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Abstract 38 
 39 
Single-particle electron cryo-microscopy and computational image classification can be used to 40 

analyze structural variability in macromolecules and their assemblies.  In some cases, a particle 41 

may contain different regions that each display a range of distinct conformations.  We have 42 

developed strategies, implemented within the Frealign and cisTEM image processing packages, to 43 

focus classify on specific regions of a particle and detect potential covariance.  The strategies are 44 

based on masking the region of interest using either a 2-D mask applied to reference projections 45 

and particle images, or a 3-D mask applied to the 3-D volume.  We show that focused classification 46 

approaches can be used to study structural allostery, a concept that is likely to gain more 47 

importance as datasets grow in size, allowing the distinction of more structural states and smaller 48 

differences between states.  Finally, we apply the approaches to an experimental dataset containing 49 

the HIV-1 Transactivation Response (TAR) element RNA fused into the large bacterial ribosomal 50 

subunit, to deconvolve structural mobility within localized regions of interest. 51 

 52 

Highlights 53 
 54 

• Description of different image classification strategies in single-particle cryo-EM 55 
• Quantitative evaluation of two classification methods using simulated data 56 
• Application of the two classification methods to an experimental dataset 57 

 58 
 59 
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1. Introduction 63 

 64 
Single-particle electron cryo-microscopy (cryo-EM) enables the visualization of macromolecules and their 65 
assemblies under near-native conditions [1].  In recent years, the technique has gained popularity, in part 66 
due to its ability to determine macromolecular structures at near-atomic resolution and without the need for 67 
crystallization [2].  While advances in resolution [3,4] have expanded the scope of the technique over the 68 
last five years, the ability to decipher structural heterogeneity is an ongoing area of development in the field 69 
[5,6].  Given that macromolecules, and especially their assemblies, are dynamic, image classification opens 70 
up the possibility to address novel types of questions pertaining to the molecular mechanisms underlying 71 
their function.   72 
 73 
Structural heterogeneity can be either compositional or conformational in nature.  Compositional 74 
heterogeneity means that the stoichiometry of subunits within an assembly varies within the dataset, such 75 
as particles containing or missing an additional, loosely associated protein factor.  Conformational 76 
heterogeneity assumes that particles are uniform in composition, but the constituent components within 77 
each object can be flexible and can adopt one of several structurally different states.  Conformational 78 
heterogeneity can be further subdivided into either discrete or continuous conformational heterogeneity.  In 79 
the former case, the macromolecule would adopt one of several distinct structural states, each represented 80 
by a local minimum within the energy landscape describing all possible states.  In the latter case, no distinct 81 
local energy minima exist, and the flexible regions can move in a mostly random manner.  Finally, a fourth 82 
case can be defined as containing a combination of the above scenarios.   83 
 84 
To understand structural heterogeneity within a single-particle experiment, the particle images are subject 85 
to a classification procedure, which assigns each particle to one of potentially many different classes.  In 86 
the simplest scenario, a global classification strategy assigns each particle into a specific class on the basis 87 
of variability across the entire image.  Different classification approaches have been developed, including 88 
supervised and unsupervised techniques, and numerous variations have been implemented to analyze 89 
structural heterogeneity [6-11].  Global 3-D classification does not require specific knowledge about the 90 
type and location of the heterogeneity, making it an integral part of today’s processing workflow of virtually 91 
all single-particle software packages.  Given that macromolecular assemblies can be highly dynamic, and 92 
because every subdivision leads to fewer particles within each class (and thus lower signal and loss of 93 
resolution), the fundamental disadvantage of a global classification strategy is the limited number of well-94 
defined classes that can be recovered from a dataset of a given size.  This is particularly true when one 95 
wants to resolve variability in small, heterogeneous regions that may easily be lost during a global 96 
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classification procedure.  In contrast to a global classification strategy, “focused classification” zooms in 97 
on a region or feature of interest, in order to understand structural heterogeneity in a localized manner [12-98 
15].  Focused classification can overcome the potential particle number limit associated with global 99 
classification by reducing the number of classes needed to represent the local variability and (in principle) 100 
excluding other regions of the particle from the analysis.  This approach is particularly advantageous when 101 
regions outside of the area of interest are themselves dominated by structural heterogeneity.  For example, 102 
minor domain movements within an otherwise dynamic macromolecular assembly might be difficult to 103 
resolve using global classification techniques alone because the majority of the signal guiding the 104 
classification procedure is dominated by regions outside of the area of interest.  In another example, two 105 
large regions can exhibit independent variability, and a global classification may not converge on a solution 106 
that represents all possible states, or the number of states required leaves too few particles in the 107 
corresponding reconstructions, limiting their resolution.  In general, focused classification provides an 108 
alternative means to deconstruct highly dynamic and/or heterogeneous datasets, reducing the analysis to a 109 
more tractable problem.  Numerous successful applications of focused classification have been used to 110 
understand the independent movements of regions of large macromolecular complexes, such as the 111 
spliceosome and the ribosome [16-19].   112 
 113 
Focused classification requires selecting a region of interest within the particle and excluding the remaining 114 
density.  In the simplest implementation, a 3-D mask is applied to the reconstructed densities after each 115 
iteration to select the area of interest, and standard global classification is then performed using the masked 116 
reconstructions as references.  A typical example of this is the classification of membrane proteins that 117 
contain detergent micelles: the 3-D mask is used to exclude the heterogeneous micelle while focusing on 118 
the protein [20].  The primary disadvantage of this “3-D masking” approach is that a projection of the 119 
density, which only contains the masked region, is compared with the particle image, which contains the 120 
masked region in addition to all other overlapping density, and this additional density can obscure the 121 
features to be classified.  To reduce the problem of density discrepancy, the density outside the mask could 122 
be included in the reference after applying a low-pass filter [21,22]. The filter removes noise from the 123 
disordered regions of the particle while maintaining valid low-resolution signal to minimize the mismatch 124 
between reference and images. To further reduce density mismatch, another approach has been introduced, 125 
whereby, in addition to masking the 3-D object, the density outside the mask is computationally subtracted 126 
from the particle images [12,13,15].  This leaves a projection of the masked 3-D object and a density-127 
subtracted 2-D particle image, which contains comparable features that can be used for classification.  128 
Another advantage of the “density subtraction” approach is that it can, in principle, be implemented in a 129 
hierarchical fashion, in order to subtract increasingly finer features in a step-wise manner.  The (non-130 
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hierarchical) density subtraction approach has been used to improve heterogeneous regions of numerous 131 
macromolecular complexes that could not be improved using a global classification approach alone 132 
[12,13,15,19,23].  However, there are also disadvantages to this method.  First, density subtraction requires 133 
an accurate measure of the signal in each particle image to properly subtract the desired density.  Especially 134 
when looking at small regions and subtracting density corresponding to larger volumes, the subtraction may 135 
leave residual signal in the raw images, a problem that is exacerbated if the complex exhibits greater 136 
heterogeneity than is accounted for in the references used for density subtraction.  The residual signal from 137 
the incomplete density subtraction can interfere with subsequent classification and obscure the variability 138 
in smaller regions (especially if applied in a hierarchical context).  We and others have introduced another 139 
approach, where focused classification is performed in 2-D, with masks imposed on both the projection 140 
images and the experimental data [14,22].  In this alternative approach, a 3-D mask is defined for a region 141 
of interest, projected along the view determined for each particle and applied as a 2-D mask to the particle 142 
images and reference projections.  Such an approach has been described in the context of bootstrap 143 
resampling and using the cross-correlation function to find the optimal solution [14] and has now been 144 
implemented within a likelihood-based framework in Frealign [8,22] and cisTEM [24].  The advantage of 145 
the “2-D masking” approach with focused classification is that it does not require signal subtraction, while 146 
constraining the classification to the area in the 2-D images that contain the region of interest and removing 147 
noise outside this region.   148 
 149 
A major advantage of any focused classification approach is its ability to selectively classify features of 150 
interest within a distinct region of a cryo-EM map, which opens up numerous potential directions.  First, it 151 
enables classification of pseudo-symmetric features in a particle that are related by a symmetry operator 152 
but not strictly symmetric due to independently dynamic mobility [15,25,26].  For example, surface-153 
exposed regions of macromolecules may not obey the strict symmetry that may apply to the particle core, 154 
leading to loss of resolution in the surface regions of otherwise symmetric particles such as icosahedral 155 
viruses (reviewed in [27]).  To classify pseudo-symmetric regions of a particle, the images are first aligned 156 
according to a common reference frame compatible with the pseudo-symmetry.  The symmetry is then 157 
dropped, and multiple alignments for each particle image are determined, corresponding to all possible 158 
symmetry-related views, and an asymmetric reconstruction is calculated using each particle image multiple 159 
times to include all symmetry-related alignments.  This effectively multiplies the number of particles in a 160 
dataset by the number of different possible symmetry operations and enables classification of different 161 
views into different classes, thereby resolving the heterogeneity in the pseudo-symmetric regions.  This 162 
approach can, therefore, improve the resolution of density that would otherwise be an average of multiple 163 
structural states due to symmetrization.  The approach has been applied, for example, to resolve density 164 
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detail that was not visible after global classification alone [26], and to reveal genome structures within viral 165 
particles [28] (for other examples, see [27]).  Second, selectively focusing on discrete asymmetric units can 166 
reveal covariant heterogeneity within the data.  For example, two different regions located on opposite sides 167 
of a particle might be structurally coupled with each other.  If the variability of two regions is random, there 168 
should be no correlation in the assignment of these regions to different classes during pseudo-symmetric 169 
classification.  However, if correlation is present, this indicates covariance in the two regions.  In the 170 
simplest case, counting of the number of matching asymmetric units within the same class, and comparison 171 
with a random distribution, would provide evidence for structural allostery.  This phenomenon represents 172 
an area of development that may facilitate understanding global structural landscapes of dynamic 173 
macromolecular machines.   174 
 175 
In this manuscript, we explore several different focused classification strategies with both synthetic and 176 
experimental data.  We show the advantages and disadvantages of the “2-D masking” and “3-D masking” 177 
approaches, and additionally explore their ability to discover density covariances within otherwise distinct 178 
regions of a reconstruction.  Finally, we show how focused classification can be applicable to heterogeneous 179 
experimental datasets, highlighting a particular test case that is relevant to visualizing mounted targets on 180 
scaffolds using single-particle cryo-EM.   181 
 182 

2. Materials and methods 183 

 184 

2.1 Generation of synthetic humanoid datasets. Synthetic datasets were generated as previously described 185 
[8]. Briefly, we randomly shifted and rotated projection images of humanoid structures, added noise, a CTF 186 
(to have CTF-modulated noise components), envelope function, and a final layer of noise. To reduce 187 
spurious correlations associated with the CTF for covariance analysis, we used a 640-pixel box size for 188 
projecting the data, and prior to the addition of noise and the CTF. 28 distinct datasets were made, 189 
corresponding to the different structural combinations of arms, hands, and feet (Figure 1). Combined 190 
datasets corresponding to the three distinct scenarios were then generated from the individual 28 datasets. 191 
Each combined dataset contained 10,000 particles (pixel size 5.24, box size 80 after Fourier resampling) 192 
with each of the 28 sub-datasets selected randomly.  193 
 194 
2.2 Particle assignment during focused classification.  To facilitate quantitative assessment, we made the 195 
assumption that each classified particle belongs to the class with the highest probability (occupancy in 196 
Frealign/cisTEM).  At higher SNRs, this was an insignificant assumption, as most occupancies were close 197 
to 1; however, at lower SNRs, particles are represented by lower occupancies in multiple classes with slight 198 
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differences between them.  By assuming that each asymmetric unit corresponds to the class with the highest 199 
occupancy, we could simplify the calculation of k coefficients and other analyses.   200 
 201 
2.3 Measures for evaluating the accuracy of classification.   To evaluate the accuracy of each classification 202 
trajectory, we define the following measures.  For each asymmetric unit in each class:  203 

- TP (true positive) — starting occupancy 100, ending marginal occupancy greater than all other 204 

classes. 	205 

- FP (false positive) — starting occupancy 0, ending marginal occupancy greater than all other 206 
classes. 	207 

- TN (true negative) — starting occupancy 0, ending occupancy less than the class with greatest 208 
marginal occupancy  209 

- FN (false negative) — starting occupancy 100, ending occupancy less than the class with greatest 210 
marginal occupancy  211 

- N: number of observations — TP+FP+TN+FN  212 
 213 
Using the definitions above, the following metrics are defined:  214 

Accuracy (the relative observed agreement among raters, or Po) = (TP + TN) / N 215 
Sensitivity = True Positive Rate (TPR) = TP / (TP + FN) 216 
Specificity = True Negative Rate (TNR) = TN / (TN + FP) 217 
Kappa: 218 

𝑃𝑜 − 𝑃𝑒
1 − 𝑃𝑒 = 1 −

1 − 𝑃𝑜
1 − 𝑃𝑒 219 

 220 
where Po is the accuracy, above, and Pe is the probability of chance agreement.  221 
Youden’s Index (J Statistic) = TPR + TNR – 1. 222 

 223 
2.4 Merging cryo-EM difference maps.  Merging of the difference maps in Figure 4 was performed 224 
according to the following procedure.  A merge volume was generated with 0s for the pixel values. 225 
Subsequently, for each pairwise difference map, and for each voxel, if the value of the voxel is greater than 226 
the value of this voxel in the merged map, set this as the value in the verged map.   227 
 228 
2.5 Covariance analysis of separate regions of cryo-EM density maps.  To determine whether different 229 
regions correlate with one another, normalized covariances were computed comparing fractional density 230 
occupancies of distinct components.  An identical procedure was used for both scenarios 2 and 3.  First, we 231 
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performed 3-D focused classification, with the requested number of classes, k, identical to the expected 232 
number of non-degenerate asymmetric units.  Binary masks were created for each region of interest (ROI), 233 
namely the hand in each of two positions, the near foot, and the far foot.  The masks encompassed the ROI, 234 
with minimal incursion into neighboring density.  A soft edge was not employed, because the mask was 235 
solely used for the purpose of computing fractional density occupancy values.  For each of the k resulting 236 
maps, and for each ROI, the mask was used to extract the resulting density.  Subsequently, the approximate 237 
mass in the ROI was calculated using the “volume” command implemented within the EMAN1 processing 238 
suite [29].  The resulting mass was optionally normalized to the true mass arising from a perfect 239 
classification to judge the quality of the classification, although this step is not strictly necessary for 240 
normalized covariance analysis.  Finally, the normalized covariance matrix Rij was computed as:  241 

𝑅() =
𝐶()
𝐶(( ∗ 𝐶))

 242 

where Cij refers to the covariance between two components i and j. To make sure that there was adequate 243 
sampling, the resulting volumes represent an average of 3 independent runs, using random starting class 244 
occupancy values for initiating each classification.    245 
 246 
2.6 Ribosome preparation. The 57-nt HIV-1 TAR element was appended inserted into twelve different 247 
helices (H9, H12, H19, H24, H25, H31, H45, H46, H59, H63, H68 and H98) by replacement of the loop 248 
residues to screen for optimal attachment sites. These twelve were chosen based on their location on the 249 
periphery of the ribosome and lack of tertiary contacts. All insertions resulted in viable bacterial growth 250 
(albeit much slower in some cases). H45 qualitatively yielded the most complete density with the least 251 
apparent mobility of the attached RNA (data not shown). Uniformly labeled ribosomes were prepared in 252 
the same way for all insertions. To ensure that all ribosomes contain the appended construct, a well-253 
established protocol for introducing and characterizing site-specific mutations into Escherichia coli 254 
ribosomes was used [30,31]. Briefly, a Δ7 prrn E. coli strain SQZ10 [32], which has a genomic deletion of 255 
all rRNA genes, was used. The rRNA genes are supplied by a plasmid that also contains the levansucrase 256 
gene and confers kanamycin resistance (Plasmid 1, pHK-rrnC-sacB). Levansucrase expression is lethal to 257 
E. coli when grown on sucrose-containing media [33]. An additional ampicillin-resistant plasmid 258 
containing the rRNA genes with the RNA construct of interest inserted (Plasmid 2, p278) was then 259 
transformed and grown in liquid culture. Cells were plated on media containing ampicillin and 5% sucrose 260 
to select for those that had lost Plasmid 1 but retain Plasmid 2. To confirm the selection, colonies were 261 
plated on Kan media to ensure that they cannot grow.  262 
 263 
Insertion of TAR into helix 45 of p278 was carried out using site-directed ligase-independent mutagenesis 264 
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[34]. Mutant plasmids were then transformed into SQZ10 cells and selected using the strategy described 265 
above. Mutant ribosomes were purified by first growing to mid-logarithmic phase (OD550 = 0.3-0.5) in 500 266 
mL Luria Broth while shaking at 37 °C then chilled on ice for 30 minutes and pelleted by centrifugation. 267 
The cell pellet was then resuspended in 20 mL Resuspension Buffer (20 mM Tris-HCl, pH 7.5, 10 mM 268 
MgCl2, 100 mM NH4Cl, 0.5 mM EDTA, 2 mM CaCl2, 6 mM β-mercaptoethanol). The resulting 269 
resuspension was lysed through a French Press three times, filtered through a 0.45 µm syringe filter and 270 
clarified by centrifugation at 18,000g for 30 minutes twice. The supernatant was concentrated to ~500 uL 271 
using a 50K MWCO filter (Amicon) and layered onto 36 mL 10-40% sucrose gradient in Gradient Buffer 272 
(50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 100 mM NH4Cl, 6 mM β-mercaptoethanol) and ultracentrifuged 273 
in SW-32Ti rotor at 16,700g for 18.5 hours at 4 °C. 70S ribosomes fractions were collected, buffer 274 
exchanged into Storage Buffer (20 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 100 mM NH4Cl, 6 mM β-275 
mercaptoethanol), aliquoted and stored at 4 °C until ready for grids. 276 
 277 
2.7 Cryo-EM grid preparation and data acquisition.  2.5 µl of purified ribosomes after sucrose 278 
fractionation were diluted to a concentration of 4 mg/ml with Storage Buffer and placed on UltrAuFoil 279 
R1.2/1.3 300-mesh grids (Quantifoil) that were plasma-cleaned (75% argon/25% oxygen atmosphere, 15 280 
W for 7 s using a Gatan Solarus).  After 1 min incubation under >80% humidity at 4 °C, grids were blotted 281 
manually with a filter paper (Whatman No. 1) before being plunged into liquid ethane cooled by liquid 282 
nitrogen using a manual plunger.  Leginon was used for automated EM image acquisition [35].  Grids were 283 
imaged on a Titan Krios microscope (FEI) operating at 300kV and equipped with a K2 Summit direct 284 
electron detector (Gatan). A nominal magnification of 22,500x was used for data collection, giving a pixel 285 
size of 1.31 Å at the specimen level, with the defocus range of -0.5 µm to -2.5 µm. Movies were recorded 286 
in counting mode with an accumulated total dose ~50 electrons/Å2 fractionated into 60 frames with an 287 
exposure rate of ~7 electrons/pixel/s.   288 
 289 
2.8 Image processing and model generation.  All pre-processing was performed within the Appion suite 290 
[36].  Motion correction was carried out by using the program MotionCor2 [37] and exposure-filtered in 291 
accordance with the relevant radiation damage curves [38].  The CTF for each micrograph was estimated 292 
using CTFFind4 [39] during data collection.  70S ribosomes served as a template for automatic particle 293 
picking using FindEM [40]. 346K particles were selected and subjected to per-particle CTF estimation 294 
using the program GCTF [41].  After 2D and 3D classification in GPU-enabled Relion [42,43], selected 295 
classes containing 232K particles were combined to a single stack and imported to Frealign for global 296 
refinement with 8 classes.  Every ten cycles of refinement/classification, the reconstructed maps of all 8 297 
classes were aligned to a common 50S scaffold using custom scripts implemented for performing a 3-D 298 
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alignment within the Chimera package [44] while running Frealign/cisTEM, in order to maintain a common 299 
reference-frame for subsequent focused classification. A total of 50 cycles of global 300 
refinement/classification were performed.  Subsequently, the best orientations were combined into a single 301 
parameter file for focused classification.  Focused classification was performed for 500 cycles, and without 302 
further alterations to the orientations, by defining a spherical mask of 30 Å, centered on the expected region 303 
of TAR. Global resolution for the final map was estimated using the Fourier shell correlation (FSC [45]) at 304 
0.143 and directional resolution anisotropy was evaluated by the 3D FSC server [46].  Local resolution 305 
estimation was performed using sxlocres.py implemented within Sparx [47].   306 
 307 
The model of TAR attached to H45 of the 23S ribosome was prepared by first removing the loop residues 308 
of H45 from a recent 2.9 A structure, PDB ID 5AFI [48], and removing the polyA nucleotides from a model 309 
of TAR based on small-angle X-ray scattering data. The terminal backbone atoms were docked and aligned 310 
in UCSF Chimera [44].  The TAR region was then rigid-body refined into the cryo-EM density in Coot 311 
[49]. 312 

 313 

3. Results 314 

 315 
3.1 Quantitative characterization of focused classification with 2-D and 3-D masking 316 

 317 
3-D classification with different masking options, including the 3-D masking and 2-D masking, have been 318 
described and implemented within Frealign [8,22] and cisTEM [24].  In the present study, we quantitatively 319 
characterize the performance of these different options using simulated data, highlighting strengths and 320 
weaknesses of each approach.  We generated multiple synthetic datasets that are characterized by various 321 
degrees of heterogeneity.  Figure 1 shows the distinct components of a “humanoid” reconstruction, with 322 
the legs, body, neck, and head positioned identically, and representing the constant, homogeneous regions 323 
of a particle, characterized by twofold rotational symmetry.  In contrast, the arms can belong to one of two 324 
conformations, and are therefore characterized by pseudo-symmetry.  Lastly, the hands and feet, which 325 
represent small features of a map that might be lost during global classification, can be either present or 326 
absent.  We generated maps representing all possible combinations of these features and created multiple 327 
synthetic datasets containing random translations and rotations, a contrast transfer function (CTF), an 328 
envelope function, and multiple levels of noise, bringing the final CTF-modulated SNR down to 0.100, 329 
0,050, 0.025, 0.013, or 0.006, as previously described (Supplementary Figure 1 and [8,50]).  Below, we 330 
describe three scenarios, which serve to demonstrate different aspects of focused classification.  331 
Importantly, in all described cases, focused classification is performed on an asymmetric subunit basis, 332 
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which allows one to break down and constrain the heterogeneity problem [27] and reveal discrete 333 
movements within a more complex landscape of heterogeneity.    334 
 335 
First scenario – the base, pseudo-symmetric case: In the base scenario, only the arms/hands are mobile and 336 
can adopt one of two distinct positions within an asymmetric unit, and the hand always remains co-occupied 337 
with an arm (Figure 1A).  This case represents a common problem with pseudo-symmetric experimental 338 
datasets, whereby most of the molecule is homogeneous and characterized by symmetry (here, twofold), 339 
but one feature does not obey symmetry constraints (here, the arms/hands).  There are four combinatorial 340 
possibilities, three of which would be expected to be recovered using a global classification strategy 341 
(structures A2 and A3 are degenerate and are related by 180° rotation).  However, in an asymmetric focused 342 
classification centered on one side of the humanoid, one would expect to find only two non-degenerate 343 
possibilities, because the arm/hand can reside in only one of two structural states.   344 
 345 
Second scenario – identifying small densities: In the second scenario, we use focused classification to 346 
recover finer features within a more complex structural landscape.  In addition to the arms occupying one 347 
of two distinct positions, the hands can be either present or absent, and their occupancy is completely 348 
randomized (Figure 1B).  Thus, for each of the four structural states described in the base scenario, one 349 
would see four additional structural states represented by the presence or absence of each of two hands.  In 350 
sum, there are 16 different combinatorial possibilities, global classification would be expected to uncover 351 
10 non-degenerate classes, but only four classes should be resolved using asymmetric classification.   352 
 353 
Third scenario – identifying small densities and covariances: The third scenario is identical to the second 354 
scenario, except that a hand on each asymmetric unit is always co-associated with its corresponding foot 355 
(Figure 1C).  For example, if the left hand is present, so is the left foot, and if it is absent, the foot too is 356 
absent; the same applies to the opposite asymmetric unit.  One can then classify on the hand only, but look 357 
at both the hand and foot areas in the resulting maps and count the number of times that density for the hand 358 
co-occurs with density for the foot.  In doing so, one can begin to decipher patterns and relationships within 359 
distinct components.    360 
 361 
3.2 Focused classification on an asymmetric subunit of a synthetic humanoid 362 

 363 
For each of the three cases described above, and for all five levels of noise, we performed focused 364 
classifications on a single asymmetric unit, with a mask around the region encompassing an arm and hand 365 
(Figure 2A).  For these experiments, the particle alignment parameters were set to the correct parameters 366 
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used to generate the data and were kept fixed during classification.  To quantitatively evaluate the accuracy 367 
of classification, we used the k coefficient as a statistical measure, which captures the performance of a 368 
diagnostic test, while taking into account the possibility of occurrence by chance [51].  We also used the 369 
Youden’s J statistic (informedness, [52]), but found that the results largely paralleled those of k (data not 370 

shown).  The k coefficient evaluates the agreement of raters for classifying N items into mutually exclusive 371 
classes and relies on the precise knowledge of the number of false positives (FP), false negatives (FN), true 372 
positive (TP), and true negatives (TN), which we can obtain from the data (see Methods).  Importantly, k 373 
estimates the probability of an “informed” decision by taking into account random chance and returns 0 374 
when classification is random (chance) and 1 when perfect classification is achieved.  Qualitatively, it is 375 
simple to visually assess how “clean” the classification is, and whether or not the particles were correctly 376 
partitioned, by looking at the separation of the arms in our data.  Supplementary Figure 2 shows how the 377 
results look when classification is nearly perfect (Supplementary Figure 2A), when classification is 378 
completely random (Supplementary Figure 2D), and two intermediate cases (Supplementary Figure 2B-C).  379 
A correct classification partitions the arms within a single asymmetric unit (and not its counterpart) into 380 
two distinct classes, with no signs of contaminating density (k close to 1); as more errors are introduced, 381 
the two classes become progressively more mixed, up to a point where one cannot distinguish between the 382 
two volumes within or outside the asymmetric unit (k close to 0, Supplementary Figure 2).  In this manner, 383 
we could also determine which parameters provide optimal classification results (e.g.  mask size, soft edge 384 
drop-off, etc., as demonstrated in Supplementary Figure 3), which we determined prior to evaluating the 385 
test cases.   386 
 387 
Table 1 shows the result of focused classification for all three scenarios, using both a 2-D masking approach 388 
and a 3-D masking approach, as implemented in Frealign and evaluated using the k coefficient.  The 389 
resulting numbers indicate the following general trends.  First, for all three cases and for virtually all SNRs, 390 
the 2-D masking approach was superior to the 3-D masking approach.  Such a result is not surprising 391 
because, as indicated in the introduction, the disadvantage of the 3-D masking approach, in the absence of 392 
density subtraction, is that the experimental projection images contain overlapping density along the path 393 
of the projection, as compared to a projection of the masked region from the reference map.  The second 394 
general trend is that, with more mobile components within a dataset, and the smaller the desired features 395 
for detection, the lower the k value and the more challenging it is to correctly classify the data.  We observe 396 
major differences in accuracy between case 1 and either 2 or 3, because the latter contain more moving 397 
parts.  However, the accuracies between cases 2 and 3 are roughly similar, likely because only small 398 
structural differences characterize the two datasets.  Third, a lower SNR makes it more challenging to 399 
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correctly classify the data, which is not surprising.  However, it was surprising that, for the base scenario, 400 
even at the lowest SNRs and given how small of a feature we were trying to detect, we could still recover 401 
meaningful information and reasonably clean classes using the 2-D masking approach in particular, and to 402 
a lesser extent using the 3-D masking approach.  In scenarios 2-3, higher SNRs were required to recover 403 
the correct classes (0.025 compared to 0.006, or ~4 times as high).   404 
  405 
Our experiments reveal that the 2-D masking approach, in its implementation within the likelihood-based 406 
framework of Frealign/cisTEM, does not completely isolate the area of interest from its surrounding 407 
density.  While the 2-D masking approach produces more accurate results in the cases analyzed, its primary 408 
disadvantage is that projection images can contain additional density along the direction of the projection; 409 
if this density is homogeneous, it should be neutral in terms of classification, but if it is itself heterogeneous, 410 
it can bias the classification results.  To account for this and to quantify the bias, we went back to the base 411 
scenario, where only the arm/hand combinations can move, but applied the mask onto an area of a leg and 412 
classified in that region (Figure 2B).  We thus asked whether we can recover density for the arms, despite 413 
the mask being situated in a different location.  As before, the number of correctly assigned particles was 414 
judged based on the arm/hand classes.  If the arms completely determine the classification results, we would 415 
expect to see a k coefficient of 1, whereas in the absence of crosstalk between arms and legs, the arms/hands 416 

would be randomly assigned and the k coefficient would be 0.  Table 2 shows that only at the highest SNRs 417 

does the heterogeneity outside of the area of interest influence the classification, and with a maximum k 418 
coefficient of 0.23, the bias is not very severe.  For SNR values of 0.025 and below, the results are 419 
effectively random.  For the same dataset, a k coefficient of 0.87 is obtained for an SNR of 0.025 when the 420 
mask is in its correct position around an arm.  In contrast to the 2-D mask, when a 3-D mask is applied to 421 
the same location, the results are completely random at all SNRs.  This is exactly what we would expect, 422 
because density outside this mask should not be introduced into a projection image after application of a 3-423 
D mask.  The above results indicate that bias generated by heterogeneity outside the area of interest is 424 
present but minor when using the 2-D masking approach, and absent in the 3-D masking approach.   425 
 426 
3.3 Focused classification can identify covariant components in distinct regions of a map 427 

 428 
Each individual object within a heterogeneous single-particle cryo-EM experiment can contain a unique 429 
combination of dynamic elements residing in distinct structural states.  When multiple components are 430 
dynamic, and/or if they bind (or dissociate) in different regions, the conformational/compositional states of 431 
the components can be linked.  Using focused classification, one can treat two distinct regions separately, 432 
and then ask whether there is any inter-dependence by calculating covariances within masked regions.   433 
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 434 
To evaluate covariance between distinct regions of a map, we used the datasets prepared for scenarios 2-3.  435 
In scenario 2, the presence of either hand, or either foot, are random and are not related to one another.  In 436 
contrast, in scenario 3, the presence of a hand on one side of the humanoid is always correlated to the 437 
presence of a foot on that same side, whereas the opposite foot is randomly occupied and is not correlated 438 
to anything.  Thus, one can apply a mask around the hands (encompassing both conformations), focus-439 
classify the data, and then look for the presence or absence of a foot, which has not been subjected to 440 
focused classification.  Quantitatively, once the dataset is classified and subdivided into groups, one would 441 
simply calculate the fractional density occupied by each component within the class (e.g.  hand in position 442 
1, hand in position 2, near foot, and far foot) normalized to its expected value, and compute a normalized 443 
covariance matrix (also known as a correlation coefficient matrix, see Methods) between the components.  444 
Since the presence of a foot is always correlated with the hand on the same side of the humanoid, 445 
irrespective of the conformation of the arm/hand, we further simplify the analysis by grouping both 446 
mutually exclusive hand positions into, more generally, a “near hand”.  Thus, there are three regions for 447 
which fractional occupancies are computed – a “near hand” (blue in Figure 3), where the mask is applied 448 
for classification, a “near foot” (purple in Figure 3) on the same side of the humanoid, and a “far foot” (pink 449 
in Figure 3) on the opposite side of the humanoid. Given the nature of the mask, everything except for the 450 
hands is excluded from the classification.  Since the mask is applied on an asymmetric-unit basis, the region 451 
that would otherwise constitute the “far hands” is not separated, and both mixed conformations are 452 
observed.   453 
 454 
For scenario 2, whereby no covariance is expected, the volumes captured through focused classification on 455 
an asymmetric-unit basis, and representing the four non-degenerate classes, are displayed in Figure 3A.  As 456 
expected, they differ in the presence, absence, and overall conformation of the hands.  For example, classes 457 
1,2 or classes 3,4 differ by the presence or absence of a single hand; classes 1,3 or classes 2,4 either do or 458 
don’t have hands, respectively, but differ in the conformation of the arms; finally, classes 1,4 or classes 2,3 459 
differ in both hand occupancy and arm conformation.  Other than the hand/arm differences, no other regions 460 
of the maps have any apparent variability.  Quantitatively, this is summarized by a normalized covariance 461 
matrix that describes the relative interdependence between the different components (Figure 3B).  A value 462 
of 1 means that the pairwise occupancies of any two components are perfectly correlated, whereas a value 463 
of 0 means that they are completely random (a value of -1 means that they are anti-correlated).  Identical 464 
components, related by the diagonal, are perfectly correlated, by definition.  Otherwise, it is apparent that 465 
no two regions of the map are correlated to one another.  This situation is different for scenario 3, however, 466 
which was designed to have the nearby hand and foot co-vary.  The volumes captured through focused 467 
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classification again represent the expected non-degenerate classes, and the hands/arms are related to one 468 
another in an identical manner as before.  However, this time, it is clear that classes 2 and 4 are missing the 469 
nearby foot, whereas classes 1 and 3 maintain full occupancy.  The normalized covariance matrix now 470 
shows that the hand is always co-associated with the nearby foot.  The occupancy of the far foot, on the 471 
other hand, remains random, and is accordingly associated with a low normalized covariance value.  The 472 
same experiment can be performed for more complicated combinations of hands and feet, but the principle 473 
is the same – that assessing the inter-dependence of density occupancies within distinct regions of a 474 
macromolecular complex can provide insight into hidden allostery within the data.   475 
 476 

3.4 Focused classification facilitates deconvolving heterogeneous regions within an experimental 477 

dataset 478 

 479 
The techniques described here have been used to decipher both conformational and compositional 480 
heterogeneity within biological samples (for example, [16,26,53]).  In addition to the published results, one 481 
area where they will be particularly useful is to deconvolve conformational heterogeneity when using 482 
scaffolds for the purpose of structure determination.  Several groups have shown that larger protein and/or 483 
nucleic-acid scaffolds can be used to aid in the determination of smaller structures, which by themselves 484 
would be too challenging to analyze [54,55].  However, the problem with all current approaches is that the 485 
particles of interest are not necessarily rigidly bound.  Thus, the regions closer to the site of attachment will 486 
be characterized by less heterogeneity (and a lower B-factor), whereas the regions further from the site of 487 
attachment will exhibit more heterogeneity (and a higher B-factor).  To demonstrate this, we used a bacterial 488 
70S ribosome as a scaffold, and engineered in a fusion RNA representing the HIV-1 Transactivation 489 
Response (TAR) element.  Subsequently, we performed either global classifications on the entire dataset 490 
or focused classifications on the region around TAR.   491 
 492 
The HIV-1 TAR element was uniformly inserted into Helix 45 of the E. coli large 23S ribosomal RNA.  493 
Ribosomes containing the TAR knock-in were selectively purified (see Methods) and subjected to single-494 
particle cryo-EM analysis.  We collected 929 micrographs, providing 346,851 particles in the dataset 495 
(Supplementary Figure 4A).  A single-model refinement, in the absence of any classification, showed high-496 
resolution in the ribosome core, and lower resolution in the regions characterized by structural heterogeneity 497 
(Supplementary Figure 4B-C). Due to a large amount of mobility, the site of TAR fusion was only partially 498 
visible at the normal thresholds used for displaying the coulombic potential map.  We then performed a 499 
global classification of the data, using a soft-edge spherical mask.  This procedure resulted in distinct 500 
classes, separated according to the expected heterogeneity associated with purified bacterial ribosomes [56] 501 
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(Supplementary Figure 4D).  The combined differences are summarized with a merged map, demonstrating 502 
the full extent of heterogeneity for the global classification case (Figure 4A); notably, the resolved 503 
heterogeneity did not improve the density at the site of fusion.  Subsequently, we performed a focused 504 
classification of the data using 2-D masks, applying the mask to the area where TAR has been inserted.  As 505 
expected, the resulting maps were able to clearly separate out some of the different conformations of TAR 506 
(Supplementary Figure 4E).  However, the majority of the normal ribosomal heterogeneity was largely 507 
ignored, as summarized by the merged difference maps (Figure 4B) and an overlay of the reconstructed 508 
classes (Figure 4C).  In terms of characterizing classification performance, this result is important for 509 
several reasons.  First, even though the area of interest is small, the focused classification approach using 510 
2-D masks can partially deconvolve the density.  Second, despite the extensive “normal” structural 511 
heterogeneity present on bacterial ribosomes (e.g. Figure 4A), which may confound the 2-D focused 512 
classification approach (e.g. Figure 2 and Table 2), we do not observe this in our results. We also performed 513 
focused classifications using 3-D masks, but the quality of the reconstructed TAR region was noticeably 514 
poorer (data not shown), consistent with the poorer performance of the 3-D masking approach using 515 
synthetic data (e.g. Table 1).  These experimental results further demonstrate the ability of the 2-D masking 516 
approach to separate out local structural variabilities in the context of otherwise extensive global structural 517 
differences.   518 
 519 
The best reconstruction of HIV-1 TAR showed a clearly defined RNA helix, a marked improvement over 520 
a global classification strategy alone (Figure 4D).  The density was characterized by progressively poorer 521 
resolution, as a function of distance from the site of attachment.  For a largely A-form HIV-1 TAR RNA 522 
helix, the behavior of the fusion can be thought of as a lever pivoting around a fulcrum; the further out from 523 
the point of attachment, the more inherent mobility, and thus the lower the resolution.  A similar behavior 524 
has been observed with other scaffolding strategies, whereby the peripheral regions are characterized by 525 
lower resolution [54,55]. In addition to providing novel biological insight, focused classifications can 526 
broadly facilitate scaffolding approaches for solving structures of small proteins and RNAs.   527 
 528 

4. Discussion 529 

 530 
Using a synthetic dataset, we describe a quantitative assessment for several focused classification 531 
implementations within the Frealign/cisTEM processing packages.  The algorithms have been used to 532 
classify features in several experimental studies [16,26,53], and we further demonstrate the applicability of 533 
the approaches for deconvolving heterogeneous regions within small scaffolded RNAs to facilitate the 534 
development of substrate supports for cryo-EM [54,55].   535 
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 536 
The present study will help users decide which strategy to use in a particular case.  Focused classification 537 
using 2-D masks can be applied to individual asymmetric features (also known as symmetry expansion 538 
[27]), and, as implemented within Frealign/cisTEM, have generally been found to perform better than 3-D 539 
masking approaches, due to density mismatch between particles images and reference projections after 3-540 
D masking.  A possible disadvantage of the 2-D masking approach arises from the projection nature of the 541 
data.  Any area within a 2-D projection image will not only contain density relevant to the region of interest, 542 
but also residual density along the projection path.  If the residual density is itself heterogeneous, it can 543 
potentially confuse or bias the classification procedure (especially if the variability within the region of 544 
interest is significantly smaller compared to variability elsewhere).  In Table 2, we demonstrate that this 545 
effect is real, at least with high SNR data.  However, in practice this problem appears to be small, based on 546 
the results obtained with the synthetic data (compare Tables 1 and 2), and in an experimental setting in the 547 
context of large-scale global heterogeneity in the current work (Figure 4A-B), and in previous biological 548 
studies [16,18].  Conflating heterogeneity along the projection path would be treated as noise, in a manner 549 
that is perhaps analogous to incomplete density subtraction.    550 
 551 
Our tests with the synthetic dataset demonstrate that additional questions, such as those pertaining to 552 
structural allostery, can be addressed in single-particle experiments.  We showed how classifying variability 553 
in a region of a density map can reveal covariance with a secondary region, in this case between a hand and 554 
a foot.  With synthetic data, such analyses are predicated upon having knowledge of the real density; in an 555 
experimental setting, an analogous approach would mask out regions corresponding to, for example, known 556 
components prior to analyzing the resulting normalized covariance matrices, as has been previously shown 557 
in one simplified example with ribosome-associated factors [57].  In general, the ability to classify 558 
independently on separate regions of a map provides opportunities to inter-relate distinct regions of an 559 
object beyond simply recovering densities, a form of computational identification of allostery within a 560 
system.  Some cautions should be taken in the analyses of covariance.  First, to avoid under-sampling, it is 561 
advisable to compute an equal or greater number of classes than expected.  Second, and related to the 562 
previous point, classifications should be run multiple times, starting from different random particle seeds.  563 
Both of these precautions will ensure that sufficient pairwise occupancies have been calculated to reach 564 
statistical significance and avoid spurious correlations.  Third, some caution should be taken in the 565 
interpretations of results using 2-D masks (due to the possibility of “leaky” biases during classification), 566 
although our experimental observations suggest that the biases should be minimal (Figure 4B).  Finally, 567 
global classifications can also be used for the purpose of covariance analysis, and they can have specific 568 
advantages, as they would recover non-degenerate differences that are lost during classification on an 569 
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individual asymmetric unit (which is easily seen with the experimental setup of the humanoid, as the 570 
number of non-degenerate structures (globally) far outnumbers the number of distinct asymmetric units).  571 
Whereas focused classifications help constrain the number of different classes and can simplify the analysis, 572 
the results should ideally relate to the global context of heterogeneity.  In the future, more elaborate methods 573 
could be devised for broader applicability beyond pairwise covariances. 574 
 575 
Our results using HIV-1 TAR fused to bacterial large ribosomal subunits show how focused classifications 576 
can help computationally deconvolve highly mobile features within experimental cryo-EM datasets.  These 577 
data are particularly applicable for the development of structural scaffolds for the analysis of small proteins 578 
and RNAs [54,55].  The TAR fusions are universally mobile about a central fulcrum point, which 579 
corresponds approximately to the site of attachment, and the density is lost in the absence of proper 580 
classification.  However, careful application of masks during focused classification enables partial recovery 581 
of some of the structural elements within the TAR fusion, visualizing most of the A-form RNA helix.  582 
Scaffolding approaches are gaining popularity in single-particle analysis, because small proteins may not 583 
have sufficient signal for accurate assignment of Eulerian orientations.  Focused classification can help 584 
ameliorate problems associated with structural mobility and bring out the most of the structure of interest. 585 

 586 
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Figure and table legends 609 
 610 

 611 
 612 
Figure 1 – humanoid datasets and distinct scenarios used to assess focused classification.  Different 613 
maps used to generate synthetic datasets described by the three scenarios are displayed.  In each panel, A-614 
C, two maps which are degenerate and related to one another by a 180° rotation are positioned vertically 615 
with respect to one another.  The components used to generate the datasets are displayed in the inset, with 616 
the heterogeneous elements colored (arms, orange; hands, red; feet, blue).  (A) For the base scenario, only 617 
the arms/hands are conformationally mobile.  Four different combinations of maps lead to a dataset 618 
characterized by two different asymmetric units.  Maps A2/A3 are related by a 180° rotation.  (B) For the 619 
second scenario, in addition to the conformational mobility of the arms, the hands can be either present or 620 
absent.  16 different combinations of maps lead to a dataset characterized by four different asymmetric 621 
units.  Maps B2/B3, B5/B6, B7/B8, B9/B10, B11/B12, and B14/B15 are related by a 180° rotation.  (C) 622 
For the third scenario, in addition to the conformational mobility of the arms, the hands can be either present 623 
or absent, but their occupancy is always co-associated with a nearby foot.  16 different combinations of 624 
maps lead to a dataset characterized by four different asymmetric units.  Maps C2/C3, C5/C6, C7/C8, 625 
C9/C10, C11/C12, and C14/C15 are related by a 180° rotation. 626 
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 627 

 628 
 629 
Figure 2 – Application of masks onto regions of an asymmetric unit.  Masks were applied either (A) 630 
onto the arm/hand region (blue) or (B) the leg region (red) prior to focused classification.  Both types of 631 
asymmetric units are displayed, showing both orientations of the arm/hand combinations.   632 
  633 
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 634 

 635 
 636 
Figure 3 – Evaluation of covariance within two different regions of a reconstructed object.  Focused 637 
classifications using 2-D masks, applied to an arm/hand region (to the right of body in figure and 638 
encompassing both arm/hand conformations), were performed using either (A-B) the dataset for the 2nd 639 
scenario or (C-D) the dataset for the 3rd scenario, both at an SNR of 0.100.  In all cases, four classes were 640 
recovered for the different asymmetric units (arms in two positions, each with and without a hand), and are 641 
displayed in panels A and C.  (A) Volumes recovered from focused classification in the 2nd scenario, where  642 
all components are randomly occupied (control).  (B) Normalized covariance matrix describing the 643 
relationships between the near hand, near foot, and far foot.  (C) Volumes recovered from focused 644 
classification in the 3rd scenario, where the near hand is always co-associated with the near foot.  (D) 645 
Normalized covariance matrix describing the relationships between the components.  Near hand, where 646 
focused classification is performed, is circled in blue, near foot is circled in purple, and far foot is circled 647 
in pink.  In the tables, the values are colored using a gradient: -1 (green, anti-correlated) < 0 (red, not 648 
correlated) < 1 (green, correlated). 649 
  650 
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 651 
 652 
 653 

Figure 4 – Experimental reconstructions highlighting the use of focused classification to analyze 654 
highly heterogeneous datasets.  Bacterial 70S ribosomes containing an HIV-1 TAR element fused into 655 
Helix 45 (H45) were used to analyze different classification approaches. (A) Combinatorial pairwise 656 
differences between all 8 classes from global classification merged into a single volume to highlight the 657 
overall variability.  (B) Same as A, but from the result of focused classification using 2-D masks, applied 658 
on the region of TAR fusion into H45. In both A-B, arrows denote the site of fusion. (C) Overlaid 659 
reconstructions after focused classification, highlighting the differences within the TAR element, but not in 660 
the rest of the ribosome. (D) Close-up of TAR reconstruction after deconvolving its mobility through 661 
focused classifications (left), shown also with a rigid-body docking of the TAR element into density 662 
(middle). A control reconstruction, without focused classification but using the same number of particles, 663 
is displayed alongside (right).   664 
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Scenario 1 Scenario 1 Scenario 2 Scenario 2 Scenario 3 Scenario 3
SNR 2-D mask 3-D mask 2-D mask 3-D mask 2-D mask 3-D mask
0.100 0.99 0.91 0.85 0.70 0.87 0.71
0.050 0.96 0.85 0.73 0.56 0.75 0.61
0.025 0.87 0.74 0.42 0.41 0.46 0.39
0.013 0.72 0.57 0.21 0.17 0.21 0.17
0.006 0.47 0.36 0.09 0.08 0.08 0.09  665 

 666 
Table 1 – Results of focused classification on an asymmetric unit for the three different scenarios.  667 

Five different SNRs are evaluated, and the k coefficient is displayed for the 2-D masking and 3-D masking 668 
case for each of three scenarios.   669 
  670 
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Table 2
SNR 2-D mask 3-D mask
0.100 0.23 -0.01
0.050 0.11 0.00
0.025 0.01 0.01
0.013 0.00 0.01
0.006 0.00 0.00

pure	noise -0.01 0.00  671 
 672 
Table 2 – Results of focused classification on an asymmetric unit when the mask is applied on the 673 
wrong region.  Classification was performed after application of a 2-D mask or 3-D mask onto a leg (see 674 
Figure 2B), while the heterogeneity was characterized by the mobility in the arms/hands (scenario 1), and 675 
the k coefficient was evaluated for the five SNRs and for each mask.  Whereas the 2-D masking displayed 676 
some “leakiness” at the highest SNRs, the 3-D masking showed completely random classification.   677 
  678 
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 679 
 680 
Supplementary Figure 1 – synthetic data generated from the humanoid volumes.  Each volume was 681 
randomly projected, rotated, and shifted.  Noise was then applied to the projection images, followed by a 682 
CTF and envelope function, and lastly the level of noise was brought down to one of five different levels 683 
(0.100, 0.050, 0.025, 0.013, and 0.006), as previously described [8].  The different projections were then 684 
randomly inserted into a 10,000-particle dataset for focused classification experiments.   685 
  686 
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 687 
 688 
Supplementary Figure 2 – visual demonstration of classification accuracy.  Slices through a 689 
reconstruction are displayed for each panel (middle slices 33-42 within a 96-slice volume, for each of two 690 
distinct classes [top and bottom]) around the Z-height of the arms.  Classification was performed on the 691 
right asymmetric unit and for the base dataset, where two different classes are expected.  Ideally, only the 692 
right arms would partition into one of several different classes.  Classification was performed under four 693 
different levels of noise, which resulted in distinct accuracies.  Panels A-D demonstrate how the accuracies, 694 
the associated k coefficient, and the density varies with increasing errors.  (A) Accuracy is nearly perfect, 695 
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k is close to 1 and the two classes show complete distinction in the right arm region.  (B) Accuracy is worse, 696 

k is has dropped to 0.69, and some contamination is evident in the opposing arm.  (C) Accuracy has dropped 697 

further, k is close to 0, and the two volumes become virtually indistinguishable, although some differences 698 
within the density amplitude point to residual heterogeneity.  (D) Accuracy is completely random (50% 699 
represents a coin toss when two possibilities are present), k is correspondingly 0, and no difference in the 700 
maps is evident.   701 
  702 
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 703 
 704 
Supplementary Figure 3 – titration of mask size used for focused classification.  Focused classification 705 
parameters could be tuned for optimal performance with this particular dataset.  Here, the mask size was 706 
varied, and the results were followed by monitoring k.  (A) Two different mask sizes are displayed, applied 707 
to an asymmetric unit around the arms/hands.  (B) The results of focused classification with different mask 708 
radii.  Here, a 60 Å mask performs optimally, which effectively represents a tight mask that completely 709 
encompasses only the mobile area.   710 
  711 
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 712 
 713 
Supplementary Figure 4 – Cryo-EM data for HIV-1 TAR—ribosome fusions.  (A) Example raw image 714 
collected for TAR-labeled ribosomes.  (B) Initial single-model refinement, colored by local resolution and 715 
(C) the corresponding FSC curves. (D) Classes generated from global 3-D classification showing a lack of 716 
density in the region of helix 45.  (E) Classes from focused 3-D classification, with the mask applied to the 717 
region of TAR fusion, denoted by a red circle with the corresponding densities of the TAR hairpin in the 718 
absence of the ribosome scaffold below. 719 
 720 
 721 
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