The data used409

for MAPS consists of a similarity matrix XR = {XR
i,j} which denotes the number of PSC410

segments in a range R = [u, v] base-pairs shared between pairs of haploid individuals (i, j) ∈411

{1, · · · , n} × {1, · · · , n} where n is the number of (haploid) individuals. Furthermore, a412

recombination rate map is required as input for MAPS. The likelihood is a function of the413

expected value of XR
i,j (E[XR

i,j]). Below we describe the computation of E[XR
i,j] and the other414

key components of the likelihood. Finally, we briefly describe the prior used and an MCMC415

scheme to sample from the posterior distribution of Θ.416

The likelihood function417

Let α, β denote the demes that (haploid) individuals i and j are sampled in, we define,

λΘ
α,β = E[XR

i,j|Θ]. (1)

For the marginal distribution, we assume418

XR
i,j|Θ ∼ Pois(λΘ

α,β|Θ), (2)

and one option for computing the joint distribution of the data is to assume independence419

between pairs of individuals (i, j) as done previously (Palamara et al., 2012; Palamara and420

Peer, 2013; Ralph and Coop, 2013; Ringbauer et al., 2017). This assumption leads to the421

log-likelihood,422
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logL(Θ; X̄) =
∑
α≤β

nα,β

(
X̄α,βlog(λΘ

α,β)− λΘ
α,β

)
, (3)

where X̄ = {X̄α,β} such that (α, β) ∈ {1, · · · , d}×{1, · · · , d} and d is the number of demes.

Furthermore

X̄α,β =


1

nαnβ

∑
i∈dα,j∈dβ X

R
ij if α 6= β

1

(nα2 )

∑
i∈dα,i<j X

R
ij if α = β

, (4)

where nα is the number of sampled individuals in deme α, dα is the set of all individuals in

deme α, and

nα,β =

nαnβ if α 6= β(
nα
2

)
if α = β

. (5)

However, we found that there were significant correlations in lPSC segments between423

individuals. To deal with this, we down-weighted the likelihood function to reflect the424

“effective” number of samples (eα,β) instead of the number of pairs (nα,β). The effective425

number of samples between demes α,β is given by,426

eα,β =
X̄α,β

Var[X̄α,β]
. (6)

In the case of independence, Var[X̄α,β] ≈ X̄α,β
nα,β

. However, because of correlations in the data,427

the actual variance is significantly larger than the variance computed under an independence428

model. Here, we estimate Var[X̄α,β] by bootstrapping individuals with replacement. This429

way, we model the correlations between pairs of individuals for within and between-deme430

comparisons. The loglikelihood adjusted for correlations is given by,431

logL(Θ; X̄) =
∑
α≤β

eα,β

(
X̄α,βlog(λΘ

α,β)− λΘ
α,β

)
. (7)

Computing the expectation of XR
i,j|Θ432

Next, we derive expressions to compute the expectation of the number of PSC segments

of length greater than u (X
R=[µ,∞)
i,j ) conditional on the demography Θ. From results in

Palamara et al. (2012) it is easy to show that

E[X
R=[µ,∞)
i,j |Θ] ≈ G

∫ ∞
u

fL(l|Θ)/l dl, (8)
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where G denotes the length of the genome (in base-pairs), L denotes the random length (in433

base-pairs) of the PSC segment between i and j containing a pre-specified position in the434

genome (base b say), and fL is its probability density. Intuitively, GfL(l|Θ) is the expected435

number of base-pairs that lie in PSC segments of length l, making GfL(l|Θ)
l

the expected436

number of PSC segments of length l. Integrating the latter quantity from µ to ∞ gives the437

desired result.438

To help compute (8) we introduce Tij to denote the (random) coalescent time in gen-

erations between i and j at base b, with density fTij(t|Θ). Then (8) can be written as an

integral over Tij:

E[X
R=[µ,∞)
i,j |Θ] ≈ G

∫ ∞
µ

fL(l|Θ)/l dl (9)

= G

∫ ∞
µ

∫ ∞
0

fL,Ti,j(l, t|Θ)/l dt dl (10)

= G

∫ ∞
0

fTi,j(t|Θ)

∫ ∞
µ

fL(l|t)/l dl dt, (11)

using the relation that fL,Ti,j(l, t|Θ) = fL(l|t,Θ)fTi,j(t|Θ) = fL(l|t)fTi,j(t|Θ). A key simplifi-439

cation here comes from the fact that, given Tij, L is conditionally independent of Θ.440

It can be shown that the conditional distribution of L given Tij is an erlang-2 distribution

(Palamara et al., 2012; Palamara and Peer, 2013; Hein et al., 2004) with density

fL(l|t) = 4r2t2le−2trl, (12)

where r is the recombination rate per base-pair. Substituting this into the inner integral of

(11) and integrating analytically yields∫ ∞
u

fL(l|t)/l dt = 2rte−2tru, (13)

leading to

E[X
R=[µ,∞)
i,j |Θ] ≈ G

∫ ∞
0

fTi,j(t|Θ)2rte−2trudt. (14)

Here, we assume the probability density of Ti,j is given by,

fTi,j(t|Θ) ≈
∑
κ

qk(e
−Mt)α,κ(e

−Mt)β,κ, (15)

where demes α, β denote the deme where lineages i and j are sampled from, qκ = 1
2Nκ

is441

the coalescent rate in deme κ, and M = 〈mα,β〉 is the migration rate matrix between all d442
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demes such that (α, β) ∈ {1, · · · , d}×{1, ..., d}. We compute the matrix exponential by first443

diagonalizing the matrix M = PDP T and compute e−Mt = Pe−DtP T .444

Having computed all individual components of
∫∞

0
fTi,j(t|Θ)2rte−2trudt, we are left to445

evaluate a one-dimensional integral which we do by Gaussian quadrature (with 50 weights).446

To compute the expected number of PSC segments in a range R = (µ, ν)

E[X
R=[µ,ν]
i,j ] = E[X

R=[µ,∞)
i,j ]− E[X

R=[ν,∞)
i,j ]. (16)

As mentioned previously, the units of µ, ν are in base-pairs. However, we can transform to447

units of centiMorgans (cM) by : µcM = 100µr.448

The Prior449

MAPS uses a hierarchical prior parameterized by Voronoi tessellation (similar to EEMS).450

The Voronoi tessellation partitions the habitat into C cells. Given a Voronoi tessellation of451

the habitat, each cell c ∈ {1, · · · , C} is associated with a migration rate (Mc) and population452

size (Nc). Demes (α) that fall into cell c will have population size Nα = Nc, and similarly,453

migration rates between demes α, β equal mα,β =
Mc1+Mc2

2
if demes α, β fall into cells c1454

and c2. We use an MCMC to integrate over the distribution on partitions of Voronoi cells.455

See Supplementary Notes section 5.4 for more information.456

The MCMC457

We break up the MCMC updates into updating a series of conditionally independent dis-458

tributions. Provided the conditional posterior distributions for each part give support to459

all the parameter space, this will define an irreducible Markov chain with the correct joint460

posterior distribution Stephens (2000). We use Metropolis-Hastings to update all parame-461

ters, and random-walk proposals for most updates, with exception of birth-death updates462

for updating the number of Voronoi cells. See Supplementary Notes section 5.5 for more463

information.464

Transformation of parameters to continuous space465

Given an inferred population size at a particular deme α and a grid with uniform spacing,

the transformation from population size to population density is given by

De(x) =
Nα

∆A
, (17)
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where ∆A = AH
d

is the area covered per deme such that AH is the area of the habitat466

(in km2), d is the number of demes, and x corresponds to the spatial position of deme α.467

Intuitively, (17) implies that the density multiplied by the area equals population size, i.e.468

De(x)∆A ≈ Nα. Equation (17) can is analogous to equation 7 in (Baharian et al., 2016).469

Given a migration rate (m), the transformation to dispersal distances is given by,470

σ =
√
m∆x, (18)

where ∆x is the step size of the grid (km). The dispersal distance represents the distance471

traveled by an individual after one generation, and sometimes is called the “root mean square472

distance” or “dispersal rate” (Barton et al., 2002). Please see Supplementary Note section473

5.2 for the derivation of (18).474
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5.1 The model485

The coalescent process for two samples under a multi-deme model can be described by a486

continuous time Markov chain (CTMC) (Bahlo and Griffiths, 2001). Let i, j represent sam-487

pled lineages and α, β their locations, respectively, d is the number of demes (or populations)488

and (α, β) ∈ {1, · · · , d}×{1, ..., d}. Let c denote the coalescent state. The infinitesimal rate489

matrix R of this CTMC is490

R(α,β),(γ,β) = mα,γ β = 1, ..., d, γ 6= α

R(α,β),(α,γ) = mβ,γ α = 1, ..., d, γ 6= β

R(α,α),(c) = qα

R(α,β),(α,β) = −(mα+ +mβ+)− δαβqα
R(c),(c) = 0

R(α,β),(γ,κ) = 0 γ, κ = 1, ..., d, γ 6= α, κ 6= β,

(S19)

where M = 〈mα,β〉 denotes the migration rate matrix, and mα,β is the migration rate between491

demes α, β and qα = 1
2Nα

is the coalescent rate of deme α which is proportional to the inverse492

of the population size at deme α (Nk). Let Ti,j denote the (random) coalescent time between493

the pair of sampled lineages, and fTi,j(t) denote the probability density of a coalescent event494

at time t. Here, we derive fTi,j(t) by conditioning on the position of the two lineages.495

Lemma 5.1 Let
(
Xi(t), Xj(t)

)
∈ {1, · · · , d}× {1, ..., d} denote the position of lineage i and496

lineage j at time t respectively. The probability density fTi,j(t) that lineage i and j coalesce497

at time t is given by
∑d

κ=1 qκP (Xi(t) = κ,Xj(t) = κ).498

For ∆t ≈ 0,499

P (Ti,j ∈ [t, t+ ∆t]) (S20)

≈
d∑

κ=1

P (Ti,j ∈ [t, t+ ∆t]|Xi(t) = κ,Xj(t) = κ)P (Xi(t) = κ,Xj(t) = κ)

(S21)

≈
d∑

κ=1

qκ∆tP (Xi(t) = κ,Xj(t) = κ). (S22)

Taking the limit ∆t→ 0, we arrive at the density500
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fTi,j(t) = lim
∆t→0

P (Ti,j ∈ [t, t+ ∆t])/∆t =
d∑

κ=1

qκP (Xi(t) = κ,Xj(t) = κ). (S23)

The random walk approximation to the coalescent501

Here, we introduce an approximation,502

P (Xi(t) = κ,Xj(t) = κ) ≈ P (Xi(t) = κ)P (Xj(t) = κ). (S24)

The intuition is that probability that lineage i and j coalesce before time t is extremely small503

such that the two lineages approximately behave like two independently moving particles.504

Each lineage can be modeled by a random walk with transition matrix M . These assump-505

tions were also made in the context of continuous spatial diffusion models for haplotype506

sharing Baharian et al. (2016); Ringbauer et al. (2017) , and even further back, as a general507

approximation to the two-dimensional continuous-space coalescent process (Barton et al.,508

2002; Wilkins, 2004; Blum et al., 2004; Novembre and Slatkin, 2009; Robledo-Arnuncio and509

Rousset, 2010).510

This approximation implies that511

fTi,j(t) ≈
∑
κ

qk(e
−Mt)α,κ(e

−Mt)β,κ, (S25)

where lineages i, j are initially sampled in deme α, β. Or equivalently in matrix form,512

fTi,j(t) ≈
(
e−MtQe−Mt

)
i,j

, (S26)

where Q = diag(q1, ..., qd).513

Varying migration rates and population sizes across time514

Corollary 5.1.1 Let time slice k be defined by the interval tk−1 < t < tk, Mk denote

the migration rate matrix in time slice k, and Qk = diag(qk1 , ..., q
k
d) where qkα denotes the

coalescent rate in deme α at time slice k. Let Ti,j denote the coalescent time between lineage

i, j sampled in demes α, β, then under the independence assumption, for t ∈ (tK−1, tK),

fTi,j(t) ≈
(
GK(t)QKGK(t)

)
α,β

, (S27)
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where GK(t) = exp

(
−∑K−1

k=1 (tk − tk−1)Mk − (t− tK)MK

)
.515

Expected number of lPSC segments given the demography Θ516

Lemma 5.2 Let Xµ
i,j denote the number of PSC segment greater than µ basepairs shared517

between haploid individuals i, j, Θ denote the demographic model, G the size of the genome,518

L denotes the random length (in base-pairs) of the PSC segment between i and j containing519

a pre-specified position in the genome, then E[Xµ
i,j|θ] ≈ G

∫∞
u
fL(l|Θ)/l dl.520

Let E[Fµ|Θ] denote the expected fraction of the genome between i, j that lies in PSC seg-521

ments greater than µ, and E[sµ|Θ] the expected size of a PSC segment conditional on it522

being at least length µ. According to equations 9-14 from (Palamara et al., 2012),523

E[Xµ
i,j|θ] ≈

GE[Fµ|θ]
E[sµ|Θ]

, (S28)

E[Fµ|Θ] =

∫ ∞
µ

fL(l|Θ)dl, (S29)

E[sµ|Θ] =

∫∞
µ
fL(l|Θ)dl∫∞

µ
fL(l|Θ)/l dl

. (S30)

We obtain the desired result by substituting (S29) and (S30) into (S28) and canceling like-524

terms.525

Expected age of a segment526

We choose PSC segment lengths based on their expected age which is derived below.527

Lemma 5.3 The expected coalescent time (t, in generations) of an PSC segment between528

between length L1 centiMorgans and L2 centiMorgans is approximately 300
4

( 1
L1

+ 1
L2

) if the529

effective population size (N) is sufficiently large.530

We choose to work in units of basepairs, and will convert back to units of morgans at the531

end. We convert L1 into units of base-pairs with the transformation: µ = L1

100r
and similarly532

ν = L2

100r
.533

Let us denote T |l, N as the random coalescent time of a PSC segment that is at least

length l under a single-deme demography model with population size N . The expected
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coalescent time of an PSC segment longer than µ base-pairs can be expressed as

E[T |l ≥ µ,N ] =

∫ ∞
0

tfT (t|l ≥ µ,N)dt =

∫ ∞
0

t
fL(l ≥ µ|t)fT (t|N)

fL(l ≥ µ|N)
dt

=

∫∞
0
tfL(l ≥ µ|t)fT (t|N)dt∫∞

0
fL(l ≥ µ|t)fT (t|N)dt

,

(S31)

where fL(l|t) = 4r2t2le−2trl denotes the probability density that a PSC segment is of length534

l given it has a common ancestor event at time t, fT (t|N) denotes the probability density535

that a coalescent event occurs at time t under the demography model with population size536

N .537

Next, we expand a key term in equation (S31)

fL(l ≥ µ|t) =

∫ ∞
µ

fL(l|t)dl = (2rtµ+ 1) exp

(
− 2rtµ+ 1

)
(S32)

and assume,

fT (t|N) =
e−t/N

N
. (S33)

Putting everything together,538

E[T |l ≥ µ,N ] =
N(1 + 6Nrµ)/(1 + 2Nrµ)3

(1 + 4Nrµ)/(1 + 2Nrµ)2
=

N(1 + 6Nrµ)

1 + 6Nrµ+ 8N2(rµ)2
. (S34)

We can remove the dependence of N by taking limN→∞ as done similarly in Baharian et al.539

(2016),540

lim
N→∞

E[T |l ≥ µ,N ] =
3

4rµ
(S35)

Now that we have derived the expected age of PSC segment longer than µ, it is quite simple

to expand the equation for PSC segments between µ and ν base-pairs,

E[T |µ ≤ l ≤ ν] =

∫∞
0
tfL(µ ≤ l ≤ ν|t)fT |N(t)dt∫∞

0
fL(µ ≤ l ≤ ν|t)fT |N(t)dt

=

∫∞
0
t

(
fL(l ≥ ν|t)− fL(l ≥ µ|t)

)
fT |N(t)dt

∫∞
0

(
fL(l ≥ ν|t)− fL(l ≥ µ|t)

)
fT |N(t)dt

=
3

4

(
1

rµ
+

1

rν

)
(S36)
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We transform back to units of centimorgans: let L1 = 100rµ and L2 = 100rν be in units of541

centiMograns, and taking the limit, we get the desired result542

lim
N→∞

E[t|µ ≤ l ≤ ν] =
300

4

(
1

L1

+
1

L2

)
. (S37)

5.2 Transformation of migration rates to dispersal rates543

Migration rates inferred under a discrete model can be transformed to dispersal distances544

representing parameters in continuous space. Here, we derive the transformation.545

Lemma 5.4 Consider a random walk on a 2D grid, where steps are taken according to a546

Poisson process with rate m, and let X(t) be a vector denoting the coordinates of the particle547

at time t. The distribution of X(t) approximately only depends on the compound parameter548

m(∆x)2 (or equivalently
√
m∆x).549

X(t) =

N(t)∑
i=1

Zi, (S38)

where N(t) is the number of steps taken by time t, and Zi is a random variable representing550

the direction and magnitude taken at step i. Since X(t) is a sum of iid variables, a form of551

the central limit theorem applies here and X(t) converges to the normal distribution (Rényi,552

1960).553

In a random walk on a triangular grid, a particle can move in one of the 6 directions554

(upper-right, right, lower-right, left, upper-left, and lower-left):555

Zi

= (1/2,∆x
√

3/2)T with p = 1/6

= (∆x, 0)T with p = 1/6

= (∆x/2,−∆x
√

3/2)T with p = 1/6

= (−∆x, 0)T with p = 1/6

= (−∆x/2,∆x
√

3/2)T with p = 1/6

= (−∆x/2,−∆x
√

3/2)T with p = 1/6

where ∆x represents the step size in the grid (i.e. edge length). The mean and variance are556

given by,557
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E[X(t)] = 0 (S39)

and,558

V ar[X(t)] =
mt(∆x)2

2
I2. (S40)

where I2 is the identity matrix. Under normality, the mean and variance are sufficient559

statistics. Note that (S39) and (S40) also hold for square grids.560

Interpretation of the migration diffusion parameter m(∆x)2
561

In addition, we provide a physical interpretation to (∆x)2 in terms of the squared distance562

from the origin per generation. Let the distance d = ‖X(t)‖ =
√
x2

1 + x2
2, then563

E[d2]/t = E[x2
1 + x2

2]/t = E[x2
1]/t+ E[x2

2]/t =
m(∆x)2

2
+
m(∆x)2

2
= m(∆x)2. (S41)

√
E[d2]
t

=
√
m∆x can be interpreted as the distance traveled by an individual after564

one generation, and sometimes is called the “dispersal” distance or the “root mean square565

distance”.566

5.3 Diversity rates versus coalescent rates567

For computational efficiency, the EEMS software uses a combination of the resistance dis-568

tance model and within-deme “diversity rates” to approximate expected pairwise coalescent569

times, in which,570

ˆE[Tα,β] =


Rα,β

4
+

eqα+eqβ
2

if α 6= β

eqα if α = β
. (S42)

where ˆE[Tα,β] is the resistance distance approximation to the expected coalescent time be-

tween deme α and deme β, eqα is the “diversity rate” in deme α, and Rα,β is the resistance

distance between demes α, β (Petkova et al., 2016). The diversity rates have no simple ex-

pression in terms of population-genetic parameters under the multi-deme coalescent model.

As an alternative, diversity rates can be interpreted as reflecting average within deme het-

erozygosity since eq = E[T̂w] ∝ Hα where the heterozygosity for deme α (Hα) is defined
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as,

Hα =
1(
nα
2

) ∑
i<j,i∈α,j∈α

Di,j, (S43)

where Di,j is the average number of differences between (haploid) individuals i and j.571

Migration and population sizes are identifiable in MAPS572

MAPS models the recombination process using rates estimated from a recombination rate573

map. In this model, population sizes and migration rates can be inferred separately rather574

than as a joint parameter. Intuitively, the recombination rate serves an independent clock575

to calibrate estimates.576

More formally, a statement of identifiability is a statement regarding the likelihood.577

MAPS models the expected number of lPSC segments shared between pairs of (haploid)578

individuals, and can be computed with an integral (14). The integral can be broken up into579

a product of two functions: a function describing the decay of PSC segments as a function of580

time (“recombination rate clock”), and the coalescent time probability density fTi,j(t) (15).581

The migration rates and population sizes only appear in fTi,j(t), and cannot be cannot be582

factored into parameters involving combinations of the migration rates and population sizes.583

5.4 The prior584

The structure of the prior closely resembles the prior in the EEMS method Petkova et al.585

(2016). The tessellation for the migration rates (Tm) is encoded by a list (lm,m, cm, µm)586

where lm are the locations of each cell, m the rates of each cell, and are vectors of length587

cm (i.e. number of Voronoi cells), and µm is the overall mean migration rate. The Voronoi588

tessellation for the coalescent rates is Tq = (lq, q, cq, µq).589

The location of each (unordered) Voronoi cell is distributed uniformly across the habitat,590

lmc
iid∼ U(H), (S44)

and the number of cells (a-priori) are drawn from a negative binomial distribution,591

cm ∼ NegBi(rm, pm). (S45)

The effects of each Voronoi cell is normally distributed with variance ω2.592

log10(mi)
iid∼ N(µm, ω

2
m) (S46)
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log10(qi)
iid∼ N(µq, ω

2
q ) (S47)

The probability of a particular (unordered) cell configuration is,593

p(m|cm) = cm!
cm∏
i=1

N(mi|µm, ω2
m) (S48)

We assume,594

log10(ωm) ∼ U(−3, log10(1.5)) (S49)

log10(ωq) ∼ U(−3, log10(1)) (S50)

We set log10(2) as the upper bound for log10(ωm) so the m so the probability that it is within595

3 orders of magnitude from the mean is 0.95 a priori, and we set log10(1) as the upper bound596

for log10(ωq) to restrict the population sizes so to be within 2 orders of magnitude from the597

mean with probability 0.95 a priori.598

We assume,599

µm ∼ U(−10, 4) (S51)

µq ∼ U(−10, 4). (S52)

We place a uniform prior on the log of the mean rates to reflect that we are uncertain about600

the order of magnitude. Here, the data is highly informative of the mean, as a result, we601

can allow the support of the prior to vary by many orders of magnitude.602

5.5 MCMC603

Re-parameterization604

We re-parameterize the model to improve mixing of the MCMC. We decouple the migration605

(or coalescent) rates from the mean rate (µ), and variance (ω) by introducing a new variable606

ei,607

ei
iid∼ N(0, 1) (S53)

and the cell specific migration (or coalescent) rates are computed as,608
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log10(mi) = eiω + µ, (S54)

which allows us to update the magnitude of the parameters (µ) and the variance scale (ω)609

separately.610

We add MH joint random-walk updates to µ and ei to ensure that ē =
∑
i ei
c
≈ 0. To do611

this, we jointly update µ and ei by,612

µ′ = µ+ ε (S55)

e′i = ei −
ε

ω
(S56)

where ε ∼ N(0, 1). We do this for both the migration rates and population sizes.613

Updating the number of cells614

The number of cells change the dimension of the likelihood, and a result, we must use615

a Reversible Jump MCMC step so that the ratio of densities in the Metropolis-Hastings616

acceptance ratio is well-defined (Green, 1995). We choose to update the number of cells with617

a birth-death update (Stephens, 2000). Fortunately, in such a case, the updates reduce to618

standard Metropolis-Hastings because the dimension matching constant (i.e. the ”Jacobian”)619

equals one (Petkova et al., 2016; Stephens, 2000). See equations S31 and S32 in Petkova620

et al. (2016) for formulas regarding the birth-death update. Here, we use nearly identical621

updates (with a slight modification).622

When increasing the number of cells from c to c + 1 (i.e. a birth-update), we randomly623

choose a location uniformly across the habitat, and the new migration is proposed from a624

standard normal because our cell effects are standardized. In contrast, EEMS proposes cell625

effects migration to be normally distributed around a cell effect at a randomly chosen point626

in the habitat. Here we set, p(birth) = p(death) = 0.5 if the number cells ≥ 1, otherwise627

p(birth) = 1.628

The acceptance ratio for a birth update (going from c cells to c+ 1 cells) is

α(x, x′) = min(1,
p(death)

p(birth)

l(x′)p(x′) 1
c+1

l(x)p(x)N(ec+1|0, 1)
), (S57)

where x denotes the current state of the MCMC, x′ the proposed state, ec+1 is the proposed

cell effect drawn from a standard normal. Conversely, in a death-update, we randomly choose

one cell uniformly to kill. In this case, the acceptance ratio for a death proposal (going from
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c+ 1 cells to c cells) is

α(x, x′) = min(1,
p(birth)

p(death)

l(x′)p(x′)N(ec|0, 1)

l(x)p(x) 1
c+1

). (S58)
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6 Supplementary Figures629
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Figure S1: The performance of MAPS on a recent barrier scenario under different
PSC length bins. Here, we investigate the ability of MAPS to detect a recent barrier (< 10
generations) for various PSC length bins (a) Simulation scenario. Population sizes were set to
10,000 per deme and 10 diploids were sampled per deme, replicating the conditions in Figure
2b. (b) Results for different PSC length bins. Length bins that encompass shorter segments
(2-4cM 2-6cM 2-8cM) recover the higher uniform migration surface; while length bins with
longer segments (>4, >6, >8) recover the recent ancestral barrier. For the last length
scale (> 8cM), the signature of low migration extends across the habitat. The variation in
migration rates is missed presumably because of the small number of shared segments at
this length scale.
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Figure S2: The performance of MAPS on a past barrier scenario under different
PSC length bins. a) Simulation scenario. Population sizes were set to 10000 per deme
and 10 diploids were sampled per deme, replicating the conditions in Figure 2c. (b) Results
for different PSC length bins. Length bins that encompass shorter segments (2-4cM, 2-6cM,
2-8cM) recover the ancestral barrier; while length bins with longer segments (>4, >6, >8)
recover the recent constant migration surface.
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Figure S3: The performance of MAPS under a jointly heterogeneous migration
rate and population size surface. a) Simulation Scenario. Heterogeneous population-
sizes and migration rates (as shown) were simulated, and 10 diploid individuals were sampled
per deme. (b) Results for PSC segments greater than 2cM are shown.
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Figure S4: Visualizing normalized sharing of PSC segments that are 1-5cM. The
color scheme is the same as used in Ralph and Coop (2013) where the colors give categories
based on the regional groupings: W Western Europe, S Southern Europe, and E Eastern
Europe (a) The average sharing within each sample locale is transformed to population sizes
using the simple single deme estimator by Palamara et al. (2012). This transformation can
be roughly summarized as to say that Nα ∝ 1

x̄α,α
where Nα is the effective population size

in deme α and x̄α,α is the average pairwise PSC sharing between individuals in deme α. (b)
Similar to Ralph and Coop (2013), for each focal population (marked with an x), we plot the
normalized average pairwise sharing between that population and all others (normalized by
the average sharing within the focal population), i.e. if α is the focal population, we show
x̄α,β
x̄α,α

for each other country β.
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Figure S5: The correlation between census size and inverse average PSC sharing
as a function of minimum PSC length considered. We use census size compiled from
the The World Bank (2016) and National Records of Scotland (2011). The smooth black
curve denotes the loess fit. Longer PSC segments correlate more strongly with census size
than shorter PSC segments

38

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2018. ; https://doi.org/10.1101/365536doi: bioRxiv preprint 

https://doi.org/10.1101/365536
http://creativecommons.org/licenses/by/4.0/


●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Albania

Austria

Belgium

Bosnia and Herzegovina

Croatia Czech Republic

United Kingdom

France

Germany

Hungary
Ireland

Italy

Kosovo

Netherlands

Poland

Portugal

Romania

Scotland

Serbia

Spain
Sweden

Switzerland

2.5e+06

5.0e+06
7.5e+06
1.0e+07

2e
+0

7

4e
+0

7
6e

+0
7

8e
+0

7

number of individuals based on census data

M
A

PS
 e

st
im

at
e

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Albania

Austria

Belgium

Bosnia and Herzegovina
Croatia

Czech Republic

United Kingdom

France

Germany

Hungary

Ireland

Italy

Kosovo

Netherlands

Poland

Portugal

Romania

Scotland

Serbia

Spain

Sweden

Switzerland

2e+05

4e+05
6e+05
8e+05

2e
+0

7

4e
+0

7
6e

+0
7

8e
+0

7

number of individuals based on census data
M

A
PS

 e
st

im
at

e

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Albania

Austria

Belgium

Bosnia and Herzegovina
Croatia

Czech Republic

United Kingdom

France

Germany

Hungary

Ireland

Italy

Kosovo

Netherlands

Poland

Portugal

Romania

Scotland

Serbia

Spain

Sweden

Switzerland

500000

1000000
1500000
2000000

2e
+0

7

4e
+0

7
6e

+0
7

8e
+0

7

number of individuals based on census data

M
A

PS
 e

st
im

at
e

>1
0c

M
 (~

22
5 

ye
ar

s)
5-

10
cM

 (~
67

5 
ye

ar
s)

b)

a)

 1
-5

cM
 (~

27
00

 y
ea

rs
)

c)

ef
fe

ct
iv

e 
si

ze
ef

fe
ct

iv
e 

si
ze

ef
fe

ct
iv

e 
si

ze
census size

census size

census size

⇢ = 0.71

⇢ = 0.88

⇢ = 0.84

Figure S6: Census size versus MAPS estimated population sizes. Using the MAPS
output, we estimate a total size per population by summing the estimated deme-level sizes
across the area of each respective country (whether’s a deme’s location falls within a country
was determined by querying The GeoNames Geographical Database). Finally, we plot the
results on a log10 scale for different length scales (a) 1-5cM, (b) 5-10cM, and (c) >10cM. The
red curve denotes the linear fit on the absolute scale. Note Kosovo and Albania as candidate
outliers possibility because of cryptic relatedness artificially decreasing population sizes.
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Figure S7: Plots of estimated average log10 differences in demographic parameters
between adjacent time scales. (a) We plot estimates of E[log10(σ

′

σ
)] and E[log10(De

′

De
)]

across the spatial habitat where σ′ (D′e) denotes the dispersal rates (population densities) in
the 5-10cM length bin and σ (De) denotes the dispersal rates (population densities) in the
1-5cM length bin. (b) The results here are similarly plotted as above, however, the adjacent
length scales are given by: 5-10cM and >10cM. The log10 differences are estimated in such a
way so that the mean log10 difference is shrunk to zero. For example, for estimating dispersal
in 5-10cM, we assume log10(σ′) = E[log10(σ)] + ε where E[log10(σ)] is estimated using PSC
segments 1-5cM and ε ∼ N(0, ω2) is estimated from PSC segments 5-10cM. Consequently,
the log ratio between dispersal rates from the two lengths bins is constructed to have mean
zero apriori (i.e. E[log10(σ

′

σ
)] = 0).
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Figure S8: EEMS applied to the POPRES dataset. We apply EEMS to the same set
of individuals as used in Figure 4 (see Methods). (a) The effective migration rates (b) The
effective diversity rates. Here, we ran EEMS with 200 demes (as in Figure 4) with default
parameters and averaged over 10 independent replicate chains. Each chain ran with 50e6
MCMC iterations, 25e6 set as burn-in, and we thinned every 5000 iterations.
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Figure S9: Genetic distance vs PSC sharing (a) The averaged genetic distance (as used
in EEMS) is plotted against the average number of PSC segments (> 1cM) for each pair of
populations. Each point denotes a pair, the symbols represent groupings from Ralph and
Coop (2013) (W Western Europe, S Southern Europe, and E Eastern Europe), and the col-
ors represent the pair of regions. We see a negative correlation between the two summary
statistics (Pearson’s ρ = -0.38, p-value = 7e-11), with the largest deviations occurring in
comparisons between Eastern European populations. (b) EEMS results on PSC data trans-
formed to a distance matrix. First, we encoded the PSC sharing statistics into a similarity
matrix S such that Si,j is the number of shared PSC segments between samples i and j and
Si,i is the maximum number of shared segments in the dataset (which we denote as c) to
ensure S is a similarity matrix. Next, we transformed S to a genetic distance matrix D such
that D = c11T − S +E where E ≈ 0 is a random genetic distance matrix of normal vectors
with mean 0 and standard deviation of 0.01 added to ensure D is full rank. Finally, we
applied EEMS to the distance matrix D. Though this procedure is heuristic, we see shared
features between this surface and the MAPS dispersal surface shown in Figure 4.
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