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10 Abstract

11 In many species a fundamental feature of genetic diversity is that genetic similarity
12 decays with geographic distance; however, this relationship is often complex, and may
13 vary across space and time. Methods to uncover and visualize such relationships have
14 widespread use for analyses in molecular ecology, conservation genetics, evolutionary
15 genetics, and human genetics. While several frameworks exist, a promising approach
16 is to infer maps of how migration rates vary across geographic space. Such maps
17 could, in principle, be estimated across time to reveal the full complexity of population
18 histories. Here, we take a step in this direction: we present a method to infer separate
19 maps of population sizes and migration rates for different time periods from a matrix
20 of genetic similarity between every pair of individuals. Specifically, genetic similarity is
21 measured by counting the number of long segments of haplotype sharing (also known
2 as identity-by-descent tracts). By varying the length of these segments we obtain
23 parameter estimates for qualitatively different time periods. Using simulations, we
2% show that the method can reveal time-varying migration rates and population sizes,
25 including changes that are not detectable when ignoring haplotypic structure. We
2 apply the method to a dataset of contemporary European individuals (POPRES),
27 and provide an integrated analysis of recent population structure and growth over
28 the last ~3,000 years in Europe. Software implementing the methods is available at
29 https://github.com/halasadi/MAPS.
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» 1 Introduction

a1 Populations exist on a physical landscape and often have limited dispersal. As a result,
» most genetic data exhibit a pattern of isolation by distance (Wright, 1943), which is simply
;3 to say that populations closer to each other geographically are more similar genetically.
1 Furthermore, the degree of isolation by distance can vary across space and time (Manel
55 et al., 2003). For instance, in a mountainous area of a terrestrial species’ range, a pair of
s individuals may be more divergent from each other than a pair of individuals separated by
s the same distance in a flat and open area of the habitat. Additionally, the degree of isolation
;s by distance can change over time — for example, if dispersal patterns are changing over time.
3 Such spatial and temporal heterogeneity is an important aspect of population biology, and
» understanding it is crucial to solving problems in ecology (Turner et al., 2001), conservation
a  genetics (Segelbacher et al., 2010), evolution (Rousset, 2004), and human genetics (Rosenberg
2 et al., 2005).

13 Several methods have been developed to reveal spatial heterogeneity in patterns of isola-
s tion by distance (Womble, 1951; Barbujani et al., 1989; Guillot et al., 2005, 2009; Caye et al.,
s 2016; Petkova et al., 2016; Bradburd et al., 2016, 2017). Some methods are based on ex-
s plicitly modeling the spatial structure in the data (Guillot et al., 2005, 2009; Petkova et al.,
w 2016; Bradburd et al., 2016, 2017); others take non-parametric approaches (e.g. Womble,
s 1951; Barbujani et al., 1989); while other methods ignore the spatial configuration of the
s samples and rely on researchers to make a post hoc geographic interpretation of the results
o (e.g. Pritchard et al., 2000; Patterson et al., 2006). However, none of these methods can be
s1 flexibly applied to address temporal heterogeneity in isolation by distance patterns, and new
s2 methods are needed.

53 One source of information for inferring changes in demography across time is the density
s« of mutations observed in pairwise sequence comparisons (Li and Durbin, 2011; Schraiber
ss and Akey, 2015). For example, when individuals are similar along a long segment of their
ss chromosomes, it suggests that these segments share a recent common ancestor (Palamara
sv et al., 2012). These segments are often called “identity-by-descent” tracts, although here we
s prefer the term “long pairwise shared coalescence” (IPSC) segments (as identity by descent
so traditionally required a definition of a founder generation, which is not clear in most data
o applications). A key feature of these segments is that filtering them by length provides a
s1 means to interrogate different periods of population history. The longest segments reflect
&2 the most recent population history, whereas shorter segments reflect longer periods of time.
&3 Recent analyses using IPSC segments suggest that they can reveal fine-scale spatial and

& temporal patterns of population structure that are not evident with genotype-based methods
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s such as principal components analysis (Ralph and Coop, 2013; Lawson et al., 2012; Leslie
e et al., 2015).

67 Here we develop a new method to infer spatial and temporal heterogeneity in population
e sizes and migration rates. The method takes as input geographic coordinates for a set of
s individuals sampled across a spatial landscape, and a matrix of their genetic similarities as
70 measured by sharing of IPSC segments. It then infers two maps, one representing dispersal
7 rates across the landscape, and another representing population density. Crucially, building
72 these maps using different lengths of IPSC segments can help reveal changes in dispersal
73 rates and population sizes over time.

74 Our method is based on a stepping-stone model where randomly-mating subpopulations
s are connected to neighboring subpopulations in a grid. Such models are parameterized
76 by a vector of population sizes (]\7 ) and a sparse migration rate matrix (M). Stepping-
77 stone models with a large number of demes can approximate spatially continuous population
72 models (Barton et al., 2002; Baharian et al., 2016), and this can be exploited to produce
7o maps of approximate dispersal rates and population density across continuous space.

80 Our method builds upon a method developed for estimating effective migration surfaces
s (EEMS) (Petkova et al., 2016). While EEMS infers local rates of effective migration relative
sz to a global average, here we can explicitly infer absolute parameter values by leveraging IPSC
&3 segments and modeling the recombination process []\7 and M values in the stepping-stone
ss model, and effective spatial density function D.(Z) and dispersal rate function o(Z) in the
s continuous limit]. We call this method MAPS, for inferring Migration And Population-size
s Surfaces.

87 We test MAPS on coalescent simulations and apply it to a European subset of 2,224
ss individuals from the POPRES data (Nelson et al., 2008). In simulations, we show that MAPS
g0 can infer both time-resolved migration barriers and population sizes across the habitat. In
o empirical data, we infer dispersal rates (%) and population densities D.(Z) across different

a1 time periods in Europe.

» 2 Results

s 2.1 Outline of the MAPS method

s MAPS estimates demography using the number of Pairwise Shared Coalescence (PSC) seg-
s ments of different lengths shared between individuals. We define a PSC segment between
o (haploid) individuals to be a genomic segment with a single coalescent time across its length

o (Figure 1A). Long PSC (IPSC) segments tend to have a recent coalescent time, and so man-
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Figure 1: Schematic overview of MAPS. (a) Coalescent times between a pair of hapolo-
types (A and B) will vary across the genome in discrete segments bordered by recombination
breakpoints. On average, longer segments represent shorter pairwise coalescent times (T4p)
(b) Flow diagram of MAPS. i) We start with a matrix of called genotypes; ii) IPSC segments
between all pairs of chromosomes across the genome are identified from the data using ex-
ternal methods (such as BEAGLE, Browning and Browning (2011)); iii) IPSC segments
between pairs of individuals are aggregated at the levels of pairs of populations; iv) A grid is
constructed and individuals are assigned to the most nearby node; v) The probability of the
PSC sharing matrix can be computed under a stepping-stone model where each node rep-
resents a population and each edge represents symmetric migration; vi) We use an MCMC
scheme to sample from the posterior distribution of migration rates and population sizes.
The final MAPS output is the mean over these posterior samples, and the averaged rates
can be transformed to units of dispersal rate and population density. The diagram does not
show a bootstrapping step used to estimate likelihood weights to account for correlations
between IPSC segments, see Equation (6) in Methods.
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e ifest themselves in genotype data as unusually long regions of high pairwise similarity, which
o can be detected by various software packages (Gusev et al., 2009; Browning and Browning,
wo 2011, 2013; Chiang et al., 2016). Because IPSC segments typically reflect recent coalescent
w events, counts of IPSC segments are especially informative for recent population structure
102 (Ringbauer et al., 2017; Palamara et al., 2012; Baharian et al., 2016). And partitioning IPSC
103 segments into different lengths bins (e.g. 2-8cM, >8cM) can help focus inference on different
104 (recent) temporal scales.

105 The MAPS model involves two components: i) a likelihood function, which relates the ob-
s served data (genetic similarities, as measured by sharing of IPSC segments) to the underlying
107 demographic parameters (migration rates and population sizes); and ii) a prior distribution
ws on the demographic parameters, which captures the idea that nearby locations will often
w0 have similar demographic parameters. The likelihood function comes from a coalescent-
1o based “stepping-stone” model in which discrete populations (demes) arranged on a spatial
w grid exchange migrants with their neighbors (Figure 1b). The parameters of this model
2 are the migration rates between neighboring demes (M, 3) and the population sizes within
us each deme (NN,). The prior distribution is similar to that from Petkova et al. (2016), and
us is based on partitioning the habitat into cells using Voronoi tesselations (one for migration
s and one for population size), and assuming that migration rates (or population sizes) are
us constant in each cell. We use an MCMC scheme to sample from the posterior distribution on
17 the model parameters (migration rates, population sizes, and Voronoi cell configurations).
us  We can summarize these results by surfaces showing the posterior means of demographic
e parameters across the habitat.

120 The inferred migration rates and population sizes will depend on the density of the grid
121 used. However, using ideas from Barton et al. (2002) and Baharian et al. (2016) we convert
122 them to corresponding parameters in continuous space, whose interpretation is independent
123 of the grid for suitably dense grids. Specifically, we convert the migration rates to a spatial
12 diffusion parameter o(Z), often referred to as the “root mean square dispersal distance”,
125 which can be interpreted roughly as the expected distance an individual disperses in one
126 generation; and we convert the population sizes (Z\7 ) to an “effective population density”
127 D.(Z) which can be interpreted as the number of individuals per square kilometer. Similar
s to the original grid-based demographic parameters, we can summarize MAPS results by

1o surfaces showing the posterior means of (%) and D, () across the habitat.
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1w 2.2 Differences from EEMS

1 Our MAPS approach is closely related to the EEMS method from Petkova et al. (2016),
12 but there are some important differences. First, the MAPS likelihood is based on 1PSC
133 sharing, rather than a simple average genetic distance across markers. This was primarily
13« motivated by the fact that, by considering IPSC segments in different length bins, MAPS
135 can interrogate demographic parameters across different recent time periods. However, this
s change also allows MAPS, in principle, to estimate absolute values for the parameters M and
w N , whereas EEMS can estimate only “effective” parameters which represent the combined
1 effects of M and N. This ability of MAPS to estimate absolute values stems from its use of
19 a known recombination map, which acts as an independent clock to calibrate the decay of
o PSC segments. Finally, MAPS uses a coalescent model, whereas Petkova et al. (2016) uses

11 a resistance distance approximation (McRae, 2006).

w 2.3 Evaluation of performance under a stepping-stone coalescent

143 model

s We assess the performance of MAPS with several simulations, and compare and contrast the
s results with EEMS. We used the program MACS (Chen et al., 2009) to simulate data under
s a coalescent stepping stone model and refinedIBD (Browning and Browning, 2011, 2013)
wr to identify IPSC segments. All simulations involved twenty demes, each containing 10,000
us diploid individuals, and each exchanging migrants with their neighbors. We analyzed each
e  simulated data set using PSC segments of length 2-6¢cM and >6¢M, which correspond to
150 time-scales of approximately 50 generations and 12.5 generations respectively (see Lemma
151 5.3 in the Supplementary Note). Results for other length bins are qualitatively similar
152 (Supplementary Figure S1 & S2).

153 Migration Rate Inference

1sa First, we simulated under a uniform (constant) migration surface with migration rate 0.01
155 (Figure 2a), assumed to have stayed constant over time. In this case both EEMS and MAPS
155 correctly infer uniform migration (Figure 2a), and MAPS provides accurate estimates of the
157 migration rate (posterior mean 0.010 when using segments 2-6¢cM and 0.0086 using segments
158 >6¢M). As noted earlier, EEMS does not estimate the absolute migration rate; it estimates
150 only the relative (effective) migration rates.

160 Next, we considered a scenario where the migration surface changed across time. Specifi-

161 cally the migration surface matches the constant migration scenario (above) until 10 genera-
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Figure 2: Simulations comparing migration rates inferred with MAPS against ef-
fective migration rates inferred with EEMS. (a) We simulated data under uniform
migration rates equal to 0.01 and applied EEMS and MAPS using PSC segments in the range
2-6cM and >6¢cM. Like EEMS, MAPS correctly infers a uniform migration surface. Addi-
tionally, MAPS provides accurate estimates of the migration rates for both PSC segments
2-6cM (mean 0.01) and PSC segments >6cM (mean 0.0086). (b) We simulated a recent
sudden migration barrier formation 10 generations ago. Here, EEMS is unable to infer a
barrier, while MAPS correctly infers the historical uniform surface (2-6¢cM) and a barrier in
the more recent time scale (>6¢M). (¢) We simulated a long-standing migration barrier that
recently dissipated 20 generations ago. EEMS infers a barrier, while MAPS correctly infers
both the historical migration barrier (2-6¢cM) and the uniform migration surface in the more
recent time scale (>6¢M). In all cases shown here, we simulated a 20 deme stepping stone
model such that the population sizes all equal to 10,000, and 10 diploid individuals were
sampled at each deme.
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162 tions ago, when a complete barrier to gene flow instantaneously arose (a “vicariance event”,
163 Figure 2b). In this setting EEMS again infers a uniform migration surface. This is because
s KEMS is based on pairwise genetic distances, which are negligibly influenced by the recent
165 barrier. In contrast, by applying MAPS with different PSC segment lengths, we can see
166 both the historically uniform migration surface (for segments 2-6¢M) and the recent barrier
167 (segments >6¢M).

168 Next we consider a complementary time-varying scenario: an ancestral barrier disap-
160 peared 20 generations ago to allow uniform migration (Figure 2c). Here the EEMS results
o again reflect the longer-term processes, and a barrier is evident. And again, by applying
m MAPS with different PSC segment lengths, we can see different migration surfaces cor-
2 responding to different time scales, which are here reversed compared with the previous
113 scenario: the historical barrier (for segments 2-6¢cM) and the recent uniform migration (seg-
s ments >6¢M).

s Population Size Inference

s As noted above, and discussed in (Petkova et al., 2016), EEMS estimates an “effective”
17 migration surface that reflects the combined effects of population sizes N and migration
s rates M; consequently it cannot distinguish between variation in M and variation in N. In
o contrast, MAPS has the potential to distinguish these two types of variation.

180 To illustrate this difference we simulate data with a constant migration surface, and a
e population size surface that has a 10-fold “dip” in the middle of the habitat (deme size 1,000
1.2 vs 10,000; Figure 3). Petkova et al. (2016) performed a similar simulation, and showed that
183 EEMS estimated an effective migration surface with an “effective barrier” in the middle,
18« caused by the dip in population size. As expected, we obtain a similar result for EEMS here.
185 Further, the EEMS inferred diversity surface is also approximately constant, because the
185 diversity surface reflects changes in within-deme heterozygosity, and these vary little in this
17 simulation. In contrast, MAPS is able to separate the influence of migration and population
188 sizes: the estimated migration surface is approximately constant (with mean migration rate
180 equal to the true value 0.01) and the estimated population size surface shows a dip in the
1o middle, with accurate estimates of deme sizes (mean 985 at the center and 9100 at the
1 edges). Additional simulations with non-uniform migration rates reinforce these results; see

12 Supplementary Figure S3.
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Figure 3: Simulations comparing population sizes inferred with MAPS and
“diversity-rates” inferred with EEMS. We simulated uniform migration rates of 0.01
and a trough of low population sizes in the center of the habitat such that population sizes
equal to 1,000 at the center and 10,000 otherwise. Under these simulations, EEMS infers a
barrier in effective migration and infers uniform diversity rates. However, MAPS correctly
infers a uniform migration surface (mean 0.01) and provides accurate estimates of deme sizes
(mean 985 at the center and 9100 at the edges)
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s 2.4  Applying MAPS to the POPRES data

e To illustrate MAPS on real data, we analyze a genome-wide SNP dataset on individuals
105 of European ancestry (the “POPRES” study Nelson et al., 2008). Previous analyses of
s these data have shown the strong influence of geography on patterns of genetic similarity
107 (Novembre et al., 2008; Lao et al., 2008; Ralph and Coop, 2013). In particular Ralph and
s Coop (2013) analyzed spatial patterns in the sharing of PSC segments across Europe. To
109 facilitate comparison with their results, we use their PSC segment calls, focusing on a subset
20 of 2224 individuals after filtering (see Methods).

201 We applied MAPS to these data using three different PSC segment length bins: 1 —5cM,
200 5 — 10cM, and > 10cM. The longer bins correspond to more recent demography because as
203 PSC lengths increase, the average coalescent times decrease. Indeed, the average coalescent
24 times for each of these three length bins is inferred to be 90, 23 and 7.5 generations respec-
205 tively (Supplementary Note), which correspond to 2700 years, 675 years and 225 years if we
206 assume 30 years per generation.

207 We note that the accuracy of called PSC segments will vary across these bins: based on
208 simulations in Ralph and Coop (2013) PSC segment calls in the smallest bin (1-5cM) will
200 likely suffer from both false positives and false negatives, whereas for the longer bins PSC calls
210 should be very reliable. Nonetheless, even in the smallest bin, closely-related individuals will
an - still tend to show higher PSC sharing, and so the estimated MAPS surfaces should provide
212 a useful qualitative summary of spatial patterns of variation even if quantitative estimates

213 may be less reliable.

2u Inferring dispersal and population density surfaces

25 The inferred MAPS dispersal rates (migration rates scaled by grid step size) and population
26 densities (population sizes scaled by grid area size) for each PSC length bin are shown in
a7 Figure 4.

218 Largely speaking, the spatial variation in inferred dispersal rates and population densities
20 is remarkably consistent across the different time scales (Figure 4). In the MAPS dispersal
20 surfaces, several regions with consistently low estimated dispersal rates coincide with geo-
o1 graphic features that would be expected to reduce gene flow, including the English Channel,
22 Adriatic Sea and the Alps. In addition we see consistently high dispersal across the region
223 between the UK and Norway, which may reflect the known genetic effects of the Viking
24 expansion (e.g Leslie et al., 2015). The MAPS population density surfaces consistently show
25 lowest density in Ireland, Switzerland, Iberia, and the southwest region of the Balkans. This

26 1S consistent with samples within each of these areas having among the highest PSC seg-

10
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Figure 4: Inferred Dispersal Surfaces and Population Density Surfaces over time
for Europe. We apply MAPS to a European subset of POPRES Nelson et al. (2008) with
2,234 individuals and plot the inferred dispersal o(#) and population density D.(Z) surfaces
for PSC length bins (a) > 1cM (b) 5-10cM and (¢) >10cM. We transform estimates of N
and M to estimates of o(¥) and D.(Z) by scaling the migration rates and population sizes by
the grid step-size and area (see Equations (17) and (18)). Generally, we observe the patterns
of dispersal to be relatively constant over time periods, however, we see a sharp increase in
population density in the most recent time scale (>10cM). Note the wider plotting limits in
inferred densities in the most recent time scale.

11
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27 ment sharing (Supplementary Figure S4a). The MAPS inferred country population sizes are
28 also highly correlated with estimated current census population sizes from The World Bank
20 (2016) and National Records of Scotland (2011) (Supplementary Figure S6).

230 The most notable variation among the estimated surfaces from different time scales is a
2 dramatic increase in the mean estimated population density in the most recent time scale
2 (Figure 4 and Supplementary Figure S7). Indeed, the estimated mean for the last time
213 scale — 1.4 individuals per square km — is 6-9 fold higher than those for the earlier time
2 scales (0.16 and 0.22 respectively). This increase is consistent with the recent exponential
25 growth of human population sizes (Cohen, 1995). The estimates themselves are lower than
236 historical estimates of ~1-30 individuals per square km based on archaeological data (e.g.
27 Zimmermann et al., 2009).

238 The dispersal surfaces show more minor changes between time periods (Figure 4 and
20 Supplementary Figure S7). In particular, the estimated mean dispersal rates are relatively
20 constant across time, being 73, 103 and 72 respectively (in units of km in a single genera-
21 tion). These mean estimates are consistent with empirical estimates of 10-100 km in a single
22 generation compiled by Kaplanis et al. (2018) using pedigrees of individuals living between
23 1650 and 1950 AD. We do note the lower estimated dispersal rates between Portugal and
24 Spain in the analyses of longer PSC segments (5-10 and > 10cM), and the higher estimated
25 dispersal rates through the Baltic Sea (> 10cM segments), possibly reflecting changing gene

xs  flow in these regions in recent history.

27 Comparison to Ringbauer et al. (2017)

2s Ringbauer et al. (2017) also estimate a mean dispersal rate and population density from
29 the Eastern FKuropean subset of the data analyzed here. Their estimates are based on
0 PSC segments > 4cM, which is most comparable with our analysis of 5-10cM. Unlike our
1 analysis, their estimates are based on a spatially homogeneous model. To compare with their
2 estimates we computed the mean of the estimated dispersal rate and population densities
23 in Eastern Europe (but based on an analysis of the full data). For the dispersal rate this
4 yields an estimate of 88 km in a single generation, which is consistent with the range of
255 H0-100 given by (Ringbauer et al., 2017). For the population density, it yields an estimate
6 of 0.10 individuals per square km, which is somewhat higher than the estimate of 0.05
27 obtained under a comparable (time-homogeneous) population model in (Ringbauer et al.,
253 2017). Possibly our higher estimate partly reflects the influence of our spatial modeling
0 approach, which will tend to shift the estimate for Fastern Europe toward the estimated
260 mean across all of Europe (which is 0.22). In addition, the difference in length thresholds

21 (> 4cM versus 5-10cM) may also be contributing; if segments in the Ringbauer et al. (2017)

12
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2 analysis are on average shorter and hence older, one would expect lower density estimates,

263 based on our results that suggest lower densities in the past (Figure 4).

%  Comparison with EEMS

265 The EEMS results for these data (Figure S8) show non-trivial differences with the MAPS
26 results (Figure 4a). Two potential causes are: i) differences in the summary data used (PSC
7 segment sharing vs genetic distances) and hence sensitivity to different timescales; and ii)
28 differences in the underlying models (e.g. composite Poisson likelihood vs Wishart likelihood,
20 and different parameterizations/approximations to the coalescent model; see Discussion). To
20 evaluate the impact of i) we compared the PSC segment sharing and genetic distances, and
on found their correlation to be only modest (Pearson’s p = -0.38), with the most notable devi-
a2 ation for comparisons between countries in Eastern Europe (Figure S9a). Furthermore, most
i3 of this correlation is due to geographic distance: after controlling for geographic distance the
o correlation is only -0.18, which may be a more relevant metric because inferred spatial het-
25 erogeneity in gene flow (barriers and corridors) is driven by departures from simple isolation
a6 by distance.

217 To better assess the impact of ii) we applied EEMS on a distance matrix constructed
s to have the same similarity patterns as the PSC segment sharing matrix input to MAPS
29 (1—5cM length bin). The resulting EEMS surface is more similar to the corresponding MAPS
20 dispersal surface (Supplementary Figure S9b vs Figure 4a), but there remain substantial
o1 differences. This investigation confirms what we expected a priori — the two surfaces should
22 be different because the underlying models and inferred parameters of MAPS and EEMS
2s3  are different. As noted before, EEMS infers the “effective migration rate” which reflects the

s effects of both the migration rates and population sizes, while MAPS infers them separately.

» 3 IDiscussion

25 We developed a method (MAPS) for inferring migration rates and population sizes across
27 space and time periods from geo-referenced samples. Our method builds upon a previous
23 method developed for estimating effective migration surfaces (EEMS) (Petkova et al., 2016).
20 However there are several differences between MAPS and EEMS. Most fundamentally, MAPS
20 draws inferences from observed levels of PSC sharing between samples, whereas EEMS draws
201 inferences from the genetic distance. These two data summaries capture different information
202 about the coalescent distributions: in essence, PSC sharing captures the frequency of recent
203 coalescent events, whereas genetic distance captures the mean coalescent time. Consequently

20 MAPS inferences largely reflect the recent past ($ 1000 years for human recombination
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205 rates and generation times with PSC segments > 2c¢M), whereas EEMS inferences reflect
206 demographic history on a longer timescale across which pairwise coalescence occurs (99% of
207 events > 6000 years old, assuming diploid N, of 10,000 for humans, exponential coalescent
208 time distribution).

209 Another consequence of modelling PSC sharing, rather than genetic distance, is that
30 MAPS can separately estimate demographic parameters related to migration rates (M) and
;1 population sizes (]\7 ), as in Figure 3 for example. In essence MAPS does this by using the
;2 known recombination map as an additional piece of information to help calibrate inferences.
53 In contrast EEMS, which makes no use of recombination maps, cannot separate M and N.
s Instead EEMS infers a compound parameter referred to as the “effective migration rate”,
35 which is influenced by changes in both M and N ; see Figure 3. In principle, if applied
w6 t0 sequence data instead of genotype data at ascertained SNPs, the genetic distances used
s by EEMS could perhaps also separately estimate M and N by exploiting known mutation
we rates to calibrate inferences. However, this would require non-trivial additional changes
300 to the current EEMS likelihood, which was designed to be applicable to ascertained SNPs
s0 and does not explicitly model variation in population sizes. (The EEMS likelihood instead
su uses a “diversity rate” e, which reflects within-deme heterozygosity but is not explicitly a
22 population size parameter.)

313 An additional useful feature of PSC segments is that, by varying the lengths analyzed,
su one can infer parameter values across different time scales. For example, our simulations
s1is show how by contrasting shorter and longer PSC segments, the method can reveal different
us  gene flow patterns in scenarios with recent changes (see Figures 2 and 3). Further support
si7 - comes from our empirical analysis of the POPRES data-set, where we found population sizes
s1is  inferred from longer PSC segments to be more correlated with census sizes The World Bank
50 (2015 census 2016) and National Records of Scotland (2011, 2011 census) than sizes inferred
20 from shorter segments (e.g. Spearman’s p = 0.71 for 1 — 5cM and p = 0.84 for > 10cM; see
w21 Supplementary Figures S5 and S6). Also, not surprisingly, PSC segments greatly outperform
2 using heterozygosity as an indicator of census population size (the Spearman’s correlation
23 coefficient between heterozygosity and census size was insignificant, p-value = 0.25).

304 Our estimates of dispersal distances and population density from the POPRES data are
»s among the first such estimates using a spatial model for Europe (though see (Ringbauer
26 et al., 2017)). The features observed in the dispersal and population density surfaces are in
w7 principle discernible by careful inspection of the numbers of shared PSC segments between
2 pairs of countries (e.g. using average pairwise numbers of shared segments, Supplementary
20 Figure S4b, as in Ralph and Coop (2013)). For example, high connectivity across the North

;0 Sea is reflected in the raw PSC calls: samples from the British Isles share a relatively high
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s number of PSC segments with those from Sweden (Supplementary Figure S4b). Also the low
s estimated dispersal between Switzerland and Italy is consistent with Swiss samples sharing
333 relatively few PSC segments with Italians given their close proximity (Supplementary Figure
1« S4b). However, identifying interesting patterns directly from the PSC segment sharing data
15 is not straightforward, and one goal of MAPS (and EEMS) is to produce visualizations that
16 point to patterns in the data that suggest deviations from simple isolation by distance.

337 Our results suggest that several features of dispersal in Europe have been relatively stable
ss over the last ~3000 years, whereas the population sizes have been increasing. The relative
130 stability of the gene flow patterns is perhaps surprising given ancient DNA results suggest
s a continually dynamic history of population movements. One possibility is that much of
s Buropean population structure may have been established by the end of the Bronze Age
s> (4,000 years ago), with relatively more stable patterns in the intervening period that is
us reflected in IPSC segments. Nonetheless, the dispersal is not completely stable— our results
aa suggest changes in Iberia, the Baltic, and to minor degrees in other areas.

5 The inferred population size surfaces for the POPRES data show a general increase in
us  sizes through time, with small fluctuations across geography; for instance, Polish samples
s have a relatively larger population size in inferred values from the largest length scale (>
1g 10cM). In our results, the smallest inferred population sizes are in the Balkans and Eastern
10 Europe more generally. This is in agreement with the signal seen by Ralph and Coop (2013);
0 however, taken at face value, our results suggest that high PSC sharing in these regions may
351 be due more to consistently low population densities than to historical expansions (such as
32 the Slavic or Hunnic expansions).

353 Although consistent with previous results, our estimates of dispersal and population sizes
s do not exactly agree with empirical estimates. For example, our estimates of population
15 sizes are consistently lower than the census sizes (Supplementary Figure S6). This is to be
16 expected for several reasons. First, census sizes include non-breeding individuals (juvenile
37 and post-reproductive age) that do not impact the formation of PSC segments. Second,
s MAPS is fitting a single population size per location, and in a growing population the best
0 fit population size will be an under-estimate of contemporary size. Third, in a wide class
w0 of population genetic models, the effective size, even among reproductive age individuals, is
1 lower than the census size because of factors that inflate the variance in offspring number.
2 Fourth, some discrepancy is expected simply because the stepping-stone population genetic
33 model used here is only a coarse approximation to the complex spatial dynamics of human
s populations. Finally, recombination rate mis-specification can bias the inferred parameters.
s Furthermore, we caution that our results must be interpreted in the light of the fact that we

6 have limited spatial sampling across Europe, and only very coarse geographical origin data
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37 (country of origin).

368 Here, as in Petkova et al. (2016) we use a discrete stepping-stone model to approximate
30 a process that might be more naturally modelled as continuously varying in space. Recent
s work (Ringbauer et al., 2017; Baharian et al., 2016) exploits continuous models to estimate
sn  dispersal and population density parameters from sharing of IPSC segments. However, these
sz methods assume that dispersal and population density are constant across space: extending
sz them to allow these parameters to vary across space could be an interesting avenue for future
sta - work.

375 A major achievement in method development in population genetics would be to jointly
s infer migration rates and population sizes across both space and time. MAPS is a step
sz towards this goal. However, we do not infer demography explicitly as a function of time and
;s instead infer surfaces in time blocks defined by PSC length bins. In principle, our method
sro allows for inference of demography across time by treating PSC segments as independent
10 across length bins, see Equation (S27) in Supplementary Methods. However, this requires
s fitting multiple migration/population surfaces and is computationally unfeasible with our
32 current MCMC routine. Other computational techniques (e.g. Variational Bayes or fast

383 optimization of the likelihood) might make this goal possible.

w« 4 Methods

w 4.1 MAPS configuration

s For the empirical data analysis, we ran MAPS with 200 demes. The MAPS output was
37 obtained by averaging over 20 independent replicates (the number of MCMC iterations in
;s each replicate was to set 5e6, number of burn-in iterations set to 2e6, and we thinned every
30 2000 iterations). We provide the the MAPS here: https://github.com/halasadi/MAPS,
s and the plotting scripts here: https://github.com/halasadi/plotmaps.

o 4.2 Inferring PSC segments from the data

52 Our pipeline to call PSC segments for simulations can be found here: https://github.com/
33 halasadi/ibd_data_pipeline. We follow the recommendations of Browning and Browning
;¢ (2011, 2013) and Ralph and Coop (2013) by running BEAGLE multiple times and merging
35 shorter segments.

396 For the empirical data analysis, we use the PSC segments (“IBD”) calls from Ralph and
37 Coop (2013), which can be found here: https://github.com/petrelharp/euroibd. We
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ws further applied a filter to retain countries with at least 5 sampled individuals, and removed

30 Russian and Greek individuals to restrict the habitat to a smaller spatial scale

w 4.3 Model

s MAPS assumes a population genetic model consisting of triangular grid of d demes (or
w2 populations) with symmetric migration. The density of the grid is pre-specified by the
w3 user with the consideration that the computational complexity is O(d®). We use Bayesian
was inference to estimate the MAPS parameters: the migration rates and coalescent rates M
ws and ¢ respectively. Its key components are the likelihood, which measures how well the
w6 parameters explain the observed data, and the prior, which captures the expectation that
w7 M and ¢ have some spatial structure (in particular, the idea that nearby edges will tend to
ws have similar migration rates and nearby demes have similar coalescent rates).

409 MAPS estimate the posterior distribution of © = M, g given the data. The data used
a0 for MAPS consists of a similarity matrix X# = {X[i} which denotes the number of PSC
a1 segments in a range R = [u, v] base-pairs shared between pairs of haploid individuals (i, j) €
a2 {1,--- n} x {l,--- ,n} where n is the number of (haploid) individuals. Furthermore, a
a3 recombination rate map is required as input for MAPS. The likelihood is a function of the
s expected value of X% (E[X[1]). Below we describe the computation of E[X[i] and the other
a5 key components of the likelihood. Finally, we briefly describe the prior used and an MCMC

a6 scheme to sample from the posterior distribution of ©.

a7 The likelihood function
Let a, f denote the demes that (haploid) individuals i and j are sampled in, we define,
Aos = BIXT5O]. (1)
sz For the marginal distribution, we assume

X[E|© ~ Pois(AS 410), (2)

a0 and one option for computing the joint distribution of the data is to assume independence
20 between pairs of individuals (i, 7) as done previously (Palamara et al., 2012; Palamara and
a1 Peer, 2013; Ralph and Coop, 2013; Ringbauer et al., 2017). This assumption leads to the
a2 log-likelihood,
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logL(©;X) = na, ﬁ( a5l0g(A 5) =AY ) (3)
a<lp
where X = {X, 3} such that (a, 8) € {1,--- ,d} x {1,--- ,d} and d is the number of demes.

Furthermore

1 R
y Nans Zieda,jedﬁ Xij ita#p
Xap =

"\ S XE ita=4

where n,, is the number of sampled individuals in deme «, d, is the set of all individuals in

: (4)

deme «, and

nang if o # B
na’ﬁ = n . N (5)

(%) ifa=5
However, we found that there were significant correlations in IPSC segments between
individuals. To deal with this, we down-weighted the likelihood function to reflect the
“effective” number of samples (e, 3) instead of the number of pairs (n,gs). The effective

number of samples between demes «, is given by,
Xog

g = ——t . 6

Cap Var[X, ] (6)

X
= 5 . However, because of correlations in the data,

In the case of independence, Var[X,, 5] ~
the actual variance is significantly larger than the variance computed under an independence
model. Here, we estimate Var[)?ayg] by bootstrapping individuals with replacement. This
way, we model the correlations between pairs of individuals for within and between-deme

comparisons. The loglikelihood adjusted for correlations is given by,

logL(©; X) Zeaﬁ( Xoslog(AS 5) — )\Sﬁ). (7)

a<p

Computing the expectation of X,ﬁ-|@

Next, we derive expressions to compute the expectation of the number of PSC segments

of length greater than u ( x Bi=lioe

1,]
Palamara et al. (2012) it is easy to show that

)) conditional on the demography ©. From results in

~—

BIx)0] ~ G/ fu(|e)/idl, (8
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a3 where G denotes the length of the genome (in base-pairs), L denotes the random length (in
s¢  base-pairs) of the PSC segment between i and j containing a pre-specified position in the
a5 genome (base b say), and f7, is its probability density. Intuitively, G'f7(I|©) is the expected

GfL(11©)
l

a6 number of base-pairs that lie in PSC segments of length [, making the expected

a7 number of PSC segments of length [. Integrating the latter quantity from p to oo gives the
a8 desired result.

To help compute (8) we introduce T;; to denote the (random) coalescent time in gen-

erations between i and j at base b, with density fr, (¢/©). Then (8) can be written as an

integral over Tj,:
BlX [Tl / f.(11©)/1dl (9)
e L /0 fum,, (1, t]©)/1dt dl (10)
=6 [ [ panad, (1)

a0 using the relation that fr 1, (1,t|0©) = fL(l|t,©) fr,;(t|©) = fL(l|t) fr,,(t|©). A key simplifi-
wo cation here comes from the fact that, given Tj;, L is conditionally independent of ©.
It can be shown that the conditional distribution of L given Tj; is an erlang-2 distribution
(Palamara et al., 2012; Palamara and Peer, 2013; Hein et al., 2004) with density

fr(l]t) = 4r?t?le~ 2, (12)

where r is the recombination rate per base-pair. Substituting this into the inner integral of

(11) and integrating analytically yields

/ h fr(Ut)/ldt = 2rte” (13)

leading to
E[XR [#,00)|@ G/ fr., (t|©)2rte™ Hrugt, (14)

Here, we assume the probability density of T; ; is given by,

fT” t‘@ ZQk an Mt)ﬁ,l{; (15)

a1 where demes «, 8 denote the deme where lineages ¢ and j are sampled from, g, = W is

a2 the coalescent rate in deme k, and M = (m, ) is the migration rate matrix between all d
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w3 demes such that (o, 5) € {1,--- ,d} x {1, ...,d}. We compute the matrix exponential by first
ws  diagonalizing the matrix M = PDPT and compute e ™! = Pe=PtPT,
a5 Having computed all individual components of fooo fr.,(t|©)2rte " dt, we are left to
ws evaluate a one-dimensional integral which we do by Gaussian quadrature (with 50 weights).
To compute the expected number of PSC segments in a range R = (u, V)
R=[p,v] _ R=[u,00) R=[v,00)

EX;; " =EX ;T - BT (16)

a7 As mentioned previously, the units of u, v are in base-pairs. However, we can transform to

ws units of centiMorgans (¢cM) by : e = 100pur.

4 The Prior

0 MAPS uses a hierarchical prior parameterized by Voronoi tessellation (similar to EEMS).
1 The Voronoi tessellation partitions the habitat into C' cells. Given a Voronoi tessellation of
2 the habitat, each cell ¢ € {1,--- ,C} is associated with a migration rate (M,) and population
w3 size (N). Demes () that fall into cell ¢ will have population size N, = N, and similarly,

% if demes a, 3 fall into cells ¢;

s4  migration rates between demes «, 8 equal m, 5 =
5 and co. We use an MCMC to integrate over the distribution on partitions of Voronoi cells.

w6 See Supplementary Notes section 5.4 for more information.

457 The MCMC

s We break up the MCMC updates into updating a series of conditionally independent dis-
w0 tributions. Provided the conditional posterior distributions for each part give support to
wo all the parameter space, this will define an irreducible Markov chain with the correct joint
w1 posterior distribution Stephens (2000). We use Metropolis-Hastings to update all parame-
w2 ters, and random-walk proposals for most updates, with exception of birth-death updates
w3 for updating the number of Voronoi cells. See Supplementary Notes section 5.5 for more

w6+ Information.

w5 Transformation of parameters to continuous space

Given an inferred population size at a particular deme « and a grid with uniform spacing,

the transformation from population size to population density is given by

Na

D)= x4

(17)
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ws where AA = “%’ is the area covered per deme such that Apg is the area of the habitat
w7 (in km2), d is the number of demes, and x corresponds to the spatial position of deme .
ss Intuitively, (17) implies that the density multiplied by the area equals population size, i.e.
w0 De(x)AA =~ N,. Equation (17) can is analogous to equation 7 in (Baharian et al., 2016).

470 Given a migration rate (m), the transformation to dispersal distances is given by,

o =v/mAuz, (18)

a where Ax is the step size of the grid (km). The dispersal distance represents the distance
a2 traveled by an individual after one generation, and sometimes is called the “root mean square
w3 distance” or “dispersal rate” (Barton et al., 2002). Please see Supplementary Note section
aa 5.2 for the derivation of (18).

« Funding

w6 This work was supported by National Institute of Health funding [U01CA198933 to H.A.,
w M.S., and J.N], [HG002585 to M.S.]; and the National Science Foundation Graduate Research
as Fellowship to H.A.

«» Acknowledgements

w0 We thank Dick Hudson for helpful discussion on the identifiability of demographic parameters
w1 in coalescent models; Evan Koch, Ben Peter and the Novembre & Stephens Lab for comments
a2 on the paper and helpful discussion. We further thank Peter Carbonetto for computational

w3 support and helpful discussion.

21


https://doi.org/10.1101/365536
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/365536; this version posted July 9, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

« 9 Supplementary Note

22


https://doi.org/10.1101/365536
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/365536; this version posted July 9, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

s 9.1 The model

a5 The coalescent process for two samples under a multi-deme model can be described by a
7 continuous time Markov chain (CTMC) (Bahlo and Griffiths, 2001). Let ¢, j represent sam-
s pled lineages and «, B their locations, respectively, d is the number of demes (or populations)
w0 and (a, B) € {1,--- ,d} x{1,...,d}. Let ¢ denote the coalescent state. The infinitesimal rate
wo matrix R of this CTMC is

Rap),(v.6) = May B=1,...d, v # «
Rap)(any) = Mpy a=1,....d, v #
R a,a),(c) = Ga
(@), (c) ($19)
Riap)(a,8) = —(Ma, +mp, ) — dapa

Ry =0
R(aﬂ):(%ﬁ) = 0 77 k= 17 "'7d7 7 7é a, R 7é 67

w1 where M = (m, g) denotes the migration rate matrix, and m, g is the migration rate between
w2 demes «, § and g, = ﬁ is the coalescent rate of deme « which is proportional to the inverse
a3 of the population size at deme a (Ny). Let T; ; denote the (random) coalescent time between
w4 the pair of sampled lineages, and fr, () denote the probability density of a coalescent event

ws at time ¢. Here, we derive fr, (t) by conditioning on the position of the two lineages.

w Lemma 5.1 Let (X;(t), X;(t)) € {1,---,d} x {1,...,d} denote the position of lineage i and
w7 lineage j at time t respectively. The probability density fr, (t) that lineage i and j coalesce
w8 at time t is given by Zizl 4. P(X;(t) = K, X;(t) = k).

499 For At =~ 0,

P(Ty, € [t.t + Al]) (S20)
~ zd: P(Ty; € [tt+ A|Xi(t) = K, X;(t) = 8)P(Xi(t) = 1, X;(t) = k)

- (S21)

~ zd: G ALP(X,(t) = &, X, (t) = k). (S22)

so0 Taking the limit At — 0, we arrive at the density
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fr,(t) = lim P(T,; € [t,t + A] /At—ZqN Xi(t) = K, X;(t) = k). (S23)

At—0

The random walk approximation to the coalescent

Here, we introduce an approximation,

P(Xi(t) = k, X;(t) = &) ~ P(X,(t) = ) P(X;(t) = x). (S24)

The intuition is that probability that lineage ¢ and j coalesce before time ¢ is extremely small
such that the two lineages approximately behave like two independently moving particles.
Each lineage can be modeled by a random walk with transition matrix M. These assump-
tions were also made in the context of continuous spatial diffusion models for haplotype
sharing Baharian et al. (2016); Ringbauer et al. (2017) , and even further back, as a general
approximation to the two-dimensional continuous-space coalescent process (Barton et al.,
2002; Wilkins, 2004; Blum et al., 2004; Novembre and Slatkin, 2009; Robledo-Arnuncio and
Rousset, 2010).

This approximation implies that

fr,,(t) Z QU (€™ )5, (525)

where lineages i, j are initially sampled in deme «, 8. Or equivalently in matrix form,

) (Qe) (520)

)

where Q) = diag(qy, ..., qq)-

Varying migration rates and population sizes across time

Corollary 5.1.1 Let time slice k be defined by the interval t,_; < t < ti, My denote
the migration rate matriz in time slice k, and Qi = diag(q}, ..., q%) where ¢* denotes the
coalescent rate in deme o at time slice k. Let T; ; denote the coalescent time between lineage

i,7 sampled in demes «, B, then under the independence assumption, fort € (tx_1,tK),

fr.,;(t) = <GK(t)QKGK(t)) ; (S27)

a7ﬁ
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sis where G (t) = exp ( — f:_ll(tk — tp_1) My — (t — tK)MK).

55 Expected number of IPSC segments given the demography ©

sz Lemma 5.2 Let lefj denote the number of PSC segment greater than u basepairs shared
sis  between haploid individuals i, 5, © denote the demographic model, G the size of the genome,
siw L denotes the random length (in base-pairs) of the PSC segment between i and j containing
0 a pre-specified position in the genome, then E[X[;|0] =~ G L= fo(e)/tdl.

s Let E[F*"|O] denote the expected fraction of the genome between i, j that lies in PSC seg-
s» ments greater than p, and E[s*|0O] the expected size of a PSC segment conditional on it

23 being at least length p. According to equations 9-14 from (Palamara et al., 2012),

Bl ~ S (529
E[F*|©] = /OO fo(|®)dl, (529)
o) = i 12190 )

~ T ne)id
s We obtain the desired result by substituting (529) and (S30) into (S28) and canceling like-

525 terms.

s Expected age of a segment

s27 - We choose PSC segment lengths based on their expected age which is derived below.

s Lemma 5.3 The expected coalescent time (t, in generations) of an PSC segment between
20 between length Ly centiMorgans and Lo centiMorgans is approrimately %(L% + L%) if the

s effective population size (N ) is sufficiently large.

s We choose to work in units of basepairs, and will convert back to units of morgans at the

s2 end. We convert L; into units of base-pairs with the transformation: p = % and similarly
Lo

1007 *
Let us denote T'|l, N as the random coalescent time of a PSC segment that is at least

533 UV =

length [ under a single-deme demography model with population size N. The expected
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coalescent time of an PSC segment longer than p base-pairs can be expressed as

E[TIZZM,N]:/O Lfr(E)l > g, N)dt = / s iszﬂpj?%W)
i ) eVt
Jo o fu > plt) fr(t|N)dt

($31)

where f1(I|t) = 4r?t2le=2"! denotes the probability density that a PSC segment is of length
[ given it has a common ancestor event at time ¢, fr(t|N) denotes the probability density
that a coalescent event occurs at time ¢ under the demography model with population size
N.

Next, we expand a key term in equation (S31)

fr(l > plt) = / fo(t)dl = (2rtu + 1) exp (— 2rtp + 1) (S32)
“w
and assume,
o—t/N

frtIN) = ——. (333)

Putting everything together,

N(1+6N 14+ 2Nrp)3 N(1+6N

BTl > j, N = (1 +6Nrp)/(14+2Nrp)” (1+6Nru) (834)

(14+4Nrp)/(142Nrp)?2 14+ 6Nrp +8N2(ru)?’

We can remove the dependence of N by taking limy_,., as done similarly in Baharian et al.
(2016),

lim E[T|l > p, N] = ——
N—o0

T (935)

Now that we have derived the expected age of PSC segment longer than p, it is quite simple

to expand the equation for PSC segments between p and v base-pairs,

V|t)fT\N(t)dt b (fL (= v|t) = full = MW) frin(t)dt
]b<ﬁUZW®—ﬁﬂZum)hmwﬁ

3 1+1
CA\rp o v

(936)
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s We transform back to units of centimorgans: let L; = 100rp and Ly = 100rv be in units of

s.2  centiMograns, and taking the limit, we get the desired result

300 /1 1
< < _ — _— _—
A}gr(l)o Eltlp <1< 1 <L1 + L2). (S37)

s 5.2 Transformation of migration rates to dispersal rates

saa  Migration rates inferred under a discrete model can be transformed to dispersal distances

si5  Tepresenting parameters in continuous space. Here, we derive the transformation.

s Lemma 5.4 Consider a random walk on a 2D grid, where steps are taken according to a
sar  Poisson process with rate m, and let X (t) be a vector denoting the coordinates of the particle

sas at time t. The distribution of X (t) approximately only depends on the compound parameter

o m(Ax)? (or equivalently /mAx).

X(t) =) 2 (538)

ss0o where N (t) is the number of steps taken by time ¢, and Z, is a random variable representing
ss1 the direction and magnitude taken at step . Since X (¢) is a sum of iid variables, a form of
s2 the central limit theorem applies here and X (¢) converges to the normal distribution (Rényi,
ss3 1960).

554 In a random walk on a triangular grid, a particle can move in one of the 6 directions

sss  (upper-right, right, lower-right, left, upper-left, and lower-left):

Z;

= (1/2, Azv/3/2)T with p = 1/6

= (Az,0)" with p = 1/6

= (Az/2, —AzV/3/2)T with p = 1/6
= (—Az,0)7 with p=1/6

= (—Az/2, Azv/3/2)" with p=1/6
= (—Az/2, —AzV/3/2)T with p = 1/6

sss  where Ax represents the step size in the grid (i.e. edge length). The mean and variance are

ss7 - given by,
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E[X()] =0 (S39)
558 and,
mt(Az)?
Var[X(t)] = T[Q. (540)

ss0 where [y is the identity matrix. Under normality, the mean and variance are sufficient
s0 statistics. Note that (S39) and (S40) also hold for square grids.

s Interpretation of the migration diffusion parameter m(Ax)?

s> In addition, we provide a physical interpretation to (Az)? in terms of the squared distance
ses from the origin per generation. Let the distance d = || X (¢)|| = /2% + 23, then

m(Ax)?  m(Ax)?

E[d*]/t = E[2? + 23]/t = E[2%]/t + E[23]/t = 5 + 5 = m(Axz)? (541)

Eld?] _
Tt

sss one generation, and sometimes is called the “dispersal” distance or the “root mean square

vmAz can be interpreted as the distance traveled by an individual after

564

se6  distance”.

« 9.3 Diversity rates versus coalescent rates

ss¢ For computational efficiency, the EEMS software uses a combination of the resistance dis-
se0  tance model and within-deme “diversity rates” to approximate expected pairwise coalescent
s times, in which,
Rap | Coateos .
~ 1 8 + % lf a # 5

€qa ita=p

(S42)

~

where E[T, ] is the resistance distance approximation to the expected coalescent time be-
tween deme o and deme f3, e, is the “diversity rate” in deme «a, and R, g is the resistance
distance between demes «, 8 (Petkova et al., 2016). The diversity rates have no simple ex-
pression in terms of population-genetic parameters under the multi-deme coalescent model.
As an alternative, diversity rates can be interpreted as reflecting average within deme het-

erozygosity since e, = E [T,,] « H, where the heterozygosity for deme o (H,) is defined
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as,
H, = ni > Dy, (S43)
( 2 ) i<jica,jea

where D, ; is the average number of differences between (haploid) individuals i and j.

Migration and population sizes are identifiable in MAPS

MAPS models the recombination process using rates estimated from a recombination rate
map. In this model, population sizes and migration rates can be inferred separately rather
than as a joint parameter. Intuitively, the recombination rate serves an independent clock
to calibrate estimates.

More formally, a statement of identifiability is a statement regarding the likelihood.
MAPS models the expected number of IPSC segments shared between pairs of (haploid)
individuals, and can be computed with an integral (14). The integral can be broken up into
a product of two functions: a function describing the decay of PSC segments as a function of
time (“recombination rate clock”), and the coalescent time probability density fr, (¢) (15).
The migration rates and population sizes only appear in fr, ;(t), and cannot be cannot be

factored into parameters involving combinations of the migration rates and population sizes.

5.4 The prior

The structure of the prior closely resembles the prior in the EEMS method Petkova et al.
(2016). The tessellation for the migration rates (7,,) is encoded by a list (I, m, ¢y, tim)
where [™ are the locations of each cell, m the rates of each cell, and are vectors of length
¢ (1.e. number of Voronoi cells), and p, is the overall mean migration rate. The Voronoi
tessellation for the coalescent rates is T, = (1%, q, ¢y, fq)-

The location of each (unordered) Voronoi cell is distributed uniformly across the habitat,

IR UH), (S44)

and the number of cells (a-priori) are drawn from a negative binomial distribution,

Cm ~ NegBi(Tm, pm)- (S45)

The effects of each Voronoi cell is normally distributed with variance w?.

10g10(m;) & N (ftr, w2) (S46)

m
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log10(qi) ~* N (j1g,7) (S47)

s The probability of a particular (unordered) cell configuration is,

p(mlen) = el [N Omilpm, o3,) (548)
i=1
s We assume,
log10(wy,) ~ U(—3,10g10(1.5)) (549)
log10(w,) ~ U(—3,10g10(1)) (S50)

s0s  We set log10(2) as the upper bound for log10(w,,) so the m so the probability that it is within
s 3 orders of magnitude from the mean is 0.95 a priori, and we set log10(1) as the upper bound
so7 for logl0(w,) to restrict the population sizes so to be within 2 orders of magnitude from the
s mean with probability 0.95 a priori.

s0  We assume,

i ~ U(—10, 4) (S51)

f1g ~ U(—10,4). (S52)

s0  We place a uniform prior on the log of the mean rates to reflect that we are uncertain about
so1 the order of magnitude. Here, the data is highly informative of the mean, as a result, we

02 can allow the support of the prior to vary by many orders of magnitude.

603 5.5 MCMC

s« Re-parameterization

s0s We re-parameterize the model to improve mixing of the MCMC. We decouple the migration
s0s (or coalescent) rates from the mean rate (1), and variance (w) by introducing a new variable
607 €4,

e; Y N(0,1) (S53)

sos and the cell specific migration (or coalescent) rates are computed as,
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log10(m;) = e;w + u, (S54)

s00 which allows us to update the magnitude of the parameters (1) and the variance scale (w)
s10 separately.

611 We add MH joint random-walk updates to p and e; to ensure that e = ¥ ~ 0. To do
12 this, we jointly update p and e; by,

po=p+e (S55)
€

f—e— < S56

€ =€~ — (S56)

a3 where € ~ N(0,1). We do this for both the migration rates and population sizes.

s Updating the number of cells

s1s  The number of cells change the dimension of the likelihood, and a result, we must use
s16  a Reversible Jump MCMC step so that the ratio of densities in the Metropolis-Hastings
a7 acceptance ratio is well-defined (Green, 1995). We choose to update the number of cells with
sz a birth-death update (Stephens, 2000). Fortunately, in such a case, the updates reduce to
e10  standard Metropolis-Hastings because the dimension matching constant (i.e. the ” Jacobian”)
e20 equals one (Petkova et al., 2016; Stephens, 2000). See equations S31 and S32 in Petkova
ez et al. (2016) for formulas regarding the birth-death update. Here, we use nearly identical
e22 updates (with a slight modification).

623 When increasing the number of cells from ¢ to ¢+ 1 (i.e. a birth-update), we randomly
2« choose a location uniformly across the habitat, and the new migration is proposed from a
s standard normal because our cell effects are standardized. In contrast, EEMS proposes cell
s26 effects migration to be normally distributed around a cell effect at a randomly chosen point
ez in the habitat. Here we set, p(birth) = p(death) = 0.5 if the number cells > 1, otherwise
e2s p(birth) = 1.

The acceptance ratio for a birth update (going from ¢ cells to ¢ + 1 cells) is

p(death) l(xl)p(ﬁl)c%l
" p(birth) {(z)p(z) N (ec41]0, 1)

) (S57)

a(x,x') = min(1
where x denotes the current state of the MCMC, 2z’ the proposed state, e.,; is the proposed

cell effect drawn from a standard normal. Conversely, in a death-update, we randomly choose

one cell uniformly to kill. In this case, the acceptance ratio for a death proposal (going from
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c+ 1 cells to ¢ cells) is

). (958)

a(z,z") = min(1
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Figure S1: The performance of MAPS on a recent barrier scenario under different
PSC length bins. Here, we investigate the ability of MAPS to detect a recent barrier (< 10
generations) for various PSC length bins (a) Simulation scenario. Population sizes were set to
10,000 per deme and 10 diploids were sampled per deme, replicating the conditions in Figure
2b. (b) Results for different PSC length bins. Length bins that encompass shorter segments
(2-4cM 2-6¢M 2-8¢cM) recover the higher uniform migration surface; while length bins with
longer segments (>4, >6, >8) recover the recent ancestral barrier. For the last length
scale (> 8cM), the signature of low migration extends across the habitat. The variation in
migration rates is missed presumably because of the small number of shared segments at
this length scale.
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Figure S2: The performance of MAPS on a past barrier scenario under different
PSC length bins. a) Simulation scenario. Population sizes were set to 10000 per deme
and 10 diploids were sampled per deme, replicating the conditions in Figure 2c. (b) Results
for different PSC length bins. Length bins that encompass shorter segments (2-4cM, 2-6¢M,
2-8cM) recover the ancestral barrier; while length bins with longer segments (>4, >6, >8)
recover the recent constant migration surface.
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Figure S3: The performance of MAPS under a jointly heterogeneous migration
rate and population size surface. a) Simulation Scenario. Heterogeneous population-
sizes and migration rates (as shown) were simulated, and 10 diploid individuals were sampled
per deme. (b) Results for PSC segments greater than 2cM are shown.
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a) Estimated population sizes
under single deme model
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Figure S4: Visualizing normalized sharing of PSC segments that are 1-5¢M. The
color scheme is the same as used in Ralph and Coop (2013) where the colors give categories
based on the regional groupings: W Western Europe, S Southern Europe, and E Eastern
Europe (a) The average sharing within each sample locale is transformed to population sizes
using the simple single deme estimator by Palamara et al. (2012). This transformation can
be roughly summarized as to say that N, x %% where N, is the effective population size
in deme « and 7, , is the average pairwise PSC sharing between individuals in deme a. (b)
Similar to Ralph and Coop (2013), for each focal population (marked with an x), we plot the
normalized average pairwise sharing between that population and all others (normalized by
the average sharing within the focal population), i.e. if o is the focal population, we show
=2 for each other country §.
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Figure S5: The correlation between census size and inverse average PSC sharing
as a function of minimum PSC length considered. We use census size compiled from
the The World Bank (2016) and National Records of Scotland (2011). The smooth black
curve denotes the loess fit. Longer PSC segments correlate more strongly with census size
than shorter PSC segments
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Figure S6: Census size versus MAPS estimated population sizes. Using the MAPS
output, we estimate a total size per population by summing the estimated deme-level sizes
across the area of each respective country (whether’s a deme’s location falls within a country
was determined by querying The GeoNames Geographical Database). Finally, we plot the
results on a log10 scale for different length scales (a) 1-5¢M, (b) 5-10cM, and (c¢) >10cM. The
red curve denotes the linear fit on the absolute scale. Note Kosovo and Albania as candidate
outliers possibility because of cryptic relatedness artificially decreasing population sizes.
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5-10cM vs 1-5cM

>10cM vs 5-10cM

w3 Bz

Figure S7: Plots of estimated average log10 differences in demographic parameters
between adjacent time scales. (a) We plot estimates of E[loglO(";l)] and E[loglO(%/)]
across the spatial habitat where o/ (D’) denotes the dispersal rates (population densities) in
the 5-10cM length bin and ¢ (D,) denotes the dispersal rates (population densities) in the
1-5¢M length bin. (b) The results here are similarly plotted as above, however, the adjacent
length scales are given by: 5-10cM and >10cM. The log10 differences are estimated in such a
way so that the mean log10 difference is shrunk to zero. For example, for estimating dispersal
in 5-10cM, we assume logl0(o’) = E[logl0(o)] + € where E[logl0(o)] is estimated using PSC
segments 1-5cM and € ~ N(0,w?) is estimated from PSC segments 5-10cM. Consequently,
the log ratio between dispersal rates from the two lengths bins is constructed to have mean
zero apriori (i.e. E[loglO(%’)] =0).
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Figure S8: EEMS applied to the POPRES dataset. We apply EEMS to the same set
of individuals as used in Figure 4 (see Methods). (a) The effective migration rates (b) The
effective diversity rates. Here, we ran EEMS with 200 demes (as in Figure 4) with default
parameters and averaged over 10 independent replicate chains. Each chain ran with 50e6
MCMC iterations, 25e6 set as burn-in, and we thinned every 5000 iterations.
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Figure S9: Genetic distance vs PSC sharing (a) The averaged genetic distance (as used
in EEMS) is plotted against the average number of PSC segments (> 1cM) for each pair of
populations. Each point denotes a pair, the symbols represent groupings from Ralph and
Coop (2013) (W Western Europe, S Southern Europe, and E Eastern Europe), and the col-
ors represent the pair of regions. We see a negative correlation between the two summary
statistics (Pearson’s p = -0.38, p-value = 7e-11), with the largest deviations occurring in
comparisons between FEastern European populations. (b) EEMS results on PSC data trans-
formed to a distance matrix. First, we encoded the PSC sharing statistics into a similarity
matrix S such that S; ; is the number of shared PSC segments between samples i and j and
Si; is the maximum number of shared segments in the dataset (which we denote as ¢) to
ensure S is a similarity matrix. Next, we transformed S to a genetic distance matrix D such
that D = c117 — S + F where E =~ 0 is a random genetic distance matrix of normal vectors
with mean 0 and standard deviation of 0.01 added to ensure D is full rank. Finally, we
applied EEMS to the distance matrix D. Though this procedure is heuristic, we see shared
features between this surface and the MAPS dispersal surface shown in Figure 4.
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