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Abstract 26 

The evolution of therapeutic resistance is a major cause of death for patients with solid 27 

tumors. The development of therapy resistance is shaped by the ecological dynamics 28 

within the tumor microenvironment and the selective pressure induced by the host 29 

immune system. These ecological and selective forces often lead to evolutionary 30 

convergence on one or more pathways or hallmarks that drive progression. These 31 

hallmarks are, in turn, intimately linked to each other through gene expression 32 

networks. Thus, a deeper understanding of the evolutionary convergences that occur at 33 

the gene expression level could reveal vulnerabilities that could be targeted to treat 34 

therapy-resistant cancer. To this end, we used a combination of phylogenetic clustering, 35 

systems biology analyses, and wet-bench molecular experimentation to identify 36 

convergences in gene expression data onto common signaling pathways. We applied 37 

these methods to derive new insights about the networks at play during TGF-β-38 

mediated epithelial-mesenchymal transition in a lung cancer model system. 39 

Phylogenetics analyses of gene expression data from TGF-β treated cells revealed 40 

evolutionary convergence of cells toward amine-metabolic pathways and autophagy 41 

during TGF-β treatment. Using high-throughput drug screens, we found that 42 

knockdown of the autophagy regulatory, ATG16L1, re-sensitized lung cancer cells to 43 

cancer therapies following TGF-β-induced resistance, implicating autophagy as a TGF-β-44 

mediated chemoresistance mechanism. Analysis of publicly-available clinical data sets 45 

validated the adverse prognostic importance of ATG16L expression in multiple cancer 46 

types including kidney, lung, and colon cancer patients.  These analyses reveal the 47 

usefulness of combining evolutionary and systems biology methods with experimental 48 

validation to illuminate new therapeutic vulnerabilities.  49 

 50 
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Introduction 51 

Mammalian cells respond to external stimuli through a coordinated system of 52 

signaling and gene expression circuitry. The inputs to this system are often the 53 

ligands for receptors, which initiate signaling cascades that ultimately lead to 54 

changes in gene expression. A cell can receive, process, and integrate multiple 55 

simultaneous inputs and respond to them with a coordinated phenotypic 56 

response [1, 2].  57 

Deregulation of the cellular signaling/response circuitry is a fundamental 58 

theme in cancer at both the tissue and single-cell levels. Indeed, deregulated 59 

intracellular signaling/gene expression circuitry is fundamental to many cancer 60 

hallmarks [3], including sustaining proliferation [4, 5], evading growth 61 

suppression [5], inducing angiogenesis [5], tumor-promoting inflammation[5], 62 

invasion [6], and metastasis [7-9].   63 

One well-studied signaling/expression circuit that is frequently 64 

dysregulated in cancer is the transforming growth factor β (TGF-β)/SMAD axis. 65 

The TGF-β/SMAD axis is a critical developmental pathway that controls 66 

differentiation and proliferation[10]. TGF-β/SMAD signaling is also important in 67 

wound healing and fibrosis (reviewed in [11, 12]). One of the major phenotypic 68 

outputs of TGF-β/SMAD signaling is the phenotypic switch from an epithelial to a 69 

mesenchymal state, known traditionally as epithelial-mesenchymal transition 70 

(EMT) (reviewed in [13]). In the context of cancer, TGF-β-mediated EMT 71 

promotes downregulation of cell-cell adhesion and upregulation of migration and 72 

invasion [14, 15]. This pro-invasive phenotype is usually activated at the expense 73 

of proliferation [15, 16]: TGF-β induces potent cell cycle arrest through SMAD-74 

mediated transcriptional activation of the cell cycle repressor, p21 [17]. TGF-β 75 
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also reprograms cellular metabolism [18] and induces autophagy [19]—a process 76 

in which a cell self-digests its proteins and organelles.  In addition to its cell 77 

autonomous role in promoting invasiveness, TGF-β also acts non-cell 78 

autonomously to create a tumor microenvironment more permissive to tumor 79 

growth [20, 21]. These mechanisms can often drive resistance to chemotherapy 80 

and multiple targeted therapies [22, 23].  81 

However, the abovementioned effects of TGF-β/SMAD-induced EMT are 82 

typically studied in isolation with focus on a few nodes of the pathway, hence 83 

neglecting the effects of crosstalk among multiple signaling pathways. Such 84 

crosstalk can often generate feedback loops with nonlinear dynamics, giving rise 85 

to emergent, complex, and non-intuitive behavior [24]. Hence, a systems biology 86 

approach integrating computational and experimental components can be 87 

essential to elucidating the dynamics of underlying interconnected cellular 88 

circuitry and identifying the fundamental organizational principles driving tumor 89 

progression [25]. Here we used such an approach, incorporating multiple systems 90 

biology tools to analyze the dynamics of TGF-β-mediated EMT and to 91 

experimentally validate the computationally-derived insights (Figure 1).  92 

Cancer progression is an evolutionary process of selection over time [26, 93 

27]. Therefore, we postulated that tools developed for tracing evolutionary 94 

histories may provide new insights. One of the most commonly-used methods of 95 

inferring ancestral relationships is phylogenetics. Phylogenetics uses a data 96 

matrix of character states to infer evolutionary relationships between groups 97 

[28]. Although phylogenetics was originally developed to reconstruct ancestral 98 

relationships between species, phylogenetic inference has also been applied to 99 
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diverse data sets for which no underlying ancestral relationships exist, such as 100 

geography, linguistics, or astrophysics [28].   101 

Given the flexibility of phylogenetics as a clustering tool for multiple data 102 

types and contexts, we hypothesized that analysis of time-course gene expression 103 

data could provide crucial information about how circuits are integrated to lead 104 

to a given phenotype. We identified a convergence of gene expression data on 105 

amine metabolism pathways following TGF-β-induced EMT, and validated up-106 

regulation of ammonia production using wet bench experimentation. 107 

Interestingly, we also identified ATG16L1, a regulator of autophagy, as a central 108 

node in an ammonia production gene network, suggesting connections between 109 

elevated amine metabolism, EMT, and autophagy. ATG16L1 was also found to be 110 

upregulated during TGF-β-induced EMT. Finally, using high throughput drug 111 

screens, we showed that siRNA-mediated inhibition of the autophagy regulator, 112 

ATG16L1, rescued TGF-β-mediated chemo-resistance.  Together, this iterative 113 

combination of systems-based analyses and experimental validations suggests 114 

that TGF-β-mediated EMT converges on a gene expression network to induce 115 

autophagy and altered metabolism that can be therapeutically targeted to 116 

overcome chemoresistance. 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 
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Results 125 

 126 
Phylogenetics analyses provide a simple and reliable tool to visualize gene 127 

expression dynamics  128 

To test the feasibility and effectiveness of using phylogenetics as a 129 

clustering tool to analyze gene expression data, we tested if phylogenetic trees 130 

could recapitulate the temporal order of gene expression data collected at 131 

different time points. To do this, we constructed dendograms from publicly-132 

available microarray data for immortalized prostate cells collected every 10 133 

passages from 0 to 80 passages (GSE23038, [29]).  134 

We first used distance-based trees to infer temporal relationships among 135 

the samples. We first used distance-based trees to infer temporal relationships 136 

among the samples. Distance-based trees use a data matrix comprised of gene 137 

expression values as a continuous variable without the need for binning gene 138 

expression data into categorical variables of being upregulated, unchanged, and 139 

downregulated. Distance-based construction of a rooted tree with root at passage 140 

0 produced a tree topology that, with the exception of passage 70, clustered 141 

samples according to their temporal order from passage 10 to 80 (Figure 2A).  142 

We also analyzed GSE23038 [29] using maximum-likelihood and 143 

parsimony phylogenetics methods. The raw data matrix was converted into three 144 

character states based on a neutral evolution model, JC69, before being used as 145 

input for these two methods of tree construction. Importantly, for all three 146 

methods, trees constructed using gene expression data recapitulated the known 147 

temporal structure of the data with robust bootstrap support (Figure 2A-C, 148 

bootstrap values indicated above branches). A comparison of the three cladistical 149 
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methods with clustering revealed that hierarchical clustering was unable to 150 

accurately reconstruct the temporal order of passages (Figure 2D-E).  151 

Similarly, we performed phylogenetic clustering on additional data sets 152 

where samples had been analyzed longitudinally, including GSE17708 [30], 153 

microarray data from A549 lung adenocarcinoma cells treated with TGF-β over a 154 

period of 72 hours, and GSE12548, microarray data from human ARPE-19 retinal 155 

pigment epithelium cells treated with TGF-β and TNF-α over 60 hours [31]. For 156 

both of these data sets, phylogenetic clustering reconstructed the temporal order 157 

of treatments with strong bootstrap support (Figure 3A and B).  158 

 159 

Analyzing dynamics of TGF-β treatment through visualization of tree structure 160 

reveals two distinct temporally resolved clades  161 

A major advantage of clustering is its ability to easily visualize 162 

relationships between large data sets and to derive novel useful insights. For 163 

example, re-analysis of microarray data from A549 cells treated with TGF-β over 164 

72 hours (GSE17708) revealed two distinctive patterns in the resulting 165 

phylogenies. First, early time points (0–8 hours) were haphazardly organized in  166 

clades and sub-clades, where replicates of samples were admixed, indicating that 167 

phylogenetic analyses were not able to provide a clear signal based on the 168 

expression data that would predict timing of treatment (Figure 4A). Second, the 169 

later time points (≥8 hours) were well resolved, suggesting the presence of a 170 

clear signal emerging in the gene expression data following long term treatment 171 

with TGF-β (Figure 4A). 172 

 Consistent with a convergence of signal at later time points, RT-qPCR 173 

analysis of the epithelial marker, E-cadherin, and the mesenchymal marker, 174 
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vimentin, demonstrated that E-cadherin suppression and vimentin activation 175 

were not apparent until this bifurcation of early admixed time-points vs. resolved 176 

late time-points (Figure 4B). Likewise, our time lapse imaging analysis of growth 177 

rate between vehicle-treated and TGF-β-treated A549 cells showed that 178 

differences in growth rate between the two conditions were not observed until 179 

~72 hours after the initiation of treatment (Figure 4C), consistent with reports 180 

demonstrating that EMT induces cell cycle arrest [32, 33]. These experimental 181 

results suggest that the timing of both gene expression and phenotypic traits 182 

associated with EMT are consistent with the convergence of an emerging signal at 183 

late time points within the dendograms.  184 

Next, we extracted genes that were differentially expressed across the two 185 

major clades of early and late treatment times. Pathway analysis of these genes 186 

showed that multiple amine-metabolism pathways were significantly altered 187 

during TGF-β treatment (Figure 4D). To experimentally test if ammonia 188 

metabolism was altered during TGF-β treatment, we performed ammonia 189 

production assays on A549 cells. Importantly, we found that ammonia production 190 

was altered significantly upon TGF-β treatment at later time points, with little 191 

change in ammonia production during earlier time points (Figure 4E). Together, 192 

these analyses demonstrated the utility of simple visualizations, such as 193 

phylogenetic trees and clustering dendograms, to yield new testable hypotheses. 194 

 195 

Gene expression networks couple ammonia production to autophagy 196 

Previous research has identified a connection between up-regulation of 197 

ammonia production and induction of autophagy (7). Based on this connection, 198 

we tested if TGF-β-induced EMT led to an increase in autophagy markers. In 199 
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support of this hypothesis, TGF-β treatment led to upregulation of autophagy 200 

markers LC3A/B and ATG16L1 (Figure 5A). To better understand the 201 

connections between ammonia production and autophagy, we used Cytoscape to 202 

construct gene regulatory networks related to amine metabolism genes and 203 

autophagy regulators. We constructed gene networks that included the ammonia 204 

production genes identified by the pathway analysis, along with the autophagy 205 

markers LC3A/B and ATG16L1 that we identified in our western blots to be 206 

activated upon TGF-β treatment. Although we found few gene-gene interactions 207 

among amine metabolism genes alone (Figure 5B), when we added the 208 

autophagy regulator ATG16L1 to this network, it connected the entire set of 209 

previously-isolated amine metabolism sub-networks (Figure 5C). LC3A/B was a 210 

node in the ATG16L1 network (Supplementary File 4). Our results suggest that 211 

TGF-β-mediated EMT is associated with increased amine production and 212 

upregulation of autophagy. It remains to be tested in this system if the ammonia 213 

production induces autophagy, as has been demonstrated previously in both 214 

yeast and mouse embryonic fibroblasts [34], or if TGF-β-induced autophagy 215 

upregulation leads to more ammonia. However, our results demonstrate a 216 

connection between TGF-β-mediated EMT, altered amine production, and 217 

upregulation of autophagy. 218 

 219 

Autophagy inhibition re-sensitizes cells to TGF-β-induced chemoresistance  220 

Our data revealed that TGF-β-induced EMT leads to ammonia production and 221 

upregulation of autophagy. Interestingly, both EMT and autophagy are known to be 222 

involved in chemoresistance. EMT can drive chemoresistance in multiple cancers [35-223 

38]. Likewise, autophagy is a pro-survival mechanism in response to cellular stresses, 224 
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such as hypoxia and nutrient deprivation, and is increasingly implicated in resistance to 225 

cancer treatments [39, 40]. Integrating our observations with these reports, we 226 

hypothesized that EMT-induced drug resistance is mediated, at least in part, by elevated 227 

autophagy. 228 

To test this hypothesis, we used high-throughput drug screens of 119 FDA-229 

approved small-molecule anti-cancer agents. To do this, we first tested if TGF-β-230 

mediated EMT led to chemoresistance. We screened A549 cells treated with either 231 

vehicle or TGF-β and plated at both low and high density. After 72 hours of incubation 232 

with each drug, the overall cell viability was analyzed with CellTiterGlo. We first 233 

performed quality control analyses of the screens. Linear regression of the empty wells 234 

and DMSO-treated wells showed virtually no relationship between the CellTiterGlo 235 

value and the position on the plate when comparing the same plate setup across 236 

multiple plates (R2 = 0.0862), suggesting that the screen results did not suffer from 237 

plate effects (Supplementary Figure 1). In contrast, the correlation coefficients in 238 

drug-containing wells were greater than 0.8 between high and low cell density for both 239 

vehicle- and TGF-β-treated conditions, suggesting high reproducibility across replicate 240 

plates, when drug is present in the well (Supplementary Figure 1).  241 

Given the lack of apparent plate effects and strong reproducibility between 242 

replicate screens, we investigated whether TGF-β induced chemoresistance. Consistent 243 

with our hypothesis, TGF-β treatment increased resistance to 60% (71/119) of the 244 

compounds tested, as evaluated by an increase in CellTiterGlo absorbance as compared 245 

to vehicle-treated control wells (Figure 6A). Analysis of these compounds by pathway 246 

targets showed that TGF-β induced resistance to both broad spectrum chemotherapies, 247 

such as microtubule-targeting agents and topoisomerase inhibitors, as well as multiple 248 

targeted therapies, including those against HER2 and EGFR (Figure 6B).   249 
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Next, to investigate the importance of autophagy in promoting TGF-β-induced 250 

therapy resistance, we performed siRNA-mediated knockdown of ATG16L1, the 251 

autophagy marker we identified as upregulated in TGF-β treated cells. We first tested 252 

knockdown efficiency using four independent siRNAs and selected by western blot 253 

analysis siRNA_1 for subsequent drug screens (Figure 6C). We then screened A549 254 

with the same 119 drugs +/– TGF-β and treated with either a non-silencing siRNA or 255 

siRNA_1 targeting ATG16L1. Remarkably, ATG16L1 knockdown re-sensitized cells to 256 

29/71 (41%) of drugs for which TGF-β treatment led to increased resistance (Figure 257 

6D). Interestingly, these drugs included current standard of care therapies for small-cell 258 

lung cancer (SCLC), doxorubicin and topotecan, as well as anti-VEGFR therapies, 259 

regorafenib and axitinib, both of which have shown promising clinical benefits in early 260 

stage clinical trials against advanced non-small-cell lung cancer (NSCLC) [41, 42], and 261 

cabozantinib, a tyrosine kinase inhibitor that has shown efficacy along or in 262 

combination with erlotinib in treatment of EGFR wild-type NSCLC patients [43]. 263 

Analysis by pathways showed that autophagy inhibition on average re-sensitized cells 264 

to multiple targeted therapies, including c-MET, c-RET, FLT3, TAM2, and dihydrofolate 265 

reductase (DHFR) (Figure 6E). Together, our results support the hypothesis that TGF-266 

β-mediated therapy resistance is driven, in part, by autophagy, suggesting the potential 267 

use of autophagy inhibitors as a concurrent or adjuvant therapy to counter resistance. 268 

To determine if ATG16L1 was related to clinical outcomes, we analyzed 269 

ATG16L1 expression in gene expression data sets from patient tumors. Analysis of 270 

Kaplan Meier curves showed that low ATG16L1 expression is prognostic for improved 271 

overall survival in patients with lung and clear cell renal cancer (Figure 7A–C) and 272 

improved relapse-free survival in patients with colorectal cancer (Figure 7D). It is also 273 

worth noting that high ATG16L1 was prognostic for improved disease-free survival in 274 
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breast cancer (Figure 7E). However, despite the opposite trend in breast cancer, these 275 

analyses indicate ATG16L1 as an important prognostic marker of clinical response and 276 

cancer cell aggression. 277 

 278 

Discussion 279 

The progression of cancer from an indolent, slow-growing primary tumor 280 

to metastatic and therapy resistant disease is, at its foundation, an evolutionary 281 

process. Genetic and genomic dysregulation promotes heterogeneity in tumor cell 282 

populations [44], which provides raw materials for selection of the fittest cancer 283 

cells. During this process, mutations [45], epigenetic alterations [46], and gene 284 

expression changes [47] are selected that enable survival of individual cancer 285 

cells under the diverse environmental pressures not only within the tumor, but 286 

also during metastatic progression [48, 49] and the emergence of therapy 287 

resistance [50].  288 

Here, we combined methods rooted in evolutionary theory, such as 289 

phylogenetic inference, with pathway and network analyses, as well as 290 

experimental techniques, to yield new insights. By taking this novel approach to 291 

analyze a well-established system—TGF-β-induced EMT—we identified 292 

mechanisms of therapy resistance. Specifically, we found that EMT leads to 293 

increased production of intracellular ammonia. Ammonia is a by-product of 294 

protein breakdown and serves an important function in maintaining homeostasis 295 

in electrolyte concentration [51]. Recent evidence, however, also suggests that 296 

ammonia production is involved in regulating autophagy and pro-survival circuits 297 

that contribute to chemoresistance [34, 52]. Importantly, autophagy can lead to 298 

increased aggressiveness in cancer, perhaps as an adaptive response to cellular 299 
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stress. In our present study, downregulation of autophagy partially reversed 300 

EMT-induced therapy resistance, suggesting the potential benefits of concurrent 301 

uses of autophagy inhibitors with standard-of-care therapies. 302 

TGF-β has also been reported to induce metabolic reprogramming of 303 

stromal cells such as cancer-associated fibroblasts (CAFs), where CAFs 304 

overexpressing TGF-β ligands show increased autophagy and HIF-1α activation, 305 

and concomitant reduced oxidative phosphorylation [53]. The 306 

scaffolding/regulatory protein caveolin-1 – a functional regulator of TGF-β 307 

signaling – can play a key role in coordinating these responses [54, 55]. Thus, the 308 

nexus of TGF-β signaling, increased autophagy, and metabolic reprogramming 309 

may be a common design principle of multiple cell types. 310 

Interestingly, inhibition of autophagy consistently led to re-sensitization to 311 

c-Met inhibitors during EMT. The c-Met oncogene is one of the two most highly 312 

mutated tyrosine kinase receptors in NSCLC, and resistance to tyrosine kinase 313 

inhibitors (TKI) invariably follows after treatment [56]. Indeed, resistance to 314 

erlotinib is common in lung cancer, and ATG16L1 knockdown re-sensitized cells 315 

to increased EMT-induced erlotinib resistance. EMT has been shown as an 316 

important contributor to this resistance as TKI resistance NSCLC cell lines has a 317 

more mesenchymal phenotype, higher expression of mesenchymal markers such 318 

as Zeb-1 and vimentin, and downregulation of E-cadherin [57]. Recent evidence 319 

has shown that c-Met promotes anoikis-resistance and cell growth via activation 320 

of autophagy regulators, such as ATG5 and Beclin-1 [58]. These observations 321 

suggest that autophagy may be an important resistance mechanism and a 322 

combinatorial use of autophagy inhibitors with TKIs may increase therapeutic 323 

efficacy of TKIs and possibly prolong or reverse resistance.  324 
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 325 

Materials and Methods 326 

Cell Culture 327 

All cell lines were obtained from the Duke Cell Culture Facility. The Duke 328 

Cell Culture Facility routinely tests for mycoplasma and performs cell line 329 

authentication by short tandem repeat analysis. Cells were cultured in Dulbecco’s 330 

Modified Eagle Medium (DMEM) with fetal bovine serum (FBS) and 1% 331 

penicillin-streptomycin in a standard 37 °C tissue culture incubator with 5% CO2.  332 

 333 

RNA extraction, reverse transcription, and RT-qPCR 334 

RNA extraction, reverse transcription, and RT-qPCR were performed as 335 

previously described [59].  336 

 337 

Western blotting 338 

Cells were prepared and lysed in 1x radio-immunoprecipitation assay 339 

(RIPA) buffer mixed with 1x protease and phosphatase inhibitor cocktail (Roche). 340 

Cell lysates were incubated at 4°C for 20 minutes and centrifuged at 14,000 x g 341 

for 5 minutes. Cleared lysates were mixed with 4x Laemmli loading buffer and 342 

incubated at 95°C for 3 minutes. Lysates were separated in 4–12% NuPAGE 343 

Novex Bis-Tris gels (ThermoFisher). Proteins were transferred to nitrocellulose 344 

membrane (GE Healthcare Life Sciences) in 1x NuPAGE Transfer Buffer 345 

(ThermoFisher) for 2 hours at 75V at 4°C in the cold room. Membranes were 346 

blocked at room temperature using Starting Block T20 TBS Blocking Buffer 347 

(ThermoFisher). Primary antibodies were added to the blocking buffer and 348 

incubated at 4°C overnight. Membranes were washed two times for 5 minutes 349 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/365833doi: bioRxiv preprint 

https://doi.org/10.1101/365833
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

15 
 

each with phosphate buffered saline (PBS) and incubated with Licor goat anti-350 

mouse or goat anti-rabbit secondary antibodies diluted 1:20,000 in Starting Block 351 

buffer. Membranes were visualized using the Odyssey Fc imager (27402864). 352 

Primary antibodies used included GAPDH (C2415, Santa Cruz Biotechtology), 353 

ATG16L1 (8089T, Cell Signaling) and LC3 A/B (12741T, Cell Signaling) at 1:1000.  354 

 355 

Ammonia Production Assay 356 

A total of 200,000 cells were seeded in 6-cm dishes. At each time point, 357 

cells were washed with PBS, scraped, and lysed in Ammonia Assay Buffer 358 

provided in the Abcam ammonia assay kit (ab83360) after the end of each 359 

treatment time point. Ammonia production assays were performed after 360 

collecting all time points using the protocol recommended by the manufacturer.  361 

 362 

Cytoscape analysis 363 

Gene networks were analyzed by importing all available human data on 364 

each gene in the Universal Interaction Database Client using Cytoscape version 365 

3.5.1. All relevant networks of genes were merged to visualize interactions among 366 

genes. The Cytoscape files used to construct the networks are provided as merged 367 

networks 5 and 6 in Supplementary File 4. 368 

 369 

Phylogenetic reconstructions from gene expression data 370 

Distance-based dendogram analyses were performed by constructing a 371 

distance matrix calculated based on the entire microarray data set for each data 372 

set to be analyzed, using the genes as the characters, the raw expression value for 373 

each gene as the character states, and the samples as the taxa. The Neighbor 374 
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Joining method [60] was used for reconstructing phylogeny with distance 375 

matrices. To perform analysis based on maximum-likelihood (ML) and 376 

parsimony, the continuous gene expression data was converted into categorical 377 

variables. For example, for GSE23038, we used the passage 0 sample as an 378 

‘outgroup’, and converted the gene expression data for all other samples into 379 

either up-regulated, down-regulated, or constant relative to passage 0. The 380 

reliability of the parsimony method is generally considered to increase with an 381 

increasing number of informative characters [61-63].  Therefore, cut-off 382 

thresholds of up- and down-regulation were determined by calculating the 383 

maximum number of informative sites given different cut-offs, and a threshold 384 

was selected that provided the highest number of informative sites in each data 385 

set. ML and parsimony analyses were then performed based on converted data. 386 

ML analysis after data conversion was performed online on a free phylogeny 387 

platform PhyML 3.0 (14) whereas distance and parsimony tree constructions 388 

were performed using the APE [64] and Phangorn [65] packages implemented in 389 

R (15). Bootstrap tests of 100 pseudo-replicates were performed for all 390 

phylogenies to assess the branch support. Tree files were visualized in FigTree 391 

(Andrew Rambaut; http://tree.bio.ed.ac.uk/software/figtree/). 392 

 393 

High-throughput screening 394 

A549 cells were screened with the NCI Approved Oncology Drugs Set VI in the 395 

presence of vehicle (4 mM HCl and 2% BSA) or 4 ng/mL recombinant human 396 

TGF-β (R&D Systems). Briefly, A549 cells were dispensed using liquid handling 397 

into 384 well plates with no drug, DMSO, or 1 μM drug at cell plating densities of 398 

250 and 1000 cells/well. Plates were incubated at 37°C, and cell viability was 399 
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assayed by CellTiterGlo after 72 hours. Relative drug resistance or sensitivity was 400 

calculated as the fold change difference in CellTiterGlo value between vehicle-401 

treated and TGF-β-treated wells. To perform the screen in the context of 402 

ATG16L1 knockdown, 20 nM siRNA targeting ATG16L1 was delivered to A549 403 

cells by reverse transfection using RNAiMax and incubated at 37°C for 24 hours. 404 

After 24 hours, the drug screen was performed -/+ TGF-β as described above. 405 

All screens were performed in the Duke Functional Genomics Shared Resource. 406 

 407 

Correlation of ATG16L1 with clinical outcomes 408 

Kaplan Meier curves were generated based on patients stratified by ATG16L1 409 

expression level using R2: Genomics Analysis and Visualization Platform 410 

(https://hgserver1.amc.nl/cgi-bin/r2/main.cgi) and GEPIA (http://gepia.cancer-411 

pku.cn/). The scan option was used to automatically select the cut-off values in 412 

the R2 platform, and default settings were used for GEPIA.  413 

 414 
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Figure Legends 425 

 426 

Figure 1. An integrated framework of iterative systems-level analysis and 427 

experimental validation provides new insights. Large amounts of raw data, 428 

generated by new experimentation or re-analyzed from public databases (1), are 429 

analyzed by clustering approaches to easily visualize data topology (2). This 430 

visualization fosters new, deeper understanding that informs a new hypothesis 431 

(3). Experimental validation of the new hypothesis generates new data (4), which 432 

is analyzed and visualized as a system (5). 433 

 434 

Figure 2. Phylogenetic reconstruction provides a simple visualization tool 435 

to view temporal changes in gene expression data. A. Distance-based 436 

phylogeny of GSE23038; serial passage of normal prostate cells immortalized 437 

with hTERT using gene expression data as a continuous variable. B. Maximum-438 

likelihood and C. Maximum parsimony trees constructed based on gene 439 

expression data transformed to categorical variables. D. Single and E. Complete 440 

linkage hierarchical clustering provides similar groupings of passage numbers, 441 

but lacks the temporal structure. 442 

 443 

Figure 3. Phylogenetic clustering enables reconstruction of longitudinal data 444 

based on gene expression. A. Distance, maximum parsimony, and maximum-445 

likelihood dendograms of GSE17708; microarray analysis of A549 cells treated with 446 

TGF-β over 72 hours. B. Distance, maximum parsimony, and maximum-likelihood 447 

phylogeny construction of GSE12548; TGF-β and TNF-α treatment of human retinal 448 

pigment epithelium cells over 60 hours.  449 
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 450 

Figure 4. Visualization of tree topology reveals altered metabolism during 451 

epithelial-mesenchymal transition (EMT). A. The topology of the maximum-452 

likelihood reconstruction of GSE17708 showed an admixed clade at early time points in 453 

A549 cells with TGF-β treatment, with a clearly resolved clade of later time points after 454 

eight hours as phenotypic signal switched from epithelial to mesenchymal. B. 455 

Consistent with the tree topology, changes in EMT biomarkers E-cadherin and vimentin 456 

were not apparent until after eight hours of treatment. C. Growth curves of A549 cells 457 

treated with vehicle (blue circles) or TGF-β (red x) analyzed by IncuCyte time lapse 458 

imaging revealed TGF-β-induced growth inhibition by 48-72 hours. D. Pathway analysis 459 

of genes contributing to the bifurcation of early (<8 hours) and late (≥8 hours) time 460 

point clades revealed TGF-β-induced changes in amine metabolism pathways at the 461 

later time points as compared to the early time points. E. Ammonia production assays 462 

validated the prediction that TGF-β induces up-regulation of ammonia production.  463 

 464 

Figure 5. Epithelial-mesenchymal transition induces activation of autophagy and 465 

links to an amine production gene network. A. TGF-β-induced epithelial-466 

mesenchymal transition led to up-regulation of autophagy markers ATG16L1 and 467 

MAP1LC3A (LC3A/B). B. Cytoscape networks of amine production genes identified in 468 

Figure 4 showed few interactions between sub-networks. C. Addition of the autophagy 469 

regulator, ATG16L1 (yellow circle), acted as a central hub to connect all amine 470 

metabolism sub-networks. 471 

 472 

Figure 6. ATG16L1 knockdown rescues TGF-β-mediated chemo-resistance. A. A 473 

screen of 119 FDA-approved small molecule inhibitors demonstrated a broad increase 474 
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in chemoresistance following TGF-β treatment. Each black dot represents one 475 

compound. Dots above the 1 were differentially resistant in TGF-β-treated cells as 476 

compared to vehicle-treated cells; dots below the 1 were more sensitive in the TGF-β-477 

treated cells as compared to vehicle treated cells. B. Analysis of drug screen data by 478 

targets and pathways identified increased TGF-β-mediated resistance to several 479 

common chemotherapies, such as microtubule-associated and topoisomerase inhibitor 480 

therapies, and targeted therapies in lung cancer treatment, such as c-MET, VEGF, and 481 

EGFR (purple bars). C. Knockdown of ATG16L1 by siRNAs was validated by western 482 

blotting. siCtrl = non-silencing siRNA; si_1, si_2, si_4, si_5 are independent siRNAs 483 

targeting ATG16L1. D. A549 lung adenocarcinoma cells -/+ TGF-β and -/+ siATG16_1 484 

were screened against 119 FDA-approved compounds to identify drugs for which 485 

ATG16L1 rescued TGF-β-mediated therapy resistance. ATG16L1 knockdown re-486 

sensitized cells to multiple therapeutic agents. E. Pathway level analysis of compounds 487 

where TGF-β-mediated resistance was rescued by ATG16L1 knockdown.  488 

 489 

Figure 7. ATG16L1 is a prognostic biomarker of survival and progression in 490 

carcinoma patients. A. Low ATG16L1 expression is prognostic for improved overall 491 

survival in lung adenocarcinoma patients. B. Low ATG16L1 expression significantly 492 

predicts improved overall survival in kidney renal clear cell carcinoma patients. C. 493 

Lower ATG16L1 expression in lung adenocarcinoma from The Cancer Genome Atlas 494 

data set is prognostic for improved overall survival; data analyzed using GEPIA - 495 

http://gepia.cancer-pku.cn/. D. Low ATG16L1 expression trends with better relapse-496 

free survival in colorectal carcinoma patients. E. High levels of ATG16L1 are ATG16L1 is 497 

prognostic of increased disease-free survival in breast cancer patients.  498 

 499 
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