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One sentence summary:  Proteins typically associated with chromatin structure play an 

unexpected role in limiting axonal regeneration after injury. 

 

Abstract 

Axonal regeneration in the mature CNS is limited by inhibitory factors within the 

extracellular environment.  In this study, we show that histones H3 and H4 inhibit neurite 

outgrowth when applied to cortical neurons in vitro, and that this effect can be reversed 

by the addition of activated protein C (APC).  Elevated levels of histones H3 and H4 

were also detected in cerebrospinal fluid following CNS injury, and treatment with APC 

significantly increased axonal regeneration.  Mechanistically, we have determined that 

histones activate a retrograde signaling cascade that results in phosphorylation of the 

transcription factor YB-1, and that neurite outgrowth is impaired when YB-1 is 

overexpressed in cortical neurons.  These findings identify extracellular histones as a new 

class of growth-inhibiting molecules within the injured CNS.   
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Main Text 

CNS myelin proteins and chondroitin sulfate proteoglycans (CSPGs) are well-

characterized inhibitors of axonal growth (1-4), but genetic and pharmacological 

elimination of these factors elicits only a modest increase in axonal regeneration 

following spinal cord injury (5).  This suggests that other inhibitory molecules are present 

in the CNS environment.  Extracellular histones have been detected in neurodegenerative 

diseases such as Alzheimer’s disease, scrapie, and Parkinson’s disease (6-8), and histone 

H1 has been shown to induce microglial activation and neuronal apoptosis.  It has also 

been reported that histones are released from apoptotic and necrotic cells following 

cerebral ischemia, lung injury, and myocardial infarction (7, 9).  As ischemia and cell 

death are key pathophysiological events in spinal cord injury, we hypothesized that levels 

of extracellular histones would increase in response to trauma and that these proteins may 

play a role in regenerative failure. 

To determine whether extracellular histones are elevated following spinal cord 

injury, we performed T8-9 level dorsal column lesions in 9-12 weeks old 129S1/SvImJ 

mice (The Jackson Laboratory) and collected cerebrospinal fluid (CSF) from the injury 

site 24 hours later.  When compared to a sham group that received laminectomy alone, 

histone levels were significantly higher in CSF obtained from spinal cord-injured animals 

(Figs. 1E&F).  To provide further evidence of histone release after CNS injury, we 

exposed the optic nerve in adult rats and placed gelfoam on the uninjured nerve.  These 

pre-injury gelfoam samples were extracted 48 hours later.  The nerve was then re-

exposed and crushed and a new piece of gelfoam was placed at the injury site for 48 

hours.  Western blot analysis revealed that histone levels were visibly increased in the 
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optic nerves of individual animals following injury, and overall, this increase was 

statistically significant (Figs. 1G&H). We looked at histones released in gelfoam in the 

same animal (N=6) with (Post-ONC) and without (Pre-ONC) optic nerve crush (ONC) 

and have put them in Table 1.  

To assess the effects of extracellular histones on axonal growth, we then 

performed a series of neurite outgrowth assays.  P1 rat cortical neurons were plated on 

monolayers of primary rat astrocytes, and treated with a mixed population of histones 

isolated from calf thymus (1-20 µg/ml).  Neurite outgrowth was significantly reduced in a 

dose-dependent manner in response to histone treatment (Fig. 1A and S1A).  This effect 

was not due to toxicity or the presence of other inhibitory factors, as the astrocyte 

monolayers were unaffected by the histones (Figs. 1B), and histones did not induce 

expression of the CSPGs neurocan and brevican in astrocytes (Fig. S1B). Using 

permissive substrates of Chinese hamster ovary (CHO) cells, we observed that histones 

inhibited neurite outgrowth in a dose-dependent manner for both cortical (Figs. 1C&D 

and S2) and dorsal root ganglion neurons (Fig. S3), and that treatment with dibutyryl 

cyclic AMP could reverse this inhibition (Figs. 1D&S2).  In addition, when neurons were 

treated with fatty acid binding protein, which has a similar size and isoelectric point (but 

no homology) to histones, neurite outgrowth was unaffected (Figs. 1D&S2B).  This 

indicates that the inhibition that was observed was histone-mediated, and not due to non-

specific steric hindrance.  Finally, to elucidate the contributions of specific core histones 

to inhibition, cortical neurons were plated in microfluidic chambers, and recombinant 

histones H3 and H4 were applied to the neurite compartment.  Both histone H3 and H4 

inhibited neurite outgrowth, with histone H3 having a more potent effect (Fig. 1I). 
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Morphologically, neurites treated with either histone H3 or H4 displayed the prominent 

end bulbs typical of dystrophic axons (Figs. 1I', Fig. S4).  

Previous studies have reported that the deleterious effects of extracellular histones 

can be attenuated by activated protein C (APC), a coagulation factor that has been shown 

to specifically cleave histones H3 and H4 (6), and enhance neuroprotection in cerebral 

ischemia (10).  Using cortical neurons plated in microfluidic chambers, we observed that 

administration of APC blocked histone-mediated inhibition of neurite outgrowth (Fig. 

2A, 2B).  To determine if APC could promote axonal regeneration in vivo, APC-

containing gelfoam was applied to the injury site following ONC in rats.  Retinal 

ganglion cell axons were anterogradely labeled with cholera toxin B-subunit (CTB) at 14 

days after injury, and optic nerves were chemically cleared using the 3-DISCO technique 

(11).  Crush sites were identified using a novel technique, the second harmonic 

generation, which allows visualization of collagen fibrils (Figs. 2G,G’,H&H’) (Figs. 

S5A) (12&13), and axonal regeneration was quantified by fluorescent intensity from the 

crush site at 100micron increments (Fig. 2E) volumetric analysis of CTB-labeled axons 

(Figs. 2F & S5B&C).  Control animals treated with saline-containing gelfoam had limited 

and short CTB-labeled axons crossing the lesion site (Fig. 2C, 2E). In APC-treated 

animals, however, we observed a significant increase in axonal regeneration beyond the 

site of injury (Figs. 2D, 2E). 

To elucidate the molecular mechanism underlying histone-mediated inhibition of 

neurite outgrowth, we treated cortical neurons with histones for 24 hours and then plated 

them onto permissive CHO cell monolayers in the absence of histones (14).  Neurite 

outgrowth was severely impaired in these neurons (Fig. S6), which suggested that their 
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intrinsic capacity for neuritogenesis had been altered at the molecular level by the 

histones.  To determine if this effect involved the activation of transcription factors, we 

incubated cortical neurons with extracellular histones for 30 or 120 minutes and analyzed 

the lysates using a Panomics Transcription Factor protein array (15).  This assay revealed 

significant increases in eukaryotic Y-box-binding protein-1 (YB-1) in histone-treated 

neurons (Fig. S7), and we subsequently demonstrated that YB-1 expression has a direct 

impact on neurite outgrowth, as overexpression of YB-1 in cortical neurons resulted in 

shorter neurites compared to controls (Fig. 3B).  We also showed that histones H3 and 

H4, as well as mixed histones, can induce phosphorylation of YB-1 (Fig. 3A).  In our 

previous experiments we demonstrated that application of histones to distal neurites is 

sufficient to inhibit neurite outgrowth (Figs. 1I&2A), and this suggests that histones may 

induce phosphorylation of YB-1 through retrograde signaling.  To test this hypothesis, 

the neurite compartments of microfluidic chambers were treated with histones coupled to 

6 µm silicone beads, which prevents their diffusion into the somal compartment, while 

preserving their ability to interact with the neurites. When the histone-conjugated beads 

were applied to the neurites, we observed increased pYB-1 levels in the neuronal cell 

bodies, confirming a retrograde signal (Fig. 4C).  Interestingly, the neurites treated with 

the histone-conjugated beads displayed prominent varicosities (Fig. 3D2&4, while 

neurites treated with unconjugated beads were unaffected (Fig. 3D1&3.).  This not only 

demonstrates that the beads had no toxic effects, but also provides further evidence that 

histones negatively affect axonal function and integrity, as these varicosities are 

indicative of disruptions in axonal transport and impending degeneration.  Finally, to 

determine if retrograde induction of YB-1 phosphorylation occurs in vivo, we performed 
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optic nerve crushes and collected the ipsilateral and contralateral retinas 48 hours later.  

We observed baseline phosphorylation of YB-1 in the contralateral retina, and this was 

visibly increased in response to optic nerve crush (Fig. 3E).  These results demonstrate 

that CNS injury can induce YB-1 phosphorylation in neurons and given our data showing 

that histone levels are elevated following optic nerve crush (Fig. 1H), it is highly 

probable that this occurs through histone-mediated retrograde signaling. 

Histones lie at the very core of chromatin structure and function, but here we 

show that they have a very different role outside the nucleus.  Histones are released into 

the extracellular environment following CNS injury, and they act as potent inhibitors of 

axonal regeneration both in vitro and in vivo.  Extracellular histones produce a degree of 

inhibition that is comparable to that elicited by myelin-associated inhibitors and CSPGs 

(16,17), and we therefore propose that histones should be considered a third major class 

of inhibitory molecules within the CNS.  Eliminating inhibitory factors from the CNS 

environment has been widely used as a strategy to enhance axonal regeneration, but the 

results have often been underwhelming.  Triple mutant mice lacking expression of 

myelin-associated glycoprotein (MAG), Nogo, and oligodendrocyte myelin glycoprotein 

did not exhibit spontaneous regeneration of corticospinal and raphespinal axons after 

spinal cord injury (5).  Similarly, elimination of CSPGs through treatment with 

chondroitinase ABC (chABC) resulted in only modest regeneration of dorsal column and 

corticospinal axons (maximum of 4 mm) following dorsal column lesions (18).  The 

presence and persistence of extracellular histones at the site of injury could therefore 

account for the limited axonal regeneration that was observed in these studies. 
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Having established that histones inhibit axonal regeneration, we must now 

consider their mechanism of action, and our observation that APC can block the effects 

of histones provides some initial insight.  Since APC functions by cleaving histones, this 

indicates that histone proteins are directly responsible for mediating inhibition. This is 

further supported by our observation that APC cannot overcome inhibition by MAG in a 

neurite outgrowth assay (Fig. S8), which demonstrates that APC does not enhance growth 

through non-specific degradation of other proteins or effects on the neurons themselves.  

Our results also show that histones induce phosphorylation of YB-1 through retrograde 

signaling, which suggests that this effect is receptor-mediated.  Histones have been 

shown to activate intracellular signaling by binding to cell-surface receptors such as Toll-

like receptors 2 and 4 (19), and intriguingly, there is a demonstrated connection between 

TLR4 and YB-1, as TLR4 expression was reduced in YB-1 heterozygous mice (20).  This 

raises the possibility that histones may induce the expression and phosphorylation of YB-

1 within neurons by binding to TLR4. 

Studies of myelin-associated inhibitors and CSPGs have shown that these 

molecules inhibit axonal regeneration through activation of the small GTPase RhoA (21).  

We observed that extracellular histones activated RhoA in similar manner (Fig. 3F) and 

they also reduced levels of p35 (Figs. 3G), a protein that can overcome MAG-mediated 

inhibition by activating cyclin-dependent kinase 5 (22).  This provides evidence that the 

signaling pathways activated by CNS myelin, CSPGs, and histones converge at key 

points to mediate inhibition, and importantly, it also shows that histones can affect 

cytoskeletal dynamics.  It has been reported that YB-1 can promote microtubule 
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assembly (23), and so it is possible that histones may activate RhoA through 

phosphorylation of YB-1. 

The addition of histones to the list of inhibitory molecules in the CNS reinforces 

the prevailing view that combinatorial therapies will be necessary to promote axonal 

regeneration and functional recovery following spinal cord injury.  Elevation of 

intracellular cyclic AMP can overcome inhibition by myelin-associated inhibitors and 

CSPGs, and we have found that it can reverse inhibition by histones as well (24&25), 

which suggests that rolipram or other phosphodiesterase inhibitors could be an effective 

way to target all three classes of inhibitors.  Histones could also be neutralized using 

APC, which would digest the histones within the lesion site and create a more permissive 

environment for regeneration.  It should be noted that this treatment would not affect 

histones in intact cells, which means that APC would likely have minimal adverse effects 

in vivo.  This approach could be particularly effective when used in combination with 

chABC and other interventions that modify the extracellular environment, such as cell 

transplantation.  The findings presented in this study add another layer of complexity to 

the challenge of promoting axonal regeneration in the CNS, but they also reveal new 

opportunities for progress in both fundamental and translational neuroscience that could 

greatly advance the treatment of spinal cord injury. 
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Methods 

 

Rat primary cortical or hippocampal neuron cultures – Rat primary cortical cultures were 

dissected from postnatal day 1 Sprague Dawley rat brains. Cortices or hippocampi were 

incubated for 30mins (once for hippocampi and twice for cortices) with 0.5 mg/ml papain 

(Sigma) in plain Neurobasal (NB) media (Invitrogen) with DNase. Papain activity was inhibited 

by brief incubation in soybean trypsin inhibitor (Sigma). Cell suspensions were layered on an 

Optiprep density gradient (Sigma) and centrifuged at 1900 x g for 15mins at room temperature. 

The purified neurons were then collected at 1000 x g for 5 mins and counted.  

Primary cortical neurons were diluted to 35,000 cells/ml in NB supplemented with B27, L-

glutamine and antibiotics and grown for 24hours. To quantify the outgrowth we immunostained 

using a monoclonal anti-βIII tubulin antibody (Tuj1;Covance) and Alexa Fluor 568-conjugated 

anti-mouse IgG (Invitrogen). For quantification, images were taken, and the length of the longest 

neurite for each neuron was measured using MetaMorph software (Molecular Devices). For 

western blots primary neurons were lysed in radioimmunoprecipitation assay (RIPA) buffer 

(50mM Tris-HCl, pH 7.5; 100mM NaCl; 1 % Nonidet P-40; 0.5 % deoxycholic acid; 0.1 % SDS; 

1mM EDTA) supplemented with protease and phosphatase inhibitors.  After determination of 

protein concentration, the cell lysates were subjected to immunoblot analysis using standard 

procedures and visualized by enhanced chemiluminescence (ECL). Polyclonal rabbit antibodies 

directed against p35, phospho-YB-1 or total YB-1 were from Cell Signaling Technology Inc.  

Rat primary dorsal root ganglion neurons – Rat dorsal root ganglion (DRG) neurons from 

extracted from P5-P7 day old pups. The neurons were first treated with with 0.015% collagenase 

in Neurobasal-A media for 45 min at 37°C. This was followed by a second incubation in 
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collagenase for 30 min at 37°C, with the addition of 0.1% trypsin and 50 µg/ml DNase I. Trypsin 

was inactivated with DMEM containing 10% dialyzed fetal bovine serum. The ganglia were 

triturated in Sato’s media and counted. 

Rat primary astrocytes- We prepared mixed cortical cultures from P3-P5 pups. The cortices were 

removed and the meninges carefully peeled away. They were treated with 0.1% trypsin and 50 

µg/ml DNase I for ten minutes at 37°C. Trypsin was inactivated with DMEM containing 10% 

dialyzed fetal bovine serum (FBS). We triturated the tissue and strained the cell suspension 

which was seeded into a pre-coated PLL T75 tissue flask in the growth media of DMEM with 

10%FBS. Media was replaced within 24hrs and then every 3 days until we had a confluent layer 

of cells (10-14 days). To enrich for astrocytes, the media was replaced with plain NB (no 

supplements but containing Hepes) and we shaked the culture at 200RPM at 37°C. The media 

and floating cells were aspirated off and we added fresh DMEM with 10%FBS and returned to 

the incubator overnight. The next day we would trypsinize the remaining cells for for ten minutes 

at 37°C, or longer depending on how the cells are lifting off the flask. Trypsin was inactivated 

with DMEM containing 10% dialyzed fetal bovine serum, and the astrocytes were counted.  

Neurite outgrowth assay. Mono layers of permissive control or MAG-expressing Chinese 

hamster ovary (CHO) cells or primary astrocytes were plated on eight well chamber slides as 

previously described (26). Purified P1 hippocampal, P1 cortical, P5–P6 CGN, or P5–P6 DRG rat 

neurons were diluted to 35,000 cells/ml in Sato’s media and treated with either 1 mM dbcAMP 

(Calbiochem), mixed population or recombinant Histones (1-20µg/ml) or with APC (1-20µg/ml). 

Neurons were incubated for 14–18 h at 37°C and immunostained using a monoclonal anti-βIII 

tubulin antibody (Tuj1;Covance) and Alexa Fluor 568-conjugated anti-mouse IgG (Invitrogen). 
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For quantification, images were taken, and the length of the longest neurite for each neuron was 

measured using MetaMorph software (Molecular Devices). 

Microfluidic neurite outgrowth assay- Square microfluidic chambers (150 or 450 microgroove) 

were purchased from Xona microfluidics. The chambers were sterilized under UV for 15mins 

and soaked in 70% ethanol for 2mins and allowed to air dry under a sterile TC hood. We used 

MatTek dishes (P50G-1.5, MatTek corp.) that we pre-coat with PLL overnight, rinse 3 times 

with sterile water and air dry overnight in a sterile hood. Using sterile foceps we carefully place 

the microfluidic chamber on the glass area of the MatTek dish, and gently apply pressure to 

ensure the chambers are sitting on the glass. 3 whole brain P1-2 cortices after papain enzymatic 

digestion and Optiprep gradient are resuspended in 200µls of NB with full supplements. We then 

seed 15µls of the neuronal suspension on one side of the microgroove and place in a 37°C 

incubator for 20mins to allow the neurons to adhere. All wells are filled with 150µls of 

supplemented NB. Once we observe neurites growing across the microgroove (2-3days), we then 

do our treatments on the neurite compartment and wait 48hrs before we add 4% 

Paraformaldehyde with 4%Sucrose. We use the Neon transfection (Invitrogen) method to 

overexpress the plasmid YB-1.  

Rho Activation Assay. Rat cortical neurons plated in 10cm2 dishes (approximately 10 million 

neurons per dish) were used with a commercially available Rho Activiation Assay Kit 

(Millipore). The neurons were placed in plain NB media for 4hrs prior to assay. In brief, 

following the manufacturers protocol, we lysed the cortical neurons on ice with MLB buffer 

supplemented with anti-protease and anti-phosphatase cocktails (Calbiochem) and spun the 

lysates at 14,000 x g for 5 mins. The supernatant was collected and added to 35µls of agarose 

beads coupled to Rhotekin Rho Binding Domain and rocked in the cold room for 45mins, a small 
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sample of each supernatant was not added to the beads and was used as total Rho loading 

controls. Beads were washed three times with MLB buffer and 20µls 2xLaemmeli buffer was 

added and samples were prepared for western blotting. Proteins were separated on pre-cast 4-

20% gradient gels (Thermo Fisher Scientific) and transferred to nitrocellulose at 75V for 1 hr. 

Membranes were successfully probed with rabbit anti-RhoA (1:1000; Cell Signaling 

Technology) and HRP conjugated anti-rabbit IgG (1:2000; Cell Signaling Technology). 

Membranes were reacted with Pierec ECL Western Blotting Substrate or SugperSignal West 

Femto Maximam Sensitivity Substrate (Thermo Fisher Scientific). Densitometirc measurements 

were made using NIH Image J software. 

 

Rat optic nerve regeneration in vivo: 

Optic nerve crush experiments. Adult male or female Sprague-Dawley or rats (250–280 g, 

approximately 8-10 weeks old) were anesthetized with isoflurane and placed in a stereotaxic 

frame. The right optic nerve was exposed and crushed with fine forceps for 10s. We placed 

gelfoam either soaked in PBS or with APC [4.1mg/ml] (Haematologic Technologies, Inc) were 

placed over the injury site. 3 days prior to sacrificing we label the regenerating axons with 5µls 

of 1mg/ml Cholera Toxin B (CTB) coupled to Alexa-488 which we intravitreally inject. Animals 

were anesthetized with ketamine (100mg/kg) and xylazine (20mg/kg) injected intraperitoneally 

and transcardial perfusion with 4% PFA after a 14 days postsurgical survival period. When 

animals are deeply anesthetized we will transcardially perfuse with cold 4%Paraformaldehyde 

(PFA) in PBS, pH 7.4. The optic nerves and chiasm attached will be dissected out and post-fixed 

in 4%PFA overnight at 4oC, rinsed for one hour in PBS and then we prepare them for chemical 

clearing. Since the advent of the 3DISCO clearing techniques, we are no longer dependent on 
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sectioning the tissue, this method also eliminates bias associated with artifacts produced by 

sectioning. The whole nerve is placed in a graded series dehydration technique in 

Tetrahydrofuran (THF;Sigma) diluted in water: 50%,70%,80%,100% and 100% again. Each 

THF dilution is for 20mins at room temperature on an orbital shaker (25). Followed by 

Dicholoromethane (Sigma) for 5mins at room temperature on an orbital shaker and followed by 

the clearing agent, Dibenzyl ether (DBE; Sigma) overnight at room temperature on an orbital 

shaker. Microscope slides are mounted with Fastwell chambers (Electron Microscopy Sciences) 

and the cleared sample is place on the slide and covered with DBE, a No. 1.5 micro cover glass 

is used the cover the sample. We image the whole sample on an Olympus Multiphoton 

microscope with a 25X water immersion lens. All procedures were approved by the IACUC of 

the Icahn School of Medicine at Mount Sinai in accordance with NIH guidelines. All procedures 

were approved by the IACUC of the Icahn School of Medicine at Mount Sinai in accordance 

with NIH guidelines. Multiphoton microscopy was performed in the Microscopy CORE at the 

Icahn School of Medicine at Mount Sinai and was supported with funding from NIH Shared 

Instrumentation Grant 1S10RR026639-01. 

Multiphoton Image Analysis: 

Images were deconvolved using AutoQuant X Software (Media Cybernetics).  Deconvolved 

images were then analyzed using Amira Software version 6.0.1 (Thermo Scientific).  Z-stacks 

were uploaded to create a 3D volume rendering of the crush site and labelled neurites.  For 

samples containing more than one Z-stack, image stacks were aligned and merged using Amira’s 

merge module.  The images were then rotated to position the crush site proximal to the retina on 

the left with regenerated neurites growing away from the crush site towards the right. The 

transformed data was resampled and axes swapped such that the XY plane became the cross 
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section along the length of the nerve.  Images were cropped if needed to exclude any partial cross 

sections of the ends of the nerve caused by image rotation.  Labelled regenerated neurites were 

segmented by thresholding pixels using Amira’s Segmentation Editor.  The volume ratio of 

segmented neurites over total nerve volume was measured for each sample.  Study results were 

then normalized and plotted in a bar graph. 

The ratio of segmented area over total nerve area for each cross section was normalized and 

plotted as area ratio per slice.  Area ratio plots were created starting from the behind the crush 

site proximal to the retina and following along the length of the nerve for the segmented 

regenerated neurites. 

Cell fractionation and Panomics transcription factor activation arrays- Nuclear and cytosolic 

extracts were isolated from cortical neurons following instructions from a commercial kit 

(Pierce). The supernatant containing the nuclear extract was used in a Panomics Combo Protein-

DNA Array (Affymetrix, MA1215) to study transcription factor activation following the 

manufacturer’s protocol. The array was visualized by enhanced chemiluminescence and 

determined where we had a positive signal.  

 

Statistical analyses. All analyses were performed using GraphPad Prism software, and data are 

represented as mean ± SEM. Statistical significance was assessed using paired one-tailed 

Student’s t tests to compare two groups, and one-way ANOVAs with Bonferroni’s post hoc tests 

to compare between three or more groups. 
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Figure 1 – Extracellular Histones are inhibitory to neurite outgrowth. A. Primary rat cortical 
neurons on an astrocytic monolayer put out long neurites (black bar) but in the presence of 
increasing concentrations of a mixed population histone preparation (white bars), they put out 
dose-dependent shorter neurites as determined by β-III tubulin staining and quantified longest 
length by Metamorph. This bar graph is the average of three independent experiments. B. 
Representative images of GFAP+ astrocytic monolayers in the absence or presence of 5-20µg/ml 
as indicated. C. Images of β-III tubulin+ cortical neurons on a monolayer of permissive CHO 
cells with or without histones as indicated. D. Cortical neurons on a permissive CHO monolayer 
put out long neurites (black bars, Con) but in the presence of histones they put out significantly 
shorter neurites (white bars). 1mM dbc-AMP alone (black bar labeled dbc) can overcome the 
inhibitory effect of the histones (grey bars, indicated combination of dbc-AMP and Histones in 
concentration noted). Using a control protein Fatty Acid Binding Protein (FABP) does not affect 
neurite outgrowth (black and white patterned bar graphs). E. Elevated levels of Histone H3 (HIS) 
in the CSF fluid collected from mice with DCL are detected by western blot, compared to 
laminectomy (LAM) alone. E. Histone H3 levels are normalized to Albumin (ALB) and in the 
bar graph is the average of 5 animals (n=5 for both DCL and LAM group) with DCL where we 
see a significant elevation of free Histone H3 in the CSF fluid. G. Adult rats first had their optic 
nerves exposed and we applied gelfoam over the uninjured nerve for 48hrs (Pre-ONC1&2), 
subsequently removing the gelfoam into PBS with protease inhibitor cocktail, we crushed the 
optic nerve and applied a fresh piece of gelfoam over the injury site. We removed the gelfoam 
48hrs later (Post-ONC 1&2). We found within the same animal a significant increase in HIS 
levels after crushing the optic nerve (Post-ONC) than prior to injury (Pre-ONC), data was 
graphed in H. (n=6, see Table 1 for full comparison of Pre- and Post-ONC levels of HIS). I. 
Using PLL-coated microfluidic chambers, cortical neurons cell bodies (CB) grow long neurites 
across the 450µM microgroove as detected by β-III tubulin. Treating the neurite growing 
compartment with either recombinant H3 or H4 Histones resulted in significantly shorter 
neurites, with H3 having a more potent effect. I’. Looking at an enhanced region of the H3 
20µg/ml treated side, the shorter neurites appeared to have dystrophic endbulbs. All statistics 
were performed by ANOVA, *p<0.05 and **p<0.01, except Figure F. was unpaired t-test and H. 
was paired t-test. 
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Figure 2 – APC blocks the inhibitory effect of Histones and promotes axonal regeneration 
after ONC. A. Cortical neurons plated on PLL coated microfluidic chambers grow robustly 
across the 150µm microgroove, determined by β-III tubulin staining. Treating the neurite 
growing side (right side from the microgroove) only with increasing concentrations of mixed 
population of histones results in significantly shorter neurites. B. APC alone has no effect on 
neurite outgrowth, combining APC with histones and applying to the neurite side reverses the 
inhibitory effect of histones, restoring long neurite outgrowth. C. Using the rat ONC model for 
axonal regeneration in the CNS, crushed axons without treatment (Control) have CTB labeled 
axons abruptly halt at the lesion site in this chemically cleared whole nerve. D. Representative 
optic nerve treated with APC soaked in gelfoam immediately after crushing the axons, the 
gelfoam is placed over the injury site. In this chemically cleared nerve CTB labeled axons are 
observed growing through the lesion site. Panel C & D are approximately 540 optical slices at 
0.45µm increments that is merged together into a two-dimensional represented maximum 
projection intensity image. Scale bar of 500µm is for Figures C &D. E. Using Image J we 
quantitated the axonal regeneration for Control (n=5, white circle) and APC-treated (n=7, black 
square) every 100microns from the edge of the crush site. There is a significant difference in the 
extent of regeneration at 200microns, and no regenerating fibers were detected past that point in 
Control animals. F. Using Amira 3D maximum intensity projection of the nerve showing crush 
site and regenerating neurites labelled with CTB, we determined the Normalized Segmented 
Volume ratio. Line plot shows ratio of segmented neurite area over total nerve area per cross 
section along the nerve and we see a significant difference (***, p<0.001) with APC-treatment. 
Each cross section slice is .497 micrometers. G. Using Second Harmonic Generation imaging on 
Multi-photon microscope, collagen fibers auto-fluoresce. In uninjured whole chemically cleared 
nerves, we can see the collagen bundles, which the fibers are shown in enhanced detail in Figure 
G’. H. Injured optic nerves display crushed collagen fibers at the injury site, helping to elucidate 
the injury site and it is shown in an enhanced region in Fig. H’. Scale bar is 100µm in Figures G. 
and H.  
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Legend 3 – Histones inhibit neurite outgrowth by an YB-1 mediated mechanism. A. Cortical 
neurons treated with mixed Histones, H3 or H4 (2.5,5, or 10µg/ml) induce elevation in 
phosphorylated YB-1 (pYB-1), normalized to YB-1 and Actin levels. B. Overexpressing the YB-
1 plasmid in cortical neurons by NEON transfection and plating in microfluidic chambers results 
in shorter neurite outgrowth in a dose dependent manner as determined by β-III-tubulin staining. 
C. Cartoon of a microfluidic chamber diagrammatically showing where we apply the histones or 
to the neurites and then lysed the cell bodies 48 hours later, on the opposing side. Cortical 
neurons plated in microfluidic chambers for 4-5 days grow long neurites across the microgroove. 
Using histones or fluorescent microbeads that are covalently coupled to histones (or non-coupled 
for controls) and too large to cross the microgrooves, or with 10 or 20µg/ml mixed Histones 
(His10 or His20) are applied to the neurite compartment (axonal) only and we wait 48hours 
before lysing the cell body compartment (somal) with 2XRIPA buffer and run a western blot. We 
detect elevation of pYB-1 in the cell bodies normalized to GAPDH. D1. Non-coupled beads 
(green) had no effect on neurite outgrowth (β-III-tubulin in red), higher magnification in D3. D2. 
Histone-coupled beads (green) appear more aggregated compared to non-coupled beads and 
significantly inhibited neurite outgrowth, higher magnification of the beaded BIII-tubulin (red) 
with histone-coupled beads in D4. E. To confirm if pYB-1 are elevated after injury inducing 
histone release in the ONC, we crushed the axons of the optic nerve and 48hrs later collected the 
retinal cell layer (Ipsi 1&2) and collected the retinal layer of the non-injured side (Contra 1&2) 
in the same animal and prepared them for western blots. We found significantly elevated levels 
of pYB-1 on the injured (Ipsi) side compared to the non-injured (Contra) side. F. Histone applied 
to cortical neurons induces activation of Rho GTPase, the positive control for the kit was the 
GTP-γs. G. Histone applied to cortical neurons results in dose dependent decrease (2.5-20µg/ml) 
in p35 levels without any detectable p25. 
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