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Abstract

Motivation: In recent years, the well-known Infinite Sites Assumption
(ISA) has been a fundamental feature of computational methods devised
for reconstructing tumor phylogenies and inferring cancer progression
where mutations are accumulated through histories. However, some recent
studies leveraging Single Cell Sequencing (SCS) techniques have shown
evidence of mutation losses in several tumor samples [19], making the
inference problem harder.

Results: We present a new tool, gpps, that reconstructs a tumor phy-
logeny from single cell data, allowing each mutation to be lost at most a
fixed number of times.

Availability: The General Parsimony Phylogeny from Single cell (gpps)
tool is open source and available at https://github.com/AlgoLab/gppf.

1 Introduction

Recent developments of targeted therapies for cancer patients rely on the accurate
inference of the clonal evolution and progression of the particular cancer. As
discussed in several recent studies, such as [24] and [32], understanding the order
of accumulation and prevalence of somatic mutations during cancer progression
can help better devise therapeutic strategies. Moreover, studying the evolutionary
history of tumors can provide some insights on which mutations lead to drug
resistance.

The most widely studied techniques for inferring cancer progression rely
on data from next-generation bulk sequencing experiments. In these cases, we
sample mixtures of cells that are not homogeneous from a mutational profile
(i.e., which mutations appear in a cell) point of view. Moreover, we cannot
easily distinguish between cells: the only information we can have is, for each
mutation, the fraction of cells in a sample carrying such mutation. Recently,
many computational approaches have been developed for the analysis of bulk-
sequencing data with the purpose of inferring tumoral subclonal decomposition
and reconstructing tumor phylogenies (trees) [3,9,15,17,22,23,25,30,31,33], but


https://doi.org/10.1101/365635

bioRxiv preprint doi: https://doi.org/10.1101/365635; this version posted September 4, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

almost all of them model a tumor progression as the accumulation of mutations
under the Infinite Sites Assumption, that is recurrent mutations and mutation
losses are not allowed.

Single Cell Sequencing (SCS) greatly improves the resolution of the data
available, as it provides the set of mutations of each cell analyzed. However, this
technique is currently expensive and not especially reliable, since it produces
datasets with a high amount of noise that include allelic dropout (false negatives)
and missing values, due to lack of read coverage, as well as false positive calls —
although this event is much rarer. Another source of noise is due to doublets,
that is signals originating from two separate cells which are erroneously inferred
to originate from a single cell: we point out this latter problem is fading away
and can be tackled computationally. Still, we need efficient methods that are
able to cope with the kind of data that SCS techniques are currently producing,
by taming the difficulties due to the noise in data.

Various methods have been developed for this purpose [16,28,34], some of
them introducing a hybrid approach of combining both SCS and VAF data [20,
21,26,29]. As stated before, most of these methods rely on the Infinite Sites
Assumption (ISA), which states that a mutation is acquired at most once in the
phylogeny and is never lost. The ISA was introduced in [18]. This simplifying
assumption also leads to a computationally tractable model of evolution [11]
called the perfect phylogeny. Cancer progression, however, is a very fast and
aggressive form of evolution with limited data supporting neutral evolution [6],
with some studies showing rather the evidence of selection [2,6] — something that
is particularly true in tumor samples after a relapse [6,8,10], where the tumor
has already been highly selected by the therapy targeted to destroy it. Thus,
one would be expect that we must abandon the strict Infinite Sites Assumption
in this setting, and indeed this is the case, as some recent studies are finding
hints suggesting that the ISA does not always hold [2,4,19]. In [4], the authors
find that large deletions on several branches of a tree can span a shared locus,
thus a given mutation may be deleted independently multiple times. In [2], the
authors show that in certain cases, homozygous deletions in cancer genomes can
even provide a selective growth advantage. Each (independent) deletion of an
acquired mutation takes us further away from the ISA. Some recent methods
such as TRalT [26] and SiFit [34] allow deletions of mutations.

The Dollo model [27] of evolution is designed exactly for some of the cases
where a perfect phylogeny does not represent the actual data. More precisely,
the Dollo model requires each mutation to be acquired exactly once in the entire
history analyzed, while removing all restrictions on the number of times that a
mutation can be lost. The Dollo model as well as the Dollo(k) variants, where
each mutation can be lost at most k times, has been introduced recently in
the literature on algorithmic approaches for tumor progression inference [3,5].
Unfortunately, the Dollo model does not have the convenient computational
tractability of the perfect phylogeny model [11], hence requiring more sophisti-
cated algorithms.

In this paper we propose (gpps), a tool of the gppf family, that exploits an
Integer Linear Programming (ILP) approach to infer a tumor progression that
can include mutation losses, from single cell sequencing data.
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Figure 1: Example of a binary matrix that does not allow a perfect phylogeny,
since columns a and b are in conflict, i.e., the four gametes rule [11] does not
hold. The tree represents one of the possible Dollo phylogenies that explain the
matrix.

2 Tumor phylogeny reconstruction from single
cell data

In the most abstract formulation, we can see the cancer progression reconstruction
problem as a character-based phylogeny reconstruction problem [12] where each
character represents the presence/absence of a specific mutation in a cell.

The input of the problem is an incomplete binary matrix I, where the
entry I[c,m] = 0 indicates that the cell ¢ does not have the mutation m, while
Ife,m] = 1 indicates that the cell ¢ has the mutation m. Finally, we denote
with I[e, m] = ? where there is not enough information on the presence/absence
of mutation m in cell c. We recall that uncertainty about the presence of a
mutation in a cell is a consequence of insufficient coverage in the sequencing,
hence it is unavoidable.

However, uncertainty is not the only issue in the sequencing process: the
input matrix I also contains false positives and false negatives. We assume that
these errors occur independently and uniformly across all the (known) entries
of I. Namely, P denotes the predicted matrix, i.e., the binary matrix without
missing values computed by the algorithm. In this case, a denotes the false
negative rate and 8 denotes the false positive rate. In other words, for each pair
(¢,m),

e Pr(I[e,m] =0|Ple,m]=0)=1-7

e Pr(I[c,m] =1|Plc,m]=0)=4

e Pr(I[c,m]=1|Ple,ml=1)=1—-a

( )=«

e Pr(I[e,m]=0|P[e,m]=1
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Figure 2: Example of two Dollo phylogenies that explain the same binary matrix.
It is important to notice that the ancestral order of mutations ¢,a and b is
inverted but the two different trees can equally explain the input binary matrix.
In fact, in a Dollo phylogeny the order of two mutations can be inverted and,
thank to the introduction of deletions, they could both be correct solutions for a
given input.

Our goal is to find a matrix P that (1) corresponds to a phylogeny on the
set of cells, and (2) maximizes the the likelihood

pr(1|P) =[] ][ Pr(Ile,m)|Ple,m]) (1)
(& m

of the observed matrix I [16]. In other words, we want to find the phylogeny,
as expressed by the matrix P, that maximizes the likelihood of the observed
matrix I [16]. We point out that the values of the unknown entries of the input
matrix do not factor into the objective function.

A phylogeny is a rooted labeled tree T', where the label set corresponds to
the set of mutation gains and losses. The state S(z) of a leaf x in T is defined
as the set of mutations that are acquired and not lost in the path from the root
of T' to x. We say that the tree T" encodes a matrix P if there exists a mapping
o of the rows of P to the leaves of T" such that for each row r of P, it follows
that C(r) = S(o(r)) where C(r) is the set of columns which are 1 in r, and o(r)
denotes the leaf of T" associated with r through o. In other words, in the tree T’
we assume that the cell ¢ has been extracted from the subpopulation o(c). See
Figure 1 for example of a phylogeny a matrix that it encodes.

We can express the likelihood of the matrix P as in Equation 1 — since
the involved probabilities are in [0,1] it is convenient to move to a (linear)
log-likelihood maximization objective function of the form:

max » Y log Pr (I[e,m]|Plc,m]) (2)
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2.1 The evolution model

The Dollo parsimony rule can be interpreted as the impossibility of having an
identical mutation in the evolutionary trajectory. This rule can be translated in
the phylogeny tree model as the unique introduction of any single mutation but
any number of deletions of this mutation.

From an algorithmic point of view, phylogeny reconstruction with a Dollo
evolutionary model is an NP-complete problem [1,7]. A hierarchical chain of
restricted versions of the model can be obtained by bounding the number of
deletions for each character. We denote as Dollo(k) the evolutionary model in
which each mutation can be acquired exactly once and can be lost at most k
times. In this way Dollo(0) and Dollo(1) correspond to the perfect and persistent
phylogeny models, respectively. In the tree generation process for the Dollo(k)
model (k > 0) we are required to augment a perfect phylogeny representing the
cancer progression by adding nodes which represent the loss of a mutation, i.e.,
a node labeled m; , representing the [-th loss of mutation m. The state of the
leaf x is the set of mutations m that, in the path from the root to z, have been
acquired — the path has a vertex labeled m* — but never lost — the path has
no vertex labeled m; . We stress that, when deletions are introduced, the set of
feasible phylogenies which represent a given solution is no longer unique as in
the case of perfect phylogeny — See Figure 2 for an example.

Testing if an incomplete matrix I has a phylogeny under the Dollo(k) model
has been attacked via ILP for k = 0 [14], k = 1 [13], and for general k [3]. We will
exploit the latter formulation to describe an ILP approach for tumor phylogeny
reconstruction from single cell data.

First, we recall that a well known characterization of perfect phylogenies
states that a complete binary matrix M has a directed perfect phylogeny if and
only if it has no conflicting pair of columns — two columns are in conflict if
they contain all three configurations (0, 1), (1,0), (1,1) — inducing the so-called
forbidden matrix (c.f. Figure 1).

The ILP formulation on incomplete matrices [14] essentially consists of
introducing a binary variable for each missing entry, and describing a set of
constraints towards the goal of minimizing the conflicting pairs.

To adapt this approach to persistent phylogenies [13], we need a property:

Proposition 1. [3] Let M be an incomplete binary matriz. Let M, be the
(incomplete) matriz obtained from M as follows: for each entry Mi, j] we have
k+1 entries Mc[i, j*] and M.[i,j;] (for 1 <1< k) such that (1) if M[i,j] =1
then M.[i,j7] =1 and M.[i,j; ] =0 for 1 <1<k, (2) if M[i,j] =0 then the
entries Mc[i, j*), M.[i,j;] are all missing. Then M has a completion M* that
has a Dollo(k) phylogeny if and only if M. has a completion M} such that if
M(i,7) =0 then Mt[i,j%] = >, MZ[i,j, ]. See Figure 3 for an illustration.

Our main contribution is combining the ILP formulation of [3] with the
definition of tumor perfect phylogeny reconstruction from single cell data, to
obtain an ILP approach for tumor phylogeny reconstruction from single cell data
that incorporates mutation losses in the model.
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Figure 3: An input matrix M (top left), a Dollo(2) completion M, (center
left) and its corresponding phylogeny tree 1" (top right). The Mp o) extended
matrix (bottom left) and a completion for the MIDPP(Mp(2), Rp(2)) according
to Proposition 1. In the tree, boldfaced character corresponds to changes between
each node and its parent.

3 The ILP formulation

In this section we present our ILP formulation for the tumor phylogeny recon-
struction from single cell data.

We recall that the input of the problem is an incomplete matrix I represented
as a set of binary variables I(c,m) such that I(c,m) =1 if cell ¢ has (according
to the input data) the mutation m, while I(¢,m) = 0 if cell ¢ does not have
(according to the input data) the mutation m. Notice that the input data is
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incomplete, hence we can have pairs (¢, m) such that the variable I(c, m) does
not exist.

The variables P(c,m*) and P(c,m; ) encode the extended matrix that we
want to compute and that will satisfy Proposition 1. Differently from the variable
I(-,-), for each pair (¢,m), all variables P(c,m") and P(c,m; ) exist.

We introduce some auxiliary variables that help in making the ILP formulation
easier to read. The binary variables F'(¢, m) indicates if, in the predicted matrix,
the cell ¢ has the mutation m. By Proposition 1, F(¢,m) = 1 if and only if
P(c,m"™) =1 and all P(c,m; ) are equal to zero. Moreover, the real variables
w(c, m) represent the probability of P(c,m) given I(c, m) — the formula of the
actual values depends on the possible cases, that is if we have a true positive, a
true negative, a false positive, and a false negative.

To establish if two columns are in conflict, we introduce the final binary
variables B(p,q,a,b), which are defined for each pair of columns (p,q) and
for each possible pair of values (a,b) € {(0,1),(1,0),(1,1)}. More precisely,
B(p, q,a,b) indicates if for the pair (p, q) of columns there exists a cell ¢ where
P(e,p) = a and P(c,q) = b. Notice that two columns p and ¢ are conflicting iff
B(p,q,0,1)+ B(p,q,1,0) + B(p,q,1,1) = 3. We are now ready to introduce our
ILP formulation, where we use C' to denote the set of cells (i.e., the rows of the
input matrix I), M to denote the mutations (i.e., the columns of I), and M* to
denote the set of possible mutation gains or losses.

maxz Z logw(c,m), subject to

cECmeM
F(c,m):P(c,m+)—ZP(c,mi_)Vc€C, meM (3)
i<k
w(e,m)=(1—a)F(e,m)+ B(1 —F(e,m)) if I(e,m)=1
w(e,m) =aF(e,m)+ (1—=8)(1—=F(e,m)) if I(e,m)=0
B(p,q,0,1) > P(c,q) — P(c,p) VYeeC, p,ge M*
B(p,q,1,0) > P(c,p) — P(c, ) Yee C, p,ge M*
B(p,q,1,1) > P(c,p) + P(c,q) — Yee C, p,ge M*
B(p,q,0,1) + B(p,¢,1,0) + B(p,¢,1,1) <2 Vp,qe M~
B('a'a'a')aF('v')v‘P( ) € {071}

The total number of variables and constraints in the formulation are O(nm +
m?) and O(nm?) respectively.

~N
NN N N N

7

o~ o~ o~ o~ o~ o~

3.1 ILP implementation: gpps

Our approach has been implemented with a Python program called gpps. The
code, data and scripts used in our experimental analysis is available at https:
//github.com/AlgoLab/gppf. The algorithm receives as input a frequency
matrix F', the evolution model (persistent, Dollo(k), Camin-Sokal(k)) to be
considered and the maximum number of clones in the clonal matrix (expressed
as the percentage of the total number of mutations). The program generates
the ILP formulation which is fed to an ILP solver in order to get the optimal
solution.
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In our experiments we have used Gurobi 6.5.2 as the ILP solver. Moreover,
from the computed solution the program can construct the corresponding solution
tree, provided that feasible solution has been found. Additionally, we have
introduced a timeout on the running time, since the generated ILP problem
could be large and its resolution could require a considerable amount of time.
We exploit the fact that Gurobi can be halted at any time and it returns the
best feasible solution computed so far. Hence, imposing a timeout allows the
ILP solver to compute a solution with a small total error.
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