An integrative systems biology and experimental approach identifies
 convergence of epithelial plasticity, metabolism, and autophagy to promote
 chemoresistance

4

Shengnan Xu¹, Kathryn E. Ware¹, Yuantong Ding², So Young Kim³, Maya Sheth¹, Sneha
Rao⁴, Wesley Chan¹, Andrew J. Armstrong^{1,5}, William C. Eward⁴, Mohit K. Jolly^{6,7*}, and
Jason A. Somarelli^{1*}.

8

9 ¹Duke Cancer Institute and the Department of Medicine, Duke University Medical Center, Durham, NC, 27710; ²Department of Biology, Duke University Medical Center, 10 11 Durham, NC, 27710; ³Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC,2 7710; ⁴Department of Orthopaedic Surgery; 12 13 ⁵Solid Tumor Program and the Duke Prostate Center, Duke University Medical Center, 14 Durham, NC, 27710, USA; 6Center for Theoretical Biological Physics, 7Department of 15 Bioengineering, Rice University, Houston, TX 77005-1827, USA; 16 *Address correspondence to jason.somarelli@duke.edu or mkiolly.15@gmail.com 17 18 19 20 21 22 23 **Keywords.** Evolution, systems biology, autophagy, lung cancer, epithelial-mesenchymal 24 transition, tumor invasiveness, metabolism

26 Abstract

27 The evolution of therapeutic resistance is a major cause of death for patients with solid 28 tumors. The development of therapy resistance is shaped by the ecological dynamics 29 within the tumor microenvironment and the selective pressure induced by the host 30 immune system. These ecological and selective forces often lead to evolutionary 31 convergence on one or more pathways or hallmarks that drive progression. These 32 hallmarks are, in turn, intimately linked to each other through gene expression networks. Thus, a deeper understanding of the evolutionary convergences that occur at 33 34 the gene expression level could reveal vulnerabilities that could be targeted to treat therapy-resistant cancer. To this end, we used a combination of phylogenetic clustering, 35 36 systems biology analyses, and wet-bench molecular experimentation to identify 37 convergences in gene expression data onto common signaling pathways. We applied 38 these methods to derive new insights about the networks at play during TGF-β-39 mediated epithelial-mesenchymal transition in a lung cancer model system. 40 Phylogenetics analyses of gene expression data from TGF-β treated cells revealed 41 evolutionary convergence of cells toward amine-metabolic pathways and autophagy 42 during TGF- β treatment. Using high-throughput drug screens, we found that knockdown of the autophagy regulatory, ATG16L1, re-sensitized lung cancer cells to 43 44 cancer therapies following TGF- β -induced resistance, implicating autophagy as a TGF- β -45 mediated chemoresistance mechanism. Analysis of publicly-available clinical data sets 46 validated the adverse prognostic importance of ATG16L expression in multiple cancer types including kidney, lung, and colon cancer patients. These analyses reveal the 47 usefulness of combining evolutionary and systems biology methods with experimental 48 49 validation to illuminate new therapeutic vulnerabilities.

50

51 Introduction

52 Mammalian cells respond to external stimuli through a coordinated system of 53 signaling and gene expression circuitry. The inputs to this system are often the 54 ligands for receptors, which initiate signaling cascades that ultimately lead to 55 changes in gene expression. A cell can receive, process, and integrate multiple 56 simultaneous inputs and respond to them with a coordinated phenotypic 57 response [1, 2]. 58 Deregulation of the cellular signaling/response circuitry is a fundamental 59 theme in cancer at both the tissue and single-cell levels. Indeed, deregulated 60 intracellular signaling/gene expression circuitry is fundamental to many cancer 61 hallmarks [3], including sustaining proliferation [4, 5], evading growth 62 suppression [5], inducing angiogenesis [5], tumor-promoting inflammation[5], 63 invasion [6], and metastasis [7-9]. One well-studied signaling/expression circuit that is frequently 64 dysregulated in cancer is the transforming growth factor β (TGF- β)/SMAD axis. 65 66 The TGF- β /SMAD axis is a critical developmental pathway that controls 67 differentiation and proliferation [10]. TGF- β /SMAD signaling is also important in wound healing and fibrosis (reviewed in [11, 12]). One of the major phenotypic 68 69 outputs of TGF- β /SMAD signaling is the phenotypic switch from an epithelial to a 70 mesenchymal state, known traditionally as epithelial-mesenchymal transition 71 (EMT) (reviewed in [13]). In the context of cancer, TGF-β-mediated EMT 72 promotes downregulation of cell-cell adhesion and upregulation of migration and 73 invasion [14, 15]. This pro-invasive phenotype is usually activated at the expense 74 of proliferation [15, 16]: TGF-β induces potent cell cycle arrest through SMAD-75 mediated transcriptional activation of the cell cycle repressor, p21 [17]. TGF- β

also reprograms cellular metabolism [18] and induces autophagy [19]—a process
in which a cell self-digests its proteins and organelles. In addition to its cell
autonomous role in promoting invasiveness, TGF-β also acts non-cell
autonomously to create a tumor microenvironment more permissive to tumor
growth [20, 21]. These mechanisms can often drive resistance to chemotherapy
and multiple targeted therapies [22, 23].

82 However, the abovementioned effects of TGF- β /SMAD-induced EMT are typically studied in isolation with focus on a few nodes of the pathway, hence 83 84 neglecting the effects of crosstalk among multiple signaling pathways. Such crosstalk can often generate feedback loops with nonlinear dynamics, giving rise 85 86 to emergent, complex, and non-intuitive behavior [24]. Hence, a systems biology 87 approach integrating computational and experimental components can be 88 essential to elucidating the dynamics of underlying interconnected cellular 89 circuitry and identifying the fundamental organizational principles driving tumor 90 progression [25]. Here we used such an approach, incorporating multiple systems 91 biology tools to analyze the dynamics of TGF- β -mediated EMT and to 92 experimentally validate the computationally-derived insights (Figure 1). 93 Cancer progression is an evolutionary process of selection over time [26, 94 27]. Therefore, we postulated that tools developed for tracing evolutionary 95 histories may provide new insights. One of the most commonly-used methods of 96 inferring ancestral relationships is phylogenetics. Phylogenetics uses a data 97 matrix of character states to infer evolutionary relationships between groups 98 [28]. Although phylogenetics was originally developed to reconstruct ancestral 99 relationships between species, phylogenetic inference has also been applied to

diverse data sets for which no underlying ancestral relationships exist, such asgeography, linguistics, or astrophysics [28].

102 Given the flexibility of phylogenetics as a clustering tool for multiple data 103 types and contexts, we hypothesized that analysis of time-course gene expression 104 data could provide crucial information about how circuits are integrated to lead 105 to a given phenotype. We identified a convergence of gene expression data on 106 amine metabolism pathways following TGF-β-induced EMT, and validated up-107 regulation of ammonia production using wet bench experimentation. 108 Interestingly, we also identified ATG16L1, a regulator of autophagy, as a central 109 node in an ammonia production gene network, suggesting connections between 110 elevated amine metabolism, EMT, and autophagy. ATG16L1 was also found to be upregulated during TGF-β-induced EMT. Finally, using high throughput drug 111 112 screens, we showed that siRNA-mediated inhibition of the autophagy regulator, 113 ATG16L1, rescued TGF-β-mediated chemo-resistance. Together, this iterative 114 combination of systems-based analyses and experimental validations suggests 115 that TGF-β-mediated EMT converges on a gene expression network to induce 116 autophagy and altered metabolism that can be therapeutically targeted to 117 overcome chemoresistance. 118 119 120 121 122

123

125 Results

126 127	Phylogenetics analyses provide a simple and reliable tool to visualize gene
128	expression dynamics
129	To test the feasibility and effectiveness of using phylogenetics as a
130	clustering tool to analyze gene expression data, we tested if phylogenetic trees
131	could recapitulate the temporal order of gene expression data collected at
132	different time points. To do this, we constructed dendograms from publicly-
133	available microarray data for immortalized prostate cells collected every 10
134	passages from 0 to 80 passages (GSE23038, [29]).
135	We first used distance-based trees to infer temporal relationships among
136	the samples. We first used distance-based trees to infer temporal relationships
137	among the samples. Distance-based trees use a data matrix comprised of gene
138	expression values as a continuous variable without the need for binning gene
139	expression data into categorical variables of being upregulated, unchanged, and
140	downregulated. Distance-based construction of a rooted tree with root at passage
141	0 produced a tree topology that, with the exception of passage 70, clustered
142	samples according to their temporal order from passage 10 to 80 (Figure 2A).
143	We also analyzed GSE23038 [29] using maximum-likelihood and
144	parsimony phylogenetics methods. The raw data matrix was converted into three
145	character states based on a neutral evolution model, JC69, before being used as
146	input for these two methods of tree construction. Importantly, for all three
147	methods, trees constructed using gene expression data recapitulated the known
148	temporal structure of the data with robust bootstrap support (Figure 2A-C,
149	bootstrap values indicated above branches). A comparison of the three cladistical

150	methods with clustering revealed that hierarchical clustering was unable to
151	accurately reconstruct the temporal order of passages (Figure 2D-E).
152	Similarly, we performed phylogenetic clustering on additional data sets
153	where samples had been analyzed longitudinally, including GSE17708 [30],
154	microarray data from A549 lung adenocarcinoma cells treated with TGF- $\boldsymbol{\beta}$ over a
155	period of 72 hours, and GSE12548, microarray data from human ARPE-19 retinal
156	pigment epithelium cells treated with TGF- β and TNF- α over 60 hours [31]. For
157	both of these data sets, phylogenetic clustering reconstructed the temporal order
158	of treatments with strong bootstrap support (Figure 3A and B).
159	
160	Analyzing dynamics of TGF- eta treatment through visualization of tree structure
161	reveals two distinct temporally resolved clades
162	A major advantage of clustering is its ability to easily visualize
163	relationships between large data sets and to derive novel useful insights. For
164	example, re-analysis of microarray data from A549 cells treated with TGF- β over
165	72 hours (GSE17708) revealed two distinctive patterns in the resulting
166	phylogenies. First, early time points (0–8 hours) were haphazardly organized in
167	clades and sub-clades, where replicates of samples were admixed, indicating that
168	phylogenetic analyses were not able to provide a clear signal based on the
169	expression data that would predict timing of treatment (Figure 4A). Second, the
170	later time points (\geq 8 hours) were well resolved, suggesting the presence of a
171	clear signal emerging in the gene expression data following long term treatment
172	with TGF-β (Figure 4A).
173	Consistent with a convergence of signal at later time points, RT-qPCR

analysis of the epithelial marker, E-cadherin, and the mesenchymal marker,

175	vimentin, demonstrated that E-cadherin suppression and vimentin activation
176	were not apparent until this bifurcation of early admixed time-points vs. resolved
177	late time-points (Figure 4B). Likewise, our time lapse imaging analysis of growth
178	rate between vehicle-treated and TGF- β -treated A549 cells showed that
179	differences in growth rate between the two conditions were not observed until
180	\sim 72 hours after the initiation of treatment (Figure 4C), consistent with reports
181	demonstrating that EMT induces cell cycle arrest [32, 33]. These experimental
182	results suggest that the timing of both gene expression and phenotypic traits
183	associated with EMT are consistent with the convergence of an emerging signal at
184	late time points within the dendograms.
185	Next, we extracted genes that were differentially expressed across the two
186	major clades of early and late treatment times. Pathway analysis of these genes
187	showed that multiple amine-metabolism pathways were significantly altered
188	during TGF- β treatment (Figure 4D). To experimentally test if ammonia
189	metabolism was altered during TGF- β treatment, we performed ammonia
190	production assays on A549 cells. Importantly, we found that ammonia production
191	was altered significantly upon TGF- β treatment at later time points, with little
192	change in ammonia production during earlier time points (Figure 4E). Together,
193	these analyses demonstrated the utility of simple visualizations, such as
194	phylogenetic trees and clustering dendograms, to yield new testable hypotheses.
195	
196	Gene expression networks couple ammonia production to autophagy
197	Previous research has identified a connection between up-regulation of
198	ammonia production and induction of autophagy (7). Based on this connection,

199 we tested if TGF- β -induced EMT led to an increase in autophagy markers. In

200 support of this hypothesis, TGF-β treatment led to upregulation of autophagy 201 markers LC3A/B and ATG16L1 (Figure 5A). To better understand the 202 connections between ammonia production and autophagy, we used Cytoscape to 203 construct gene regulatory networks related to amine metabolism genes and 204 autophagy regulators. We constructed gene networks that included the ammonia 205 production genes identified by the pathway analysis, along with the autophagy 206 markers LC3A/B and ATG16L1 that we identified in our western blots to be 207 activated upon TGF-β treatment. Although we found few gene-gene interactions 208 among amine metabolism genes alone (Figure 5B), when we added the 209 autophagy regulator ATG16L1 to this network, it connected the entire set of 210 previously-isolated amine metabolism sub-networks (Figure 5C). LC3A/B was a 211 node in the ATG16L1 network (**Supplementary File 4**). Our results suggest that 212 TGF-β-mediated EMT is associated with increased amine production and 213 upregulation of autophagy. It remains to be tested in this system if the ammonia 214 production induces autophagy, as has been demonstrated previously in both 215 yeast and mouse embryonic fibroblasts [34], or if TGF-β-induced autophagy 216 upregulation leads to more ammonia. However, our results demonstrate a 217 connection between TGF-β-mediated EMT, altered amine production, and 218 upregulation of autophagy.

219

220 Autophagy inhibition re-sensitizes cells to TGF-β-induced chemoresistance

Our data revealed that TGF-β-induced EMT leads to ammonia production and
upregulation of autophagy. Interestingly, both EMT and autophagy are known to be
involved in chemoresistance. EMT can drive chemoresistance in multiple cancers [35Likewise, autophagy is a pro-survival mechanism in response to cellular stresses,

such as hypoxia and nutrient deprivation, and is increasingly implicated in resistance to
cancer treatments [39, 40]. Integrating our observations with these reports, we
hypothesized that EMT-induced drug resistance is mediated, at least in part, by elevated
autophagy.

229 To test this hypothesis, we used high-throughput drug screens of 119 FDA-230 approved small-molecule anti-cancer agents. To do this, we first tested if TGF-B-231 mediated EMT led to chemoresistance. We screened A549 cells treated with either 232 vehicle or TGF-β and plated at both low and high density. After 72 hours of incubation 233 with each drug, the overall cell viability was analyzed with CellTiterGlo. We first 234 performed quality control analyses of the screens. Linear regression of the empty wells 235 and DMSO-treated wells showed virtually no relationship between the CellTiterGlo 236 value and the position on the plate when comparing the same plate setup across 237 multiple plates ($R^2 = 0.0862$), suggesting that the screen results did not suffer from 238 plate effects (**Supplementary Figure 1**). In contrast, the correlation coefficients in 239 drug-containing wells were greater than 0.8 between high and low cell density for both 240 vehicle- and TGF-β-treated conditions, suggesting high reproducibility across replicate 241 plates, when drug is present in the well (Supplementary Figure 1).

242 Given the lack of apparent plate effects and strong reproducibility between 243 replicate screens, we investigated whether TGF- β induced chemoresistance. Consistent 244 with our hypothesis, TGF- β treatment increased resistance to 60% (71/119) of the 245 compounds tested, as evaluated by an increase in CellTiterGlo absorbance as compared 246 to vehicle-treated control wells (**Figure 6A**). Analysis of these compounds by pathway 247 targets showed that TGF- β induced resistance to both broad spectrum chemotherapies, 248 such as microtubule-targeting agents and topoisomerase inhibitors, as well as multiple 249 targeted therapies, including those against HER2 and EGFR (Figure 6B).

250 Next, to investigate the importance of autophagy in promoting TGF-β-induced 251 therapy resistance, we performed siRNA-mediated knockdown of ATG16L1, the 252 autophagy marker we identified as upregulated in TGF-^β treated cells. We first tested 253 knockdown efficiency using four independent siRNAs and selected by western blot 254 analysis siRNA 1 for subsequent drug screens (Figure 6C). We then screened A549 255 with the same 119 drugs +/- TGF- β and treated with either a non-silencing siRNA or siRNA 1 targeting ATG16L1. Remarkably, ATG16L1 knockdown re-sensitized cells to 256 257 29/71 (41%) of drugs for which TGF- β treatment led to increased resistance (Figure 258 **6D**). Interestingly, these drugs included current standard of care therapies for small-cell 259 lung cancer (SCLC), doxorubicin and topotecan, as well as anti-VEGFR therapies, 260 regorafenib and axitinib, both of which have shown promising clinical benefits in early 261 stage clinical trials against advanced non-small-cell lung cancer (NSCLC) [41, 42], and 262 cabozantinib, a tyrosine kinase inhibitor that has shown efficacy along or in 263 combination with erlotinib in treatment of EGFR wild-type NSCLC patients [43]. 264 Analysis by pathways showed that autophagy inhibition on average re-sensitized cells 265 to multiple targeted therapies, including c-MET, c-RET, FLT3, TAM2, and dihydrofolate 266 reductase (DHFR) (Figure 6E). Together, our results support the hypothesis that TGF-267 β -mediated therapy resistance is driven, in part, by autophagy, suggesting the potential 268 use of autophagy inhibitors as a concurrent or adjuvant therapy to counter resistance. 269 To determine if ATG16L1 was related to clinical outcomes, we analyzed 270 ATG16L1 expression in gene expression data sets from patient tumors. Analysis of 271 Kaplan Meier curves showed that low ATG16L1 expression is prognostic for improved 272 overall survival in patients with lung and clear cell renal cancer (Figure 7A-C) and 273 improved relapse-free survival in patients with colorectal cancer (Figure 7D). It is also 274 worth noting that high ATG16L1 was prognostic for improved disease-free survival in

breast cancer (Figure 7E). However, despite the opposite trend in breast cancer, these
analyses indicate ATG16L1 as an important prognostic marker of clinical response and
cancer cell aggression.

278

279 Discussion

280 The progression of cancer from an indolent, slow-growing primary tumor 281 to metastatic and therapy resistant disease is, at its foundation, an evolutionary 282 process. Genetic and genomic dysregulation promotes heterogeneity in tumor cell 283 populations [44], which provides raw materials for selection of the fittest cancer 284 cells. During this process, mutations [45], epigenetic alterations [46], and gene 285 expression changes [47] are selected that enable survival of individual cancer 286 cells under the diverse environmental pressures not only within the tumor, but 287 also during metastatic progression [48, 49] and the emergence of therapy 288 resistance [50].

289 Here, we combined methods rooted in evolutionary theory, such as 290 phylogenetic inference, with pathway and network analyses, as well as 291 experimental techniques, to yield new insights. By taking this novel approach to 292 analyze a well-established system—TGF-β-induced EMT—we identified 293 mechanisms of therapy resistance. Specifically, we found that EMT leads to 294 increased production of intracellular ammonia. Ammonia is a by-product of 295 protein breakdown and serves an important function in maintaining homeostasis 296 in electrolyte concentration [51]. Recent evidence, however, also suggests that 297 ammonia production is involved in regulating autophagy and pro-survival circuits 298 that contribute to chemoresistance [34, 52]. Importantly, autophagy can lead to 299 increased aggressiveness in cancer, perhaps as an adaptive response to cellular

300 stress. In our present study, downregulation of autophagy partially reversed 301 EMT-induced therapy resistance, suggesting the potential benefits of concurrent 302 uses of autophagy inhibitors with standard-of-care therapies. 303 TGF-β has also been reported to induce metabolic reprogramming of 304 stromal cells such as cancer-associated fibroblasts (CAFs), where CAFs 305 overexpressing TGF- β ligands show increased autophagy and HIF-1 α activation, 306 and concomitant reduced oxidative phosphorylation [53]. The 307 scaffolding/regulatory protein caveolin-1 – a functional regulator of TGF- β 308 signaling – can play a key role in coordinating these responses [54, 55]. Thus, the 309 nexus of TGF- β signaling, increased autophagy, and metabolic reprogramming 310 may be a common design principle of multiple cell types. 311 Interestingly, inhibition of autophagy consistently led to re-sensitization to 312 c-Met inhibitors during EMT. The c-Met oncogene is one of the two most highly 313 mutated tyrosine kinase receptors in NSCLC, and resistance to tyrosine kinase 314 inhibitors (TKI) invariably follows after treatment [56]. Indeed, resistance to 315 erlotinib is common in lung cancer, and ATG16L1 knockdown re-sensitized cells 316 to increased EMT-induced erlotinib resistance. EMT has been shown as an 317 important contributor to this resistance as TKI resistance NSCLC cell lines has a 318 more mesenchymal phenotype, higher expression of mesenchymal markers such 319 as Zeb-1 and vimentin, and downregulation of E-cadherin [57]. Recent evidence

320 has shown that c-Met promotes anoikis-resistance and cell growth via activation

of autophagy regulators, such as ATG5 and Beclin-1 [58]. These observations

322 suggest that autophagy may be an important resistance mechanism and a

323 combinatorial use of autophagy inhibitors with TKIs may increase therapeutic

324 efficacy of TKIs and possibly prolong or reverse resistance.

325	
326	Materials and Methods
327	Cell Culture
328	All cell lines were obtained from the Duke Cell Culture Facility. The Duke
329	Cell Culture Facility routinely tests for mycoplasma and performs cell line
330	authentication by short tandem repeat analysis. Cells were cultured in Dulbecco's
331	Modified Eagle Medium (DMEM) with fetal bovine serum (FBS) and 1%
332	penicillin-streptomycin in a standard 37 °C tissue culture incubator with 5% CO_2 .
333	
334	RNA extraction, reverse transcription, and RT-qPCR
335	RNA extraction, reverse transcription, and RT-qPCR were performed as
336	previously described [59].
337	
338	Western blotting
339	Cells were prepared and lysed in 1x radio-immunoprecipitation assay
340	(RIPA) buffer mixed with 1x protease and phosphatase inhibitor cocktail (Roche).
341	Cell lysates were incubated at 4° C for 20 minutes and centrifuged at 14,000 x g
342	for 5 minutes. Cleared lysates were mixed with 4x Laemmli loading buffer and
343	incubated at 95°C for 3 minutes. Lysates were separated in 4–12% NuPAGE
344	Novex Bis-Tris gels (ThermoFisher). Proteins were transferred to nitrocellulose
345	membrane (GE Healthcare Life Sciences) in 1x NuPAGE Transfer Buffer
346	(ThermoFisher) for 2 hours at 75V at 4° C in the cold room. Membranes were
347	blocked at room temperature using Starting Block T20 TBS Blocking Buffer
348	(ThermoFisher). Primary antibodies were added to the blocking buffer and
349	incubated at 4°C overnight. Membranes were washed two times for 5 minutes

350	each with phosphate buffered saline (PBS) and incubated with Licor goat anti-
351	mouse or goat anti-rabbit secondary antibodies diluted 1:20,000 in Starting Block
352	buffer. Membranes were visualized using the Odyssey Fc imager (27402864).
353	Primary antibodies used included GAPDH (C2415, Santa Cruz Biotechtology),
354	ATG16L1 (8089T, Cell Signaling) and LC3 A/B (12741T, Cell Signaling) at 1:1000.
355	
356	Ammonia Production Assay
357	A total of 200,000 cells were seeded in 6-cm dishes. At each time point,
358	cells were washed with PBS, scraped, and lysed in Ammonia Assay Buffer
359	provided in the Abcam ammonia assay kit (ab83360) after the end of each
360	treatment time point. Ammonia production assays were performed after
361	collecting all time points using the protocol recommended by the manufacturer.
362	
363	Cytoscape analysis
364	Gene networks were analyzed by importing all available human data on
365	each gene in the Universal Interaction Database Client using Cytoscape version
366	3.5.1. All relevant networks of genes were merged to visualize interactions among
367	genes. The Cytoscape files used to construct the networks are provided as merged
368	networks 5 and 6 in Supplementary File 4.
369	
370	Phylogenetic reconstructions from gene expression data
371	Distance-based dendogram analyses were performed by constructing a
372	distance matrix calculated based on the entire microarray data set for each data
373	set to be analyzed, using the genes as the characters, the raw expression value for
374	each gene as the character states, and the samples as the taxa. The Neighbor

375 Joining method [60] was used for reconstructing phylogeny with distance 376 matrices. To perform analysis based on maximum-likelihood (ML) and 377 parsimony, the continuous gene expression data was converted into categorical 378 variables. For example, for GSE23038, we used the passage 0 sample as an 379 'outgroup', and converted the gene expression data for all other samples into 380 either up-regulated, down-regulated, or constant relative to passage 0. The reliability of the parsimony method is generally considered to increase with an 381 382 increasing number of informative characters [61-63]. Therefore, cut-off thresholds of up- and down-regulation were determined by calculating the 383 384 maximum number of informative sites given different cut-offs, and a threshold 385 was selected that provided the highest number of informative sites in each data 386 set. ML and parsimony analyses were then performed based on converted data. 387 ML analysis after data conversion was performed online on a free phylogeny 388 platform PhyML 3.0 (14) whereas distance and parsimony tree constructions 389 were performed using the APE [64] and Phangorn [65] packages implemented in 390 R (15). Bootstrap tests of 100 pseudo-replicates were performed for all 391 phylogenies to assess the branch support. Tree files were visualized in FigTree 392 (Andrew Rambaut; http://tree.bio.ed.ac.uk/software/figtree/). 393

0,0

394 High-throughput screening

A549 cells were screened with the NCI Approved Oncology Drugs Set VI in the
presence of vehicle (4 mM HCl and 2% BSA) or 4 ng/mL recombinant human
TGF-β (R&D Systems). Briefly, A549 cells were dispensed using liquid handling
into 384 well plates with no drug, DMSO, or 1 μM drug at cell plating densities of
250 and 1000 cells/well. Plates were incubated at 37°C, and cell viability was

- 400 assayed by CellTiterGlo after 72 hours. Relative drug resistance or sensitivity was
- 401 calculated as the fold change difference in CellTiterGlo value between vehicle-
- 402 treated and TGF- β -treated wells. To perform the screen in the context of
- 403 ATG16L1 knockdown, 20 nM siRNA targeting ATG16L1 was delivered to A549
- 404 cells by reverse transfection using RNAiMax and incubated at 37°C for 24 hours.
- 405 After 24 hours, the drug screen was performed -/+ TGF- β as described above.
- 406 All screens were performed in the Duke Functional Genomics Shared Resource.
- 407
- 408 Correlation of ATG16L1 with clinical outcomes
- 409 Kaplan Meier curves were generated based on patients stratified by ATG16L1
- 410 expression level using R2: Genomics Analysis and Visualization Platform
- 411 (https://hgserver1.amc.nl/cgi-bin/r2/main.cgi) and GEPIA (http://gepia.cancer-
- 412 <u>pku.cn/</u>). The scan option was used to automatically select the cut-off values in
- 413 the R2 platform, and default settings were used for GEPIA.
- 414

415

416 Acknowledgements

JAS wishes to acknowledge support from Meg and Bill Lindenberger, the Paul and
Shirley Friedland Fund, the Triangle Center for Evolutionary Medicine, and funds
raised in memory of Muriel E. Rudershausen (riding4research.org). The authors
wish to thank Dr. Jeffrey Townsend and Dr. Herbert Levine for many helpful
discussions in preparation of the manuscript. MKJ is supported by a training
fellowship from the Gulf Coast Consortia on Computational Cancer Biology
Training Program (CPRIT Grant No. RP170593).

425 Figure Legends

427	Figure 1. An integrated framework of iterative systems-level analysis and
428	experimental validation provides new insights. Large amounts of raw data,
429	generated by new experimentation or re-analyzed from public databases (1), are
430	analyzed by clustering approaches to easily visualize data topology (2). This
431	visualization fosters new, deeper understanding that informs a new hypothesis
432	(3). Experimental validation of the new hypothesis generates new data (4), which
433	is analyzed and visualized as a system (5).
434	
435	Figure 2. Phylogenetic reconstruction provides a simple visualization tool
436	to view temporal changes in gene expression data. A. Distance-based
437	phylogeny of GSE23038; serial passage of normal prostate cells immortalized
438	with hTERT using gene expression data as a continuous variable. B. Maximum-
439	likelihood and C. Maximum parsimony trees constructed based on gene
440	expression data transformed to categorical variables. D. Single and E. Complete
441	linkage hierarchical clustering provides similar groupings of passage numbers,
442	but lacks the temporal structure.
443	
444	Figure 3. Phylogenetic clustering enables reconstruction of longitudinal data
445	based on gene expression. A. Distance, maximum parsimony, and maximum-
446	likelihood dendograms of GSE17708; microarray analysis of A549 cells treated with
447	TGF- β over 72 hours. B. Distance, maximum parsimony, and maximum-likelihood
448	phylogeny construction of GSE12548; TGF- β and TNF- α treatment of human retinal
449	pigment epithelium cells over 60 hours.

450

100	
451	Figure 4. Visualization of tree topology reveals altered metabolism during
452	epithelial-mesenchymal transition (EMT). A. The topology of the maximum-
453	likelihood reconstruction of GSE17708 showed an admixed clade at early time points in
454	A549 cells with TGF- β treatment, with a clearly resolved clade of later time points after
455	eight hours as phenotypic signal switched from epithelial to mesenchymal. B.
456	Consistent with the tree topology, changes in EMT biomarkers E-cadherin and vimentin
457	were not apparent until after eight hours of treatment. C. Growth curves of A549 cells
458	treated with vehicle (blue circles) or TGF- β (red x) analyzed by IncuCyte time lapse
459	imaging revealed TGF- β -induced growth inhibition by 48-72 hours. D. Pathway analysis
460	of genes contributing to the bifurcation of early (<8 hours) and late (\ge 8 hours) time
461	point clades revealed TGF- β -induced changes in amine metabolism pathways at the
462	later time points as compared to the early time points. E. Ammonia production assays
463	validated the prediction that TGF- β induces up-regulation of ammonia production.
464	
465	Figure 5. Epithelial-mesenchymal transition induces activation of autophagy and
466	links to an amine production gene network. A. TGF-β-induced epithelial-
467	mesenchymal transition led to up-regulation of autophagy markers ATG16L1 and
468	MAP1LC3A (LC3A/B). B. Cytoscape networks of amine production genes identified in
469	Figure 4 showed few interactions between sub-networks. C. Addition of the autophagy
470	regulator, ATG16L1 (yellow circle), acted as a central hub to connect all amine
471	metabolism sub-networks.
472	
. – .	

473 Figure 6. ATG16L1 knockdown rescues TGF-β-mediated chemo-resistance. A. A
474 screen of 119 FDA-approved small molecule inhibitors demonstrated a broad increase

475 in chemoresistance following TGF-β treatment. Each black dot represents one 476 compound. Dots above the 1 were differentially resistant in TGF- β -treated cells as 477 compared to vehicle-treated cells; dots below the 1 were more sensitive in the TGF- β -478 treated cells as compared to vehicle treated cells. **B.** Analysis of drug screen data by 479 targets and pathways identified increased TGF-β-mediated resistance to several 480 common chemotherapies, such as microtubule-associated and topoisomerase inhibitor 481 therapies, and targeted therapies in lung cancer treatment, such as c-MET, VEGF, and 482 EGFR (purple bars). C. Knockdown of ATG16L1 by siRNAs was validated by western 483 blotting. siCtrl = non-silencing siRNA; si_1, si_2, si_4, si_5 are independent siRNAs targeting ATG16L1. **D.** A549 lung adenocarcinoma cells -/+ TGF-β and -/+ siATG16_1 484 485 were screened against 119 FDA-approved compounds to identify drugs for which 486 ATG16L1 rescued TGF-β-mediated therapy resistance. ATG16L1 knockdown re-487 sensitized cells to multiple therapeutic agents. E. Pathway level analysis of compounds 488 where TGF-β-mediated resistance was rescued by ATG16L1 knockdown. 489 490 Figure 7. ATG16L1 is a prognostic biomarker of survival and progression in 491 carcinoma patients. A. Low ATG16L1 expression is prognostic for improved overall 492 survival in lung adenocarcinoma patients. **B.** Low ATG16L1 expression significantly 493 predicts improved overall survival in kidney renal clear cell carcinoma patients. C. 494 Lower ATG16L1 expression in lung adenocarcinoma from The Cancer Genome Atlas 495 data set is prognostic for improved overall survival; data analyzed using GEPIA -496 http://gepia.cancer-pku.cn/. **D**. Low ATG16L1 expression trends with better relapse-

497 free survival in colorectal carcinoma patients. **E.** High levels of ATG16L1 are ATG16L1 is

498 prognostic of increased disease-free survival in breast cancer patients.

499

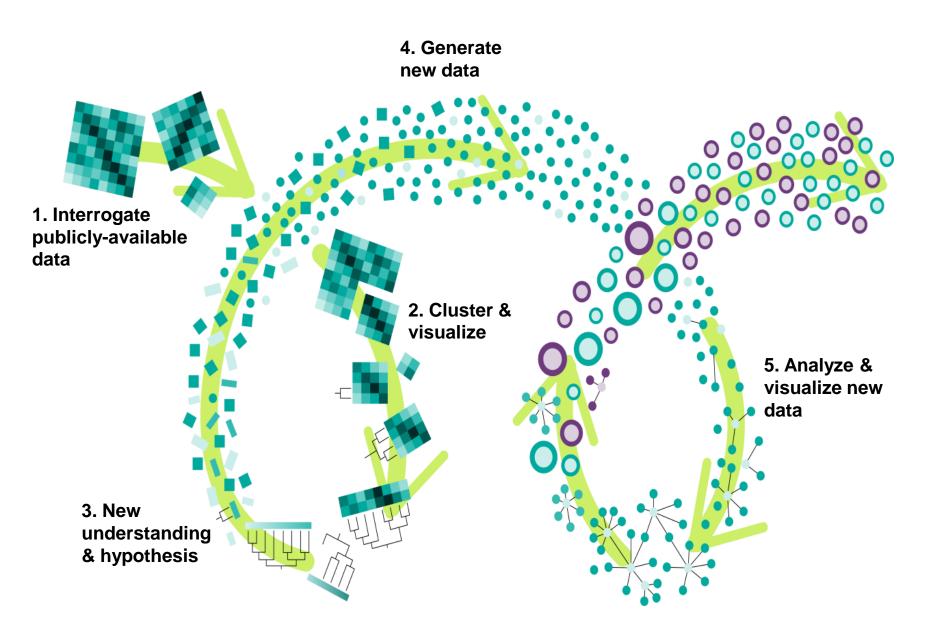
500 **References**

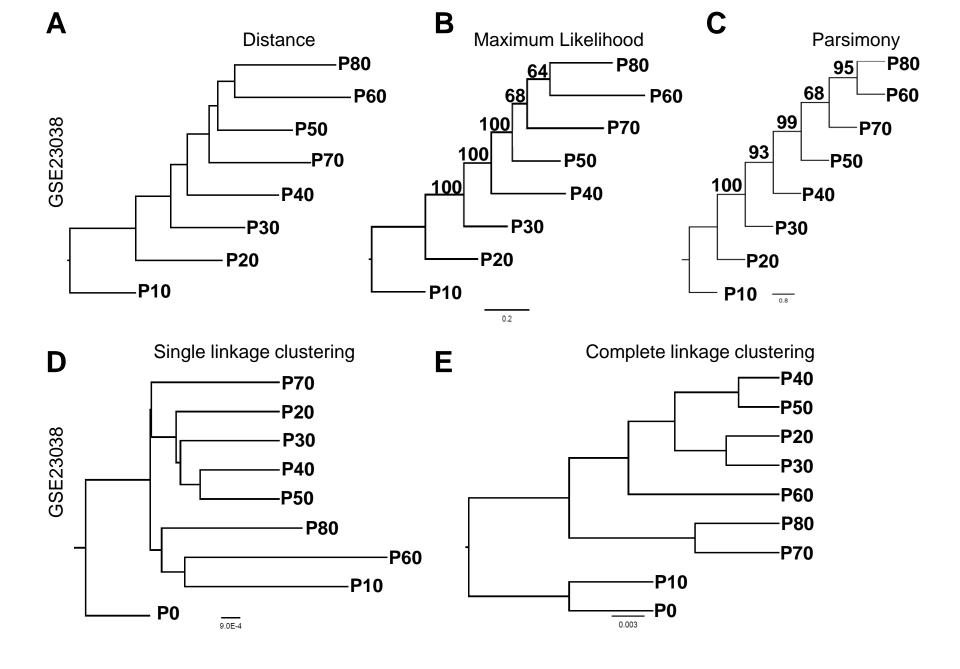
F 00	1	
502	1.	Chaiwanon, J., et al., Information Integration and Communication in Plant Growth
503	0	<i>Regulation.</i> Cell, 2016. 164 (6): p. 1257-1268.
504	2.	Pawson, C.T. and J.D. Scott, <i>Signal integration through blending, bolstering and</i>
505		<i>bifurcating of intracellular information.</i> Nat Struct Mol Biol, 2010. 17 (6): p. 653-
506	_	8.
507	3.	Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell,
508		2011. 144 (5): p. 646-74.
509	4.	Janda, E., et al., Oncogenic Ras/Her-2 mediate hyperproliferation of polarized
510		epithelial cells in 3D cultures and rapid tumor growth via the PI3K pathway.
511		Oncogene, 2002. 21 (33): p. 5148-59.
512	5.	Sever, R. and J.S. Brugge, <i>Signal transduction in cancer</i> . Cold Spring Harb Perspect
513		Med, 2015. 5 (4).
514	6.	van Golen, K.L., et al., Mitogen activated protein kinase pathway is involved in
515		RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast
516		<i>cancer.</i> Clin Exp Metastasis, 2002. 19 (4): p. 301-11.
517	7.	Iqbal, W., et al., Targeting signal transduction pathways of cancer stem cells for
518		therapeutic opportunities of metastasis. Oncotarget, 2016. 7(46): p. 76337-76353.
519	8.	Janda, E., et al., Ras and TGF[beta] cooperatively regulate epithelial cell plasticity
520	•	and metastasis: dissection of Ras signaling pathways. J Cell Biol, 2002. 156 (2): p.
521		299-313.
522	9.	Brown, W.S., et al., <i>Covalent Targeting of Fibroblast Growth Factor Receptor</i>
523	<i>.</i>	Inhibits Metastatic Breast Cancer. Mol Cancer Ther, 2016. 15 (9): p. 2096-106.
524	10.	Kitisin, K., et al., <i>Tgf-Beta signaling in development.</i> Sci STKE, 2007. 2007 (399): p.
525	10.	cm1.
526	11.	Walton, K.L., K.E. Johnson, and C.A. Harrison, <i>Targeting TGF-beta Mediated SMAD</i>
527	11.	Signaling for the Prevention of Fibrosis. Front Pharmacol, 2017. 8: p. 461.
528	12.	Carthy, J.M., <i>TGFbeta signaling and the control of myofibroblast differentiation:</i>
528 529	12.	Implications for chronic inflammatory disorders. J Cell Physiol, 2018. 233(1): p.
530		98-106.
	10	Nawshad, A., et al., <i>Transforming growth factor-beta signaling during epithelial-</i>
531	13.	
532		mesenchymal transformation: implications for embryogenesis and tumor
533	1.4	<i>metastasis.</i> Cells Tissues Organs, 2005. 179 (1-2): p. 11-23.
534	14.	Papageorgis, P., TGFbeta Signaling in Tumor Initiation, Epithelial-to-Mesenchymal
535		<i>Transition, and Metastasis.</i> J Oncol, 2015. 2015 : p. 587193.
536	15.	Fuxe, J., T. Vincent, and A. Garcia de Herreros, <i>Transcriptional crosstalk between</i>
537		TGF-beta and stem cell pathways in tumor cell invasion: role of EMT promoting
538		Smad complexes. Cell Cycle, 2010. 9 (12): p. 2363-74.
539	16.	Huang, S.S. and J.S. Huang, TGF-beta control of cell proliferation. J Cell Biochem,
540		2005. 96 (3): p. 447-62.
541	17.	Moustakas, A., et al., Mechanisms of TGF-beta signaling in regulation of cell growth
542		and differentiation. Immunol Lett, 2002. 82 (1-2): p. 85-91.
543	18.	Jiang, L., et al., Metabolic reprogramming during TGFbeta1-induced epithelial-to-
544		<i>mesenchymal transition.</i> Oncogene, 2015. 34 (30): p. 3908-16.

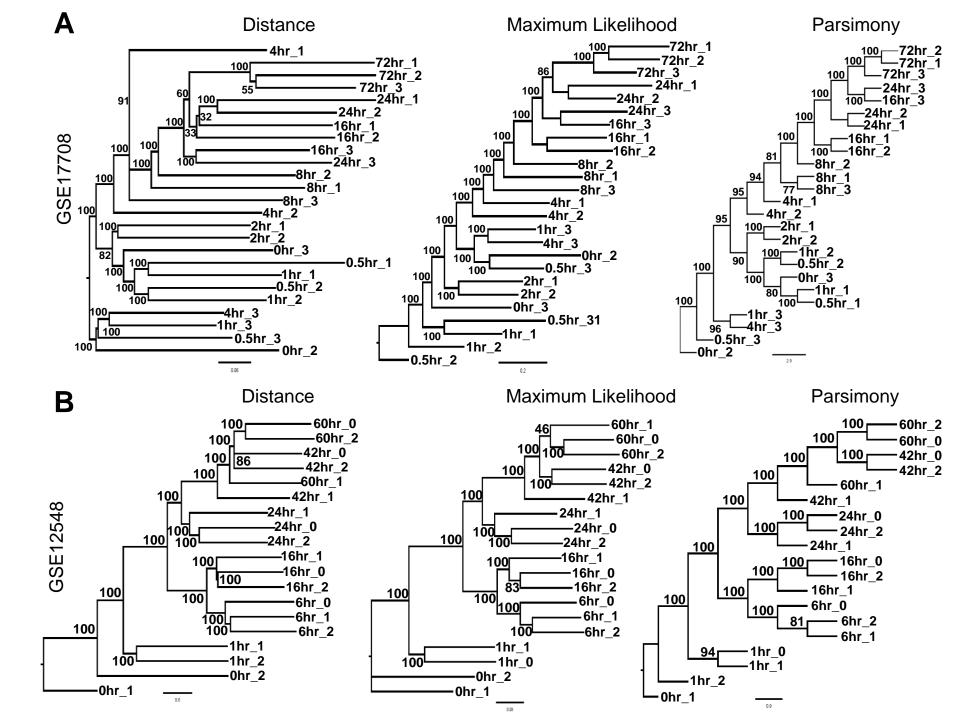
545 546	19.	Kiyono, K., et al., <i>Autophagy is activated by TGF-beta and potentiates TGF-beta-</i> <i>mediated growth inhibition in human hepatocellular carcinoma cells.</i> Cancer Res,
547	20	2009. 69 (23): p. 8844-52.
548	20.	Hazelbag, S., et al., <i>Transforming growth factor-beta1 induces tumor stroma and</i>
549	21	reduces tumor infiltrate in cervical cancer. Hum Pathol, 2002. 33 (12): p. 1193-9.
550	21.	Gigante, M., L. Gesualdo, and E. Ranieri, <i>TGF-beta: a master switch in tumor</i>
551	22	<i>immunity.</i> Curr Pharm Des, 2012. 18 (27): p. 4126-34.
552	22.	Yao, Z., et al., <i>TGF-beta IL-6 axis mediates selective and adaptive mechanisms of</i>
553 554		<i>resistance to molecular targeted therapy in lung cancer.</i> Proc Natl Acad Sci U S A,
	22	2010. 107 (35): p. 15535-40.
555	23.	Brunen, D., et al., <i>TGF-beta: an emerging player in drug resistance.</i> Cell Cycle, 2012, 12 (10), p. 2060, 9.
556	24	2013. 12 (18): p. 2960-8.
557	24.	Magi, S., Iwamoto, K., and Okada-Hatakeyama, <i>Current status of mathematical</i>
558		<i>modeling of cancer – From the viewpoint of cancer hallmarks</i> . Current Opinion in
559	~	Systems Biology, 2017. 2 : p. 39-48.
560	25.	Anderson, A.R. and V. Quaranta, <i>Integrative mathematical oncology</i> . Nat Rev
561		Cancer, 2008. 8 (3): p. 227-34.
562	26.	Gerlinger, M., et al., <i>Cancer: evolution within a lifetime.</i> Annu Rev Genet, 2014. 48 :
563	~	p. 215-36.
564	27.	Maley, C.C., et al., <i>Classifying the evolutionary and ecological features of neoplasms.</i>
565		Nat Rev Cancer, 2017. 17 (10): p. 605-619.
566	28.	Somarelli, J.A., et al., <i>PhyloOncology: Understanding cancer through phylogenetic</i>
567		<i>analysis.</i> Biochim Biophys Acta, 2017. 1867 (2): p. 101-108.
568	29.	Kogan-Sakin, I., et al., <i>Mutant p53(R175H) upregulates Twist1 expression and</i>
569		promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell
570		Death Differ, 2011. 18 (2): p. 271-81.
571	30.	Sartor, M.A., et al., ConceptGen: a gene set enrichment and gene set relation
572		<i>mapping tool.</i> Bioinformatics, 2010. 26 (4): p. 456-63.
573	31.	Takahashi, E., et al., Tumor necrosis factor-alpha regulates transforming growth
574		factor-beta-dependent epithelial-mesenchymal transition by promoting
575		<i>hyaluronan-CD44-moesin interaction.</i> J Biol Chem, 2010. 285 (6): p. 4060-73.
576	32.	Lovisa, S., et al., Epithelial-to-mesenchymal transition induces cell cycle arrest and
577		parenchymal damage in renal fibrosis. Nat Med, 2015. 21 (9): p. 998-1009.
578	33.	Vega, S., et al., Snail blocks the cell cycle and confers resistance to cell death. Genes
579		Dev, 2004. 18 (10): p. 1131-43.
580	34.	Cheong, H., T. Lindsten, and C.B. Thompson, Autophagy and ammonia. Autophagy,
581		2012. 8 (1): p. 122-3.
582	35.	Du, B. and J.S. Shim, Targeting Epithelial-Mesenchymal Transition (EMT) to
583		Overcome Drug Resistance in Cancer. Molecules, 2016. 21 (7).
584	36.	Singh, A. and J. Settleman, EMT, cancer stem cells and drug resistance: an
585		emerging axis of evil in the war on cancer. Oncogene, 2010. 29 (34): p. 4741-51.
586	37.	Fischer, K.R., et al., Epithelial-to-mesenchymal transition is not required for lung
587		<i>metastasis but contributes to chemoresistance.</i> Nature, 2015. 527 (7579): p. 472-
588		6.
589	38.	Zheng, X., et al., Epithelial-to-mesenchymal transition is dispensable for metastasis
590		<i>but induces chemoresistance in pancreatic cancer.</i> Nature, 2015. 527 (7579): p.
591		525-30.
592	39.	Sui, X., et al., Autophagy and chemotherapy resistance: a promising therapeutic
593		<i>target for cancer treatment.</i> Cell Death Dis, 2013. 4 : p. e838.

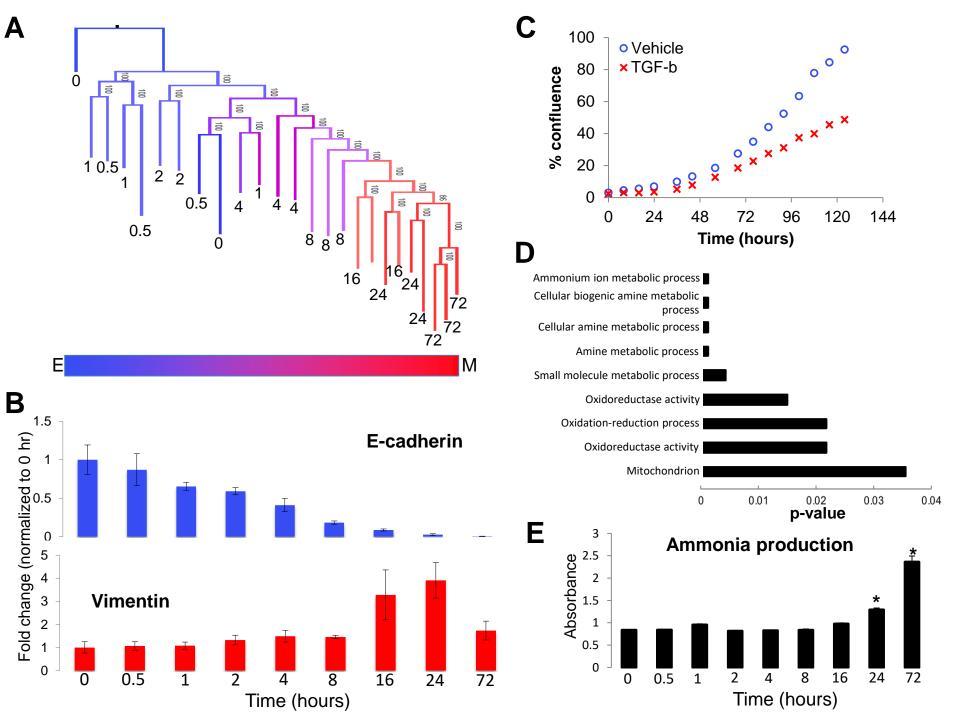
594 595	40.	Yang, Z.J., et al., <i>The role of autophagy in cancer: therapeutic implications.</i> Mol Cancer Ther, 2011. 10 (9): p. 1533-41.
596	41.	Schiller, J.H., et al., <i>Efficacy and safety of axitinib in patients with advanced non-</i>
597		<i>small-cell lung cancer: results from a phase II study.</i> J Clin Oncol, 2009. 27 (23): p.
598		3836-41.
599	42.	Mross, K., et al., A phase I dose-escalation study of regorafenib (BAY 73-4506), an
600		inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced
601		<i>solid tumors.</i> Clin Cancer Res, 2012. 18 (9): p. 2658-67.
602	43.	Neal, J.W., et al., Erlotinib, cabozantinib, or erlotinib plus cabozantinib as second-
603		line or third-line treatment of patients with EGFR wild-type advanced non-small-
604		cell lung cancer (ECOG-ACRIN 1512): a randomised, controlled, open-label,
605		<i>multicentre, phase 2 trial.</i> Lancet Oncol, 2016. 17 (12): p. 1661-1671.
606	44.	Nowell, P.C., The clonal evolution of tumor cell populations. Science, 1976.
607		194 (4260): p. 23-8.
608	45.	Lipinski, K.A., et al., Cancer Evolution and the Limits of Predictability in Precision
609		<i>Cancer Medicine.</i> Trends Cancer, 2016. 2 (1): p. 49-63.
610	46.	Feinberg, A.P., Epigenetic stochasticity, nuclear structure and cancer: the
611		implications for medicine. J Intern Med, 2014. 276(1): p. 5-11.
612	47.	Ostrow, S.L., et al., Cancer evolution is associated with pervasive positive selection
613		on globally expressed genes. PLoS Genet, 2014. 10(3): p. e1004239.
614	48.	Casasent, A.K., M. Edgerton, and N.E. Navin, Genome evolution in ductal carcinoma
615		<i>in situ: invasion of the clones.</i> J Pathol, 2017. 241 (2): p. 208-218.
616	49.	Seyfried, T.N. and L.C. Huysentruyt, On the origin of cancer metastasis. Crit Rev
617		Oncog, 2013. 18 (1-2): p. 43-73.
618	50.	Gatenby, R. and J. Brown, The Evolution and Ecology of Resistance in Cancer
619		<i>Therapy.</i> Cold Spring Harb Perspect Med, 2018. 8 (3).
620	51.	Kurtz, I., P.D. Dass, and S. Cramer, The importance of renal ammonia metabolism
621		to whole body acid-base balance: a reanalysis of the pathophysiology of renal
622		<i>tubular acidosis.</i> Miner Electrolyte Metab, 1990. 16 (5): p. 331-40.
623	52.	Eng, C.H., et al., Ammonia derived from glutaminolysis is a diffusible regulator of
624		<i>autophagy.</i> Sci Signal, 2010. 3 (119): p. ra31.
625	53.	Guido, C., et al., Metabolic reprogramming of cancer-associated fibroblasts by TGF-
626		beta drives tumor growth: connecting TGF-beta signaling with "Warburg-like"
627		<i>cancer metabolism and L-lactate production.</i> Cell Cycle, 2012. 11 (16): p. 3019-35.
628	54.	Razani, B., et al., Caveolin-1 regulates transforming growth factor (TGF)-
629		beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J
630		Biol Chem, 2001. 276 (9): p. 6727-38.
631	55.	Shiroto, T., et al., <i>Caveolin-1 is a critical determinant of autophagy, metabolic</i>
632		switching, and oxidative stress in vascular endothelium. PLoS One, 2014. 9 (2): p.
633		e87871.
634	56.	Pasquini, G. and G. Giaccone, C-MET inhibitors for advanced non-small cell lung
635		<i>cancer.</i> Expert Opin Investig Drugs, 2018. 27 (4): p. 363-375.
636	57.	Rastogi, I., et al., Mechanism of c-Met and EGFR tyrosine kinase inhibitor resistance
637		through epithelial mesenchymal transition in non-small cell lung cancer. Biochem
638		Biophys Res Commun, 2016. 477 (4): p. 937-944.
639	58.	Barrow-McGee, R., et al., Beta 1-integrin-c-Met cooperation reveals an inside-in
640		survival signalling on autophagy-related endomembranes. Nat Commun, 2016. 7:
641		p. 11942.

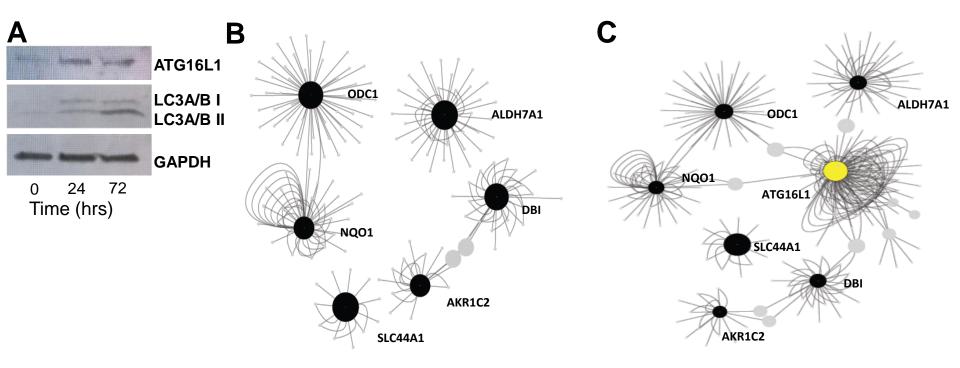
- 642 59. Somarelli, J.A., et al., *Mesenchymal-Epithelial Transition in Sarcomas Is Controlled*643 *by the Combinatorial Expression of MicroRNA 200s and GRHL2.* Mol Cell Biol,
 644 2016. **36**(19): p. 2503-13.
- 645 60. Saitou, N. and M. Nei, *The neighbor-joining method: a new method for*646 *reconstructing phylogenetic trees.* Mol Biol Evol, 1987. 4(4): p. 406-25.
- 647 61. Hillis, D.M., and James J. Bull *An empirical test of bootstrapping as a method for*648 *assessing confidence in phylogenetic analysis.* Systematic biology 1993. 42(2): p.
 649 182-192.
- 650 62. Wiens, J.J., *Polymorphic characters in phylogenetic systematics*. Systematic 651 biology, 1995. **44**(4): p. 482-500.
- 652 63. Hillis, D.M., J.P. Huelsenbeck, and C.W. Cunningham, *Application and accuracy of* 653 *molecular phylogenies.* Science, 1994. **264**(5159): p. 671-7.
- 654 64. Paradis, E., J. Claude, and K. Strimmer, *APE: Analyses of Phylogenetics and* 655 *Evolution in R language.* Bioinformatics, 2004. **20**(2): p. 289-90.
- 656 65. Schliep, K.P., *phangorn: phylogenetic analysis in R.* Bioinformatics, 2011. 27(4): p.
 657 592-3.
- 658

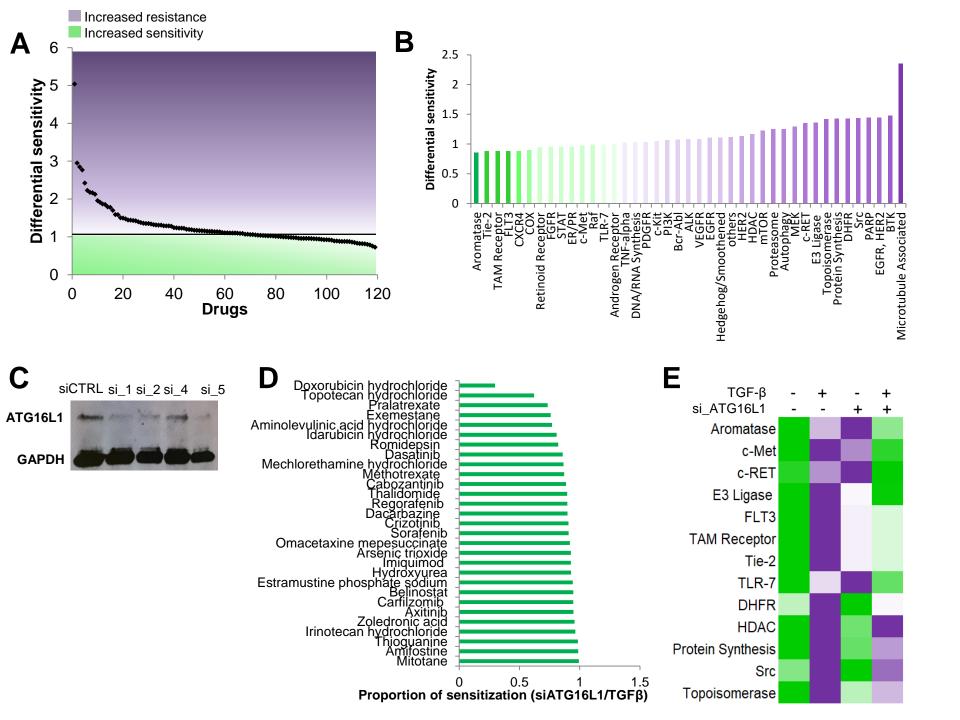


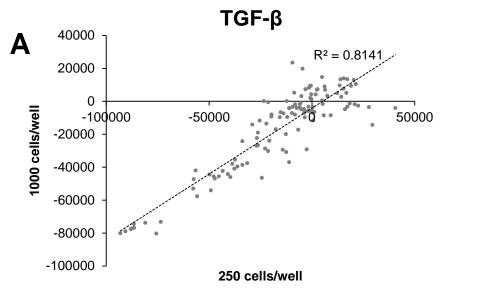


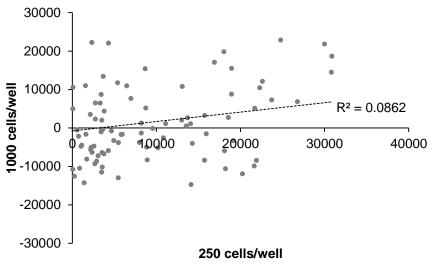




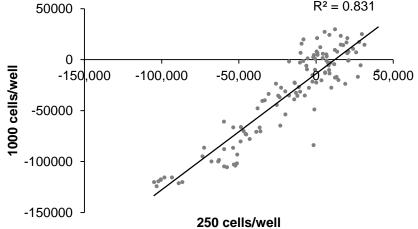








R² = 0.831



Β

