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Abstract 37 

 38 

HIV-1 causes a persistent infection of the immune system that is associated with chronic comorbidities. 39 

The mechanisms that underlie this inflammation are poorly understood. Emerging literature has implicated pro-40 

inflammatory purinergic receptors and downstream signaling mediators in HIV-1 infection. This study probed 41 

whether inhibitors of purinergic receptors would reduce HIV-1 infection and HIV-1 stimulated inflammation. A 42 

human ex vivo human tonsil histo-culture infection model was developed to support HIV-1 productive infection 43 

and stimulated inflammatory cytokine interleukin-1 beta (IL-1β) and immunosuppressive cytokine, interleukin-44 

10 (IL-10).  This study tests whether inhibitors of purinergic receptors would reduce HIV-1 infection and HIV-1 45 

stimulated inflammation. The purinergic P2X1 receptor antagonist, NF449, the purinergic P2X7 receptor 46 

antagonists, A438079, and azidothymidine (AZT) were tested in HIV-1 infected human tonsil explants to 47 

compare inhibition of HIV-1 infection and HIV-stimulated inflammatory cytokine production. All drugs limited 48 

HIV-1 productive infection but P2X-selective antagonists (NF449, and A438079) significantly lowered HIV-49 

stimulated IL-10 and IL-1β. We further observed that P2X1- and P2X7-selective antagonists can act 50 

differentially as inhibitors of both HIV-1 infection and HIV-1-stimulated inflammation.  Our findings highlight the 51 

differential effects of HIV-1 on inflammation in peripheral blood as compared to lymphoid tissue. For the first 52 

time, we demonstrate that P2X-selective antagonists act differentially as inhibitors of both HIV-1 infection and 53 

HIV-1-stimulated inflammation.  Drugs that block these pathways can have independent inhibitory activities 54 

against HIV-1 infection and HIV-induced inflammation.   55 

 56 

IMPORTANCE: 57 

Patients who are chronically infected with HIV-1 experience sequelae related to chronic inflammation. The 58 

mechanisms of this inflammation have not been elucidated. Here we describe a class of drugs that target the 59 

P2X pro-inflammatory signaling receptors in a human tonsil explant model. This model highlights differences in 60 

HIV-1 stimulation of lymphoid tissue inflammation and peripheral blood. These drugs serve to both block HIV-1 61 

infection and production of IL-10 and IL-1β in lymphoid tissue suggesting a novel approach to HIV-1 62 

therapeutics in which both HIV-1 replication and inflammatory signaling are simultaneously targeted. 63 

  64 
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Introduction 65 

 66 

HIV-1 infection remains a major global health concern, despite the development of effective antiviral 67 

therapies to control the virus. An estimated 36.7 million people live with HIV-1, with 1.1 million people infected 68 

in the United States (1). Individuals on antiretroviral therapy (ART) can live long and healthy lives with 69 

suppressed viremia; however, infected individuals experience chronic inflammation associated with co-70 

morbidities and increased risk of mortality (2-5). Despite undetectable viremia levels, long-term treated HIV-1 71 

patients experience significantly higher rates of age-associated non-communicable co-morbidities (AANCCs), 72 

such as cardiovascular disease, frailty, and cognitive decline (6). The accelerated aging phenomenon has 73 

introduced new considerations in the care of HIV-1 infected patients (7-9). 74 

 75 

The mechanisms underlying this chronic inflammation in HIV-1 infection are multifactorial. Depletion of 76 

CD4+ T cells at mucosal surfaces during HIV-1 infection can lead to reduced integrity of the mucosal epithelium 77 

and increased bacterial translocation (10). The subsequent elevated levels of plasma bacterial cell wall 78 

lipopolysaccharide (LPS) are associated with inflammatory biomarkers in HIV-1 patients, such as chronic 79 

monocyte activation, increased soluble CD14 (sCD14), and production of pro-inflammatory cytokines (11). 80 

Low-level viremia continues to stimulate systemic inflammation (12, 13). Despite numerous lines of evidence, 81 

no unifying mechanism has defined a connection between factors mediating early HIV-1 infection and cellular 82 

mechanisms of innate immune signaling. 83 

 84 

Emerging literature has implicated the pro-inflammatory purinergic receptors in HIV-1 pathogenesis (19-85 

35). Purinergic receptors mediate inflammation in many disease states (14-19) in response to extracellular 86 

nucleotides that are released from inflamed or dying cells (20, 21). P2X receptor subtypes are nonselective 87 

cation channels that can be found on a wide variety of tissue types, notably lymphocytes, 88 

monocyte/macrophages, and dendritic cells (DCs) (22-25). They are critical mediators of the innate immune 89 

response in a variety of different disease states including rheumatoid arthritis, transplant rejection, and 90 

inflammatory bowel disease (26-29). The P2X7 subtype is most highly expressed in immune cells (25, 30). 91 
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P2X7 receptors, in concert with Toll-like receptors (TLRs), activate the NLRP3 (NACHT, LRR and PYD 92 

domains containing protein 3) inflammasome complex. The NLRP3 inflammasome is a highly conserved innate 93 

immune mechanism responsible for responding to pathogens by signaling cells to undergo pro-inflammatory 94 

cytokine production. This signaling mediates caspase-1-dependent release of IL-1β (23, 30), which can be 95 

secreted to promote inflammation or can stimulate pro-inflammatory lymphocyte programmed cell death known 96 

as pyroptosis which has been proposed to be an important cause of CD4+ T cell depletion (31, 32).  97 

 98 

P2X1 and P2X7 subtypes are predominantly expressed on CD4+ T cells, the primary target of HIV-1 99 

infection (42, 43). Recent studies by our group and others demonstrate that non-selective P2 antagonists 100 

blocking HIV-1 infection (33, 34). Non-selective P2X antagonists can reduce neurotoxic effects in murine 101 

neuron-microglial co-cultures exposed to HIV-1 transactivator of transcription (Tat) (35). These inhibitors can 102 

block HIV-1 infection in a dose-dependent manner during cell-to-cell and cell-free HIV-1 infection (34). 103 

Selective inhibitors of P2X receptors reduced HIV-1 replication in macrophages (36). Graziano et al. 104 

corroborated the importance of P2X7 in HIV-1 infection of macrophages by showing P2X7 inhibition blocked 105 

release of HIV-1 virions (37).  Expression of P2X7 on human astrocytes is increased in the presence of HIV-1 106 

Tat and P2X7 inhibitors have been demonstrated to reduce HIV-1 induced neuronal and microglial damage 107 

(38-40). Recently, Menkova-Garnier et al. demonstrated that P2X7 inhibitors restore T-cell differentiation in 108 

CD34+ cells derived from HIV-infected immunological non-responders (41). Additionally, P2X1 selective 109 

inhibitors were shown to inhibit HIV-1 fusion by blocking virus interactions with co-receptors C-C chemokine-110 

receptor 5 (CCR5) and CXC chemokine-receptor 4 (CXCR4) (33, 42). As P2X receptors are also known 111 

mediators of inflammation and inflammatory signaling, it was of interest to understand whether HIV-1 112 

stimulated inflammatory cytokine production would be abrogated by P2X inhibition.  113 

 114 

Here, we examined the role of P2X-selective antagonists on HIV-1 productive infection and investigated 115 

whether these inhibitors block inflammatory cytokine production in response to HIV-1 stimulation. We 116 

demonstrate through an ex vivo tonsil model that these drugs can reduce HIV-1 stimulated IL-10 and IL-1β 117 

production, suggesting an important role for P2X inhibition in HIV-1 infection and HIV-stimulated inflammatory 118 

cytokine production. 119 
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 120 

Results 121 

 122 

P2X inhibitors NF449 and A38079 can reduce HIV-1 productive infection in peripheral blood 123 

mononuclear cells (PBMCs). 124 

 125 

Prior studies have reported that antagonists of proinflammatory purinergic receptor that detect 126 

extracellular ATP, here referred to as P2X inhibitors, can inhibit productive HIV-1 infection in T cell lines (33, 127 

34, 43). We tested the role of a P2X1 inhibitor, NF449, and a P2X7 inhibitor, A438079, in blocking HIV-1 128 

productive infection in PBMCs. Activated PBMCs were infected with HIV-1 NL-CI, a X4-tropic virus with an 129 

mCherry reporter, as previously described (44, 45), in the presence of NF449 and A438079. Reverse 130 

transcriptase azidothymidine (AZT) was tested as a positive control (Figure 1A). NF449 significantly reduced 131 

HIV-1 infection in PBMCs down to 25% while A438079 was less effective and reduced HIV-1 infection down to 132 

60%. AZT inhibited infection by nearly 90%. None of the drugs tested exhibited toxicity on PBMCs (Figure 1B).  133 

 134 

Next, we tested the ability of these P2X-selective inhibitors to block HIV-1 stimulated inflammatory 135 

cytokine production. PBMCs were isolated and exposed to HIV-1MN and tested for stimulation of inflammatory 136 

cytokines by cytokine bead array. Our initial findings indicated that minimal cytokine elevation was observed 137 

with HIV-1 infection of PBMCs (Figure 1C, 1D). As stated before, it is known that inflammasome activation 138 

requires two signals; the first is a TLR agonist and the second is a P2X agonist that we propose is stimulated 139 

by HIV-1 infection (46, 47). Therefore, we tested the effect of addition of a physiological level of LPS (1 pg/ml), 140 

a TLR4 agonist that has been reported to be circulating in the blood of HIV-infected individuals (10, 48, 49). 141 

Addition of LPS resulted in stimulation of IL-10 (Figure 1C) and IL-1β (Figure 1D) levels, but with only a small 142 

and not significant increase in HIV-1-dependent IL-10 production. We then pursued the establishment of a 143 

system more physiologically relevant to understand the interaction of HIV-1 infection and stimulation of 144 

inflammatory cytokine production. 145 

 146 

An ex vivo human lymphoid aggregate culture (HLACs) supports HIV-1 productive infection.  147 
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 148 

Ex vivo infection of human lymphoid aggregate cultures (HLACs) with HIV-1 is a well-studied model 149 

system where HIV-1 induced-inflammasome activation has been characterized (50-55) and is an appropriate 150 

system to study inflammatory signaling that results from HIV-1 infection. Unlike blood-derived CD4-T cells, 151 

lymphoid-derived cells are not naturally resistant to pyroptosis in culture and do not require activation or 152 

addition of exogenous TLR agonists for HIV-1 infection (51). Human tonsil explants were obtained from healthy 153 

tonsillectomy patients, homogenized as previously described (56) and cultivated in HLACs. HLACs were 154 

infected with HIV-1 NL-CI and harvested on 0, 2, 5, 8, and 12 days post infection (DPI) (Figure 2A). Infection 155 

was quantified by flow cytometric detection of mCherry-positive viable cells as indicative of HIV-1 NL-CI 156 

infection (Figure 2B). Peak infection was noted on Day 8 with a decline by day 12. Infection was statistically 157 

significant on days 2-12. Viability of these cells was quantified by flow cytometric detection of live cells (Figure 158 

2C). Viability in the infected condition falls to below 20% by 12 DPI. On 8 DPI, there is a statistically significant 159 

difference between viability of infected cells and uninfected cells that corresponds to the timing of peak 160 

infection. Figure 2D demonstrates representative flow cytometry plots of viability of cells over the course of 161 

infection indicating waning viability over the course of infection. Figure 2E demonstrates representative flow 162 

cytometry plots of the infection of subset of live cells on 0, 2, 5, 8, and 12 DPI.  163 

 164 

NF449 and A438079 reduce HIV-1 productive infection in HLACs. 165 

 166 

Using this tonsil system that can support HIV-1 infection, we tested whether two P2X antagonists, 167 

NF449 (a P2X1>>P2X7 inhibitor) and A438079 (a P2X7 inhibitor) would reduce HIV-1 productive infection in 168 

comparison to AZT. HLACs were prepared as in Figure 2 and cells were harvested on 0, 2, 5, 8, and 12 DPI. 169 

Viability of these cells was quantified by flow cytometric detection of live cells (Figure 3A). As in Figure 2B, 170 

viability of cells declined over the infection course by 12 DPI. Interestingly, NF449 and AZT resulted in 171 

statistically significant increase cell survival that was most pronounced between 5-12 DPI. Figure 3B indicates 172 

infection as measured by quantification of cells with mCherry signal, as indicative of HIV-1 NL-CI productive 173 

infection. Both NF449 and A438079 at 100 μM reduce HIV-1 productive infection at all time points from 2-12 174 

DPI comparable to inhibition seen by AZT. Surprisingly, A438079 (100 μM) effectively inhibited productive HIV-175 
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1 infection in human tonsil cells on 8 and 12 DPI, although it incompletely inhibited productive infection of 176 

PBMCs (Figure 1A). Titration of these three drugs was performed at during peak infection at 8 DPI (Figure 3C), 177 

indicating dose-dependent inhibition of HIV-1 productive infection with NF449, A438079, and AZT with IC50 178 

values of 12.4 μM, 36.3 μM, and 12.0 μM, respectively.   179 

 180 

HIV-1 infection is inhibited by NF449 and A438079 in human tonsil explant tissue blocks. 181 

 182 

We next tested the supernatants of human tonsil explant tissue blocks to determine how infection levels 183 

are associated with secreted cytokines. To do this, tonsils were dissected and cut into small blocks and 184 

suspended at the liquid-air interface on collagen rafts. Supernatants were collected on days 2, 5, 8, and 12 DPI 185 

(Figure 4A) and saved for experimental analysis. Media with drug were changed completely on each indicated 186 

DPI, and therefore quantification represents cumulative accumulation of viral production. While HLACs allow 187 

for more cellular analysis of viability and infection via flow cytometry, the human tonsil explant tissue block 188 

model allows for preservation of the tonsil tissue cytoarchitecture. Given prior evidence that a lymphoid tissue 189 

microenvironment is required to support the course of HIV-1 infection and pyroptosis (50, 53, 55), we pursued 190 

the development of a tonsil model that could recapitulate the observations of HIV-1 infection and stimulation of 191 

inflammatory cytokine production.  192 

First, we attempted to determine if HIV-1 infection and inhibition in the human tonsil explant tissue block 193 

model was comparative to the HLAC model. The HIV-1 NL-CI virus expresses an mCherry gene cloned into 194 

the nef position and provides and indicator of early viral gene expression.  Nef expression is restored with the 195 

insertion of an internal ribosome enty site. Therefore, infection was monitored by measurement of viral antigen 196 

by HIV-1 p24 ELISA (Figure 4B) and by measuring infectivity in the supernatants by exposure to the HIV-1 197 

indicator TZM-bl cell line and quantification of relative luminescence units (RLUs) (Figure 4C). HIV-1 infection 198 

resulted in significant p24 antigen accumulation from 2-12 DPI accompanied by infectivity of the TZM-bl cell 199 

lines.  200 

We next tested the effect of these drugs on reducing HIV-1 p24 antigen accumulation in the ex vivo 201 

tonsil tissue model over the 12-day infection (Figure 4D). A significant reduction of HIV-1 p24 antigen 202 

accumulation was observed with NF449 (100 μM) treatment on 8 and 12 DPI. As in the HLAC system in Figure 203 
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3, A438079 (100 μM) inhibited HIV-1 p24 antigen accumulation on 8 and 12 DPI. In histoculture, A438079 204 

inhibited HIV-1 productive infection to a similar extent as the positive control, AZT (100 μM) that fully blocked 205 

productive infection.  206 

 207 

HIV-1 infection is associated with inflammatory cytokine production in ex vivo lymphoid model 208 

 209 

With confirmation of the establishment of productive infection by HIV-1 in this ex vivo lymphoid model, we 210 

next examined if HIV-1 infection stimulated inflammatory cytokine production. Supernatants were harvested 211 

from uninfected and infected human tonsil explant tissue blocks and were analyzed for cytokines IL-10, IL-1β, 212 

tumor necrosis factor (TNF), interleukin-12p70 (IL-12p70), interleukin-8 (IL-8), and interleukin-6 (IL-6). 213 

Supernatants were harvested over the 12-day infection time course and subject to the multiplex bead 214 

immunoassay Cytometric Bead Array (CBA; BD Biosciences) (Figure 5A). Cumulative measurements indicated 215 

that HIV-1 infection stimulated a significant increase in IL-10 and IL-1β from 2 to 12 DPI. HIV-1 infection 216 

stimulated a modest but not significant increase of TNF at 12 DPI and did not stimulate an increase in IL-217 

12p70, IL-8, or IL-6.   218 

 219 

We further sought to test whether the stimulation of these cytokines was associated with the magnitude of 220 

infection. Figure 5B demonstrates IL-10 and IL-1β production plotted as a function of TZM-bl infectivity. IL-10 221 

and IL-1β production are both positively correlated with HIV-1 infection with R2 values of 0.45 and 0.49, 222 

respectively. This suggests that this model can support the stimulation of inflammatory cytokine production that 223 

is directly proportional to the level of HIV-1 infection. For the cytokines for which no significant difference was 224 

noted in Figure 5A, notably TNF, IL-12, IL-6, and IL-8, no correlation was observed (data not shown).  225 

 226 

NF449 and A438079 reduce HIV-1 stimulated IL-10 and IL-1β production in human tonsil cells. 227 

 228 

With the establishment of a tonsil system that supported HIV-1 infection and HIV-1 associated 229 

inflammatory cytokine secretion, we examined the role of purinergic signaling pathways in the induction of 230 

cytokines by HIV-1 infection. Based on our prior observations that P2X antagonists reduced HIV-1 infection 231 
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and fusion (34, 57), it was of interest to test a panel of selective P2X antagonists to identify drugs with 232 

inhibition of HIV-1 infectivity in lymphocyte cell lines that would also interfere with HIV-1 stimulation of 233 

cytokines in the tonsil system. We tested whether NF449 and A438079 would reduce HIV-1-stimulated 234 

inflammatory cytokine production. Human tonsil explant tissue blocks were infected with HIV-1 NL-CI as in 235 

Figure 4. Supernatants from infected human tonsil explant tissue blocks were harvested on 2, 5, 8, and 12 DPI 236 

and analyzed for inflammatory cytokines by CBA (BD Biosciences).  Cumulative IL-10 and IL-1β production 237 

over the 12-day infection course was measured in the presence or absence of indicated antagonists. HIV-1 238 

infection stimulated IL-10 production, which was significantly reduced by NF449 and A438079 on 5, 8, and 12 239 

DPI (Figure 6A). Additionally, HIV-1 infection stimulated IL-1β production, which was significantly reduced by 240 

A438079 at 5, 8, and 12 DPI (Figure 6B). NF449 did not significantly reduce IL-1β production until 12 DPI. AZT 241 

was not expected to inhibit either cytokine production, but did inhibit IL-10 production to a lesser extent than 242 

NF449 or A438079. AZT did not reduce IL-1β levels. These observations support the notion that P2X-selective 243 

antagonists act on HIV-associated inflammation differently than conventional ART. Overall, we conclude that 244 

NF449 and A438079 inhibit HIV-1 replication and IL-10 and IL-1β release in human tonsil explants. This 245 

suggests that P2X-selective antagonists are active in both reducing HIV-1 infection and associated 246 

inflammation. 247 

 248 

Discussion 249 

 250 

Here we demonstrate a human ex vivo tonsil model that can support HIV-1 infection over a 12-day 251 

incubation. This model represents an important experimental system to test the signaling that mediates HIV-1 252 

infection and HIV-1-stimulated inflammation and illustrates an important distinction between HIV-1 253 

inflammation in peripheral blood and in lymphoid tissues. As soluble cytokine production is challenging to 254 

measure in PBMCs, it has been necessary for investigators to probe lymphoid tissues for evidence of HIV-1-255 

stimulated immune activation and pyroptosis which cannot be demonstrated in peripheral blood (50-55). We 256 

demonstrate HIV-1 productive infection of human tonsils in HLACs and in human tonsil explant tissue blocks. 257 

The advantage to the HLAC system is that cell viability can be measured alongside productive infection using a 258 

fluorescent reporter virus. The human tonsil explant tissue blocks allow for measurement of soluble cytokine 259 
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and the measurement of p24 antigen as an indirect measure of HIV-1 spreading infection. Using these two 260 

models, we demonstrated HIV-1 replication and HIV-1 stimulated IL-10 and IL-1β production.  261 

 262 

In the HLAC model, we demonstrated HIV-1 productive infection occurred with a peak at 8 DPI and a 263 

corresponding decline in cell viability. All three drugs tested, NF449, A438079, and AZT reduced HIV-1 264 

productive infection, while NF449 and AZT resulted in statistically significant increased cell survival, most 265 

notably on 8-12 DPI, which likely relates to inhibition of HIV-1 productive infection. Dose dependence inhibition 266 

of HIV-1 productive infection was noted for all three drugs with IC50 values all in the 10-100 μM range.  267 

 268 

In the human tonsil explant tissue blocks, HIV-1 p24 antigen and TZM-bl infectivity steadily increased over 269 

the 12-day infection. NF449, A438079 and AZT, inhibited HIV-1 p24 and HIV-1 productive infection to 270 

statistically significant extent by 8 and 12 DPI. At those same time points, IL-10 and IL-1β cytokine stimulation 271 

steadily increased and those levels positively correlated with TZM-bl infectivity, suggesting a direct relationship 272 

between the extent of infection and IL-10 and IL-1β cytokine stimulation. 273 

 274 

The P2X-selective antagonists tested, NF449, and A438079, reduced HIV-1-stimulated levels of IL-10 with 275 

statistical significance between 5-12 DPI. Treatment with AZT at the corresponding time points resulted in less 276 

inhibition of IL-10 compared to the infected condition. This suggests that inflammatory signaling may be 277 

blocked not directly through inhibition of productive infection, but through alternative signaling mechanisms. 278 

These observations highlight the unique properties of NF449 and A438079 as novel agents that reduce 279 

inflammatory changes independent of their antiviral properties. 280 

 281 

Additionally, the drugs were tested for effect on HIV-stimulated IL-1β production. NF449 reduced HIV-1-282 

stimulated levels modestly at 12 DPI whereas A438079 reduced HIV-1-stimulated levels of IL-1β at 8-12 DPI. 283 

AZT did not reduce IL-1β levels. Of note, A438079 did not have full inhibition of HIV-1 productive infection in 284 

PBMCs, but unexpectedly had strong inhibition of HIV-1 p24 accumulation in human tonsil explants and 285 

reduced IL-10 and IL-1β secretion. This surprising observation suggests that the nature of A438079 inhibition 286 

of productive infection in tonsils may not be ascribed to a direct link between A438079 and HIV-1 entry, but 287 
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rather through cytokine-dependent signaling. There are several possible explanations for this phenomenon. 288 

The immunomodulatory role of IL-10 may serve to enhance HIV-1 permissively, but when levels of IL-10 are 289 

reduced by A438079, cells may be more susceptible to A438079 inhibition of HIV-1 infection. Tonsil tissue 290 

represents mixed cellular populations with stromal compartments with altered sensitivity to P2X inhibition as 291 

compared to PBMCs (58-60). It will be of interest to explore the cell-type heterogeneity of HIV-1 infection in 292 

tonsils to determine the cell type and signaling mechanisms that drive IL-10 and IL-1β production. These 293 

directions may lead to the development novel therapeutic agents that retain inhibition of spreading HIV-1 294 

infection and can reduce HIV-1 stimulated levels of IL-10 and IL-1β. 295 

 296 

The role of P2X receptors in HIV-1 pathogenesis likely relate to downstream activation of the NLRP3 297 

inflammasome. The NLRP3 activates immature caspase-1 to activated caspase-1, which cleaves and activates 298 

pro-IL-1β. These cytokines, among others, play a pivotal role in signaling of other inflammatory cytokines. 299 

Emerging evidence suggests a key role for the inflammasome in atherosclerotic disease progression (61-63) 300 

(64-71) and in HIV-1 disease (46, 72-77). Inflammasome activation requires two signals, one for priming (i.e. 301 

TLR signaling which results in transcriptional regulation), and then activation for inflammasome complex 302 

assembly. Together with TLR signaling, P2X7 can signal inflammasome activation and subsequent IL-1β 303 

release (78). As the tonsil tissue contains soluble factors that likely include TLR agonists, inflammasome 304 

activation is readily measurable with second signal stimulation, i.e. P2X7 activation by HIV-1 infection. HIV-1 305 

infected patients have elevated circulating levels of LPS, which can serve to increase transcriptional activation 306 

of pro-inflammatory cytokines (11, 49). Elevated levels of IL-1β are associated with many of the AANCCs seen 307 

in HIV-1 infected patients (79-82). Currently, there are multiple clinical trials assessing the safety and efficacy 308 

of anti-IL-1β antibodies in cardiovascular disease (83, 84). Canakinumab, a human monoclonal IL-1β antibody, 309 

has been shown to significantly decrease arterial inflammation in HIV-1 infected individuals (85). The role of 310 

P2X receptors in the secretion of IL-1β may represent a key mechanism for HIV-1 associated inflammation. 311 

Elevated IL-1β is observed in HIV-1 infected patients (76, 86-88) and an emerging literature implicates the role 312 

of IL-1β in atherosclerotic cardiovascular disease in both HIV-1 infected and uninfected patients (83-85). 313 

Intriguing studies in CD4+ T cells find that pathogen sensor interferon-γ-inducible protein 16 (IFI-16) recognition 314 
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of HIV-1 DNA can activate the NLRP3 inflammasome that induces pyroptosis and may represent a mechanism 315 

for CD4+ T cell depletion in HIV-1 disease and progression to advanced disease (53-55). 316 

 317 

The fact that both IL-10 and IL-1β were together stimulated by HIV-1 infection and reduced by NF449 and 318 

A438079 are surprising, given that they have opposing inflammatory effects.  IL-10 is an immunomodulatory 319 

cytokine with immunosuppressive activities and has been implicated in immune exhaustion and cell death 320 

through inhibition of NF-kB activity (89-93). IL-10 activation has been linked to P2X7 signaling with the 321 

observation of down-modulation of IL-10 receptor expression with P2X7 activation (94). IL-10 has the potential 322 

to impact many areas of HIV-1 infection including CD4 function, chemokine receptor expression, and 323 

modulation of replication (95-97). IL-10 gene polymorphisms and epigenetics have been shown to be 324 

associated with variations in HIV-1 transmission and disease progression, as long-term non-progressors 325 

(LTNP) have low IL-10 levels compared with HIV-1 progressors (98-103). This suggests that IL-10 may be 326 

important for modulating the immune response to HIV-1 infection and the high levels of HIV-1-stimulation may 327 

account for the relatively low levels of induction of other pro-inflammatory cytokines such as IL-6 and TNF. 328 

Further studies are needed to understand the role of IL-10 in HIV-1 disease progression and inflammation, and 329 

P2X-selective antagonists may play a role in developing novel therapeutics that target both HIV-1 infection and 330 

inhibition of IL-10 signaling.  331 

 332 

Figure 7A summarizes the observations of HIV-1 infection and inflammatory cytokine production in both 333 

PMBCs and tonsils. While all drugs inhibit HIV-1 infection, A438079 had the least effect on inhibition of HIV-1 334 

infection. It should be noted that IL-10 and IL-1β stimulation were not observed in this system. Since it was not 335 

possible to demonstrate HIV-1 specific stimulation of inflammatory cytokines in this model, it was necessary to 336 

establish a lymphoid model that would more accurately recapitulate inflammatory cytokine signaling. In the 337 

tonsil model, all three drugs inhibited HIV-1 infection to a comparable magnitude in HLACs, while A438079 and 338 

AZT inhibited p24 accumulation more than NF449. By comparison, NF449 and A438079 inhibited IL-10 339 

production most strongly while AZT only modestly reduced IL-10 production. Finally, NF449 and A438079 340 

inhibited IL-1β production modestly while AZT did not inhibit IL-1β production.  341 

 342 
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Taken together, we propose the model in Figure 7B, in which P2X-selective antagonists play a role in 343 

inhibiting both HIV-1 infection and HIV-1-stimulated inflammation. The model indicates that NF449 and 344 

A438079 may have different mechanisms of action on HIV-1 entry and inflammation. Stimulation of 345 

inflammatory signaling by P2X7 and TLR4 results in NLRP3-dependent production of IL-1β as well as NF-kB-346 

dependent regulation of IL-10. NF449 inhibits this inflammation and HIV-1 productive infection in both PBMCs 347 

and tonsil cells, suggesting that the inhibition is not dependent on intact inflammasome signaling, but may act 348 

more directly on HIV-1 entry mechanisms. By contrast, A438079 inhibits HIV-1 productive infection that is 349 

limited to the tonsil system, indicating that this inhibition is dependent on intact NLRP3 signaling mechanisms 350 

that are not activated in PBMCs. The role of cytokine signaling in permissivity to HIV-1 infection in mixed cell 351 

populations is an important area of future investigation as the tonsil tissue model system is important in 352 

understanding the interplay between HIV-1 pathogenesis and the immune response.  353 

 354 

Here we demonstrate that P2X-selective antagonists have the potential to reduce HIV-1 infection and HIV-355 

1-stimulated inflammatory cytokine production. We conclude from these studies that P2X-selective antagonists 356 

may represent potential HIV-1 therapeutic options that serve to inhibit HIV-1 replication and innate immune 357 

sensing. Further studies will be necessary to identify selective inhibitors that are amenable to pharmacologic 358 

development and the precise mechanism of their inhibition, but these observations introduce important 359 

prospects for dually active therapeutic options that would reduce the burden of morbidity and mortality of 360 

chronic inflammation in HIV-1-infected individuals. 361 

  362 
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Materials and Methods 363 

Virus production. HIV-1 NL-CI contains mCherry in place of nef, and nef expression is directed by a 364 

downstream internal ribosome entry site (IRES) (44). Pseudoviruses were produced by co-transfecting 365 

293T/17 cells with HIV-1 rev- and env-expressing plasmids and the pNL4-3Δenv R-E- plasmid using the jetPEI 366 

transfection reagent (Polyplus-transfect SA). Supernatants were harvested after 48 hours and clarified by high-367 

speed centrifugation (Sorvall ST 40R Centrifuge, Thermo Fisher Scientific) at 100,000 x g at 4°C for 2 hours 368 

and 0.45 μm filtration. Single-use aliquots were stored at −80°C. Viral stocks were quantified via enzyme-linked 369 

immunosorbent assay (ELISA), as described below. HIV-1MN (X4-tropic) was produced at the AIDS Vaccine 370 

Program, National Cancer Institute as previously described (104-106). 371 

 372 

Cells and cell lines. PBMCs were obtained from de-identified HIV-1 negative blood donors (New York Blood 373 

Center), purified by Ficoll (HyClone) density gradient centrifugation and were maintained in RPMI 1640 374 

medium (Sigma) containing 10% fetal bovine serum (FBS; Sigma), 100 U/ml penicillin (Gibco), 10 U/ml 375 

streptomycin (Gibco), and 2 mM glutamine (Gibco) (complete RPMI). The 293T/17 cell line was used to 376 

produce pseudoviruses and purchased from the American Type Culture Collection. The TZM-bl cell line was 377 

obtained from Dr. John C. Kappes, Dr. Xiaoyun Wu, and Tranzyme Inc. through the NIH ARP. The 293T/17 378 

and TZM-bl cells were maintained in Dulbecco’s modified Eagle Medium (DMEM; Sigma) containing 10% 379 

cosmic calf serum (CCS; HyClone) and 100 U/mL penicillin, and 10 U/mL streptomycin, and 2 mM glutamine 380 

(Gibco) (complete DMEM).  381 

 382 

Establishment of human explant tonsil model and processing of HLACs. Human tonsils were collected 383 

from routine tonsillectomy performed at the Mount Sinai Health System in New York by BT under an 384 

Institutional Review Board-approved protocol. Tonsils were collected within several hours of surgery and 385 

dissected into 2 mm tissue blocks. Human tonsil explant tissue blocks were plated 9 per well atop a collagen 386 

sponge GelFoam (Pfizer) in a 6-well plate in ~3 mL media (Costar), as previously described (56). Media was 387 

completely changed every 2-3 days with or without indicated inhibitor and saved in aliquots at −80°C for further 388 

experiments. For HLAC experiments, dissected tissue was passed through a 40-m cell strainer and purified 389 
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by Ficoll density-gradient centrifugation, as previously described (51). Cells were plated at 2.5 x 105 cells/well 390 

in a round-bottom 96-well plate (Costar) and spun down at 500 x g for 3 minutes every 2-3 days to replace 391 

media with our without indicated inhibitor. Human tonsil explant tissue blocks and HLACs were maintained in 392 

RPMI 1640 medium (Life Technologies) containing 15% FBS, 2 mM GlutaMAX (Life Technologies), 2 mM L-393 

glutamine (Corning), 1 mM sodium pyruvate (Corning), 1% MEM non-essential amino acids (Corning), 2.5 394 

μg/mL Amphotericin B (HyClone), 50 mg/mL gentamicin sulfate (Corning), and 0.3 mg/ml Timentin 395 

(bioWORLD). 396 

 397 

Antagonists. Inhibitors were tested for the ability to block HIV-1 infection and HIV-1 associated inflammation 398 

at 100 μM, unless otherwise stated. These include NF449 (Tocris), a P2X1 selective antagonist, A438079 399 

(Tocris), a P2X7 selective antagonist, and the reverse transcriptase inhibitor azidothioidine (AZT; Sigma). 400 

NF449 and A438079 were diluted from 10 mM stocks reconstituted in DMSO while AZT was diluted from 10 401 

mM stocks reconstituted in water.  402 

 403 

Flow cytometry and gating strategy. An LSR II flow cytometer (BD Biosciences) was used to detect infection 404 

and viability in PBMCs and HLACs. Viable cells were detected with LIVE/DEAD Fixable Dead Cell Stain (Life 405 

Technologies), an amine reactive fluorescent dye that can penetrate the membranes of dead cells but not live 406 

cell membranes. Samples were stained with LIVE/DEAD Fixable Blue Dead Cell Stain or LIVE/DEAD Fixable 407 

Violet Dead Cell Stain at a concentration of 1:1000 in Wash Buffer (PBS supplemented with 2 mM EDTA and 408 

0.5% bovine serum albumin). Stained cells incubated at 4C for 30 minutes, then were washed and fixed in 2% 409 

paraformaldehyde for flow cytometry. All cells were initially discriminated by side scatter (SSC) area versus 410 

forward scatter (FSC) area (SSC-A/FSC-A); doublets were excluded using FSC height (FSC-H) vs FSC-A. 411 

Viability was determined by gating on negative populations for LIVE/DEAD Fixable Dead Cell Stain. Infection 412 

was detected by the presence of mCherry in cells infected with HIV-1 NL-CI. mCherry was detected using the 413 

phycoerythrin-Texas Red (PE-Texas Red) channel, LIVE/DEAD Fixable Violet Dead Cell Stain was detected 414 

with the 3-carboxy-6,8-difluoro-7-hydroxycoumarin (Pacific Blue) channel, and LIVE/DEAD Fixable Blue Dead 415 

Cell Stain was detected with the 4’,6-diamidino-2-phenylindole (DAPI) channel. All cells within a single 416 
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experiment were analyzed using the same instrument settings. Flow cytometry data were exported and 417 

analyzed using FlowJo software, version 9.3.2 (Tree Star, Ashland, OR).  418 

 419 

Productive infection in PBMCs. PBMCs were activated with PHA (4 μg/ml) and IL-2 (50 U/mL) for 3 days 420 

and infected by spinoculation, as previously described (107, 108). Briefly, 2.5 x 105 cells were incubated in the 421 

presence or absence of indicated inhibitors in a 96-well flat bottom plate for 30 minutes at 37C then spun at 422 

1,200 x g for 99 minutes with 47.7 ng HIV-1 NL-CI. After overnight incubation at 37C, the culture medium was 423 

replaced with complete RPMI containing IL-2 (50 U/ml) and 10 M AZT. At 48 h after spinoculation, cells were 424 

stained and fixed in 2% paraformaldehyde for flow cytometry, as described above.  425 

 426 

Ex vivo infection of human tonsil explant tissue blocks and HLACs. Human tonsil explant tissue blocks 427 

from each donor were individually inoculated with 5 µl of HIV-1 NL-CI (equivalent to 3.24 ng p24),or left 428 

uninfected in the presence or absence of indicated inhibitors. We measured HIV-1 p24 antigen in harvested 429 

supernatants and infectivity in relative RLUs by TZM-bl assay as described below, as the NL-CI fluorophore 430 

can only be detected in cell-based systems. Data are expressed as a cumulative value to account for total 431 

successive media changes. For HLAC experiments, cells were incubated in the presence or absence of 432 

indicated inhibitors for 30 minutes at 37C before infection with 25 ng HIV-1 NL-CI p24 per well. Cells were 433 

stained and fixed for flow cytometry, as described above.  434 

 435 

p24 ELISA. Viral stocks and tonsil tissue supernatants were quantified via ELISA with coating antibody D7320, 436 

sheep anti-HIV-1-p24 gag (Aalto Bio Reagents), as previously described (57, 109) . Briefly, anti-p24 capture 437 

antibody was coated on high binding plates (Costar) at 1:200 in 0.1 M NaHCO3. After overnight incubation at 438 

room temperature, plates were blocked with 2% nonfat dry milk for 1 h. HIV-1 samples were treated with 1% 439 

Empigen and added to wells, along with titration of p24 standard, at room temperature for 3 h. Alkaline 440 

phosphatase conjugated mouse anti-HIV-1 p24 (CLINIQA) was added (1:8000 in TBST 20% sheep serum) 441 

and incubated for 1 h. Plates were developed with Sapphire Substrate (Tropix) and measured on Fluo Star 442 

Optima plate reader.  443 
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 444 

TZM-bl HIV-1 infectivity assay. Virus infectivity of supernatants collected from tonsil was measured using a 445 

β-galactosidase-based luciferase assay (Promega) with TZM-bl target cells, as previously described (110). 446 

Briefly, TZM-bl cells were plated at 1.5 X 104 cells/well in a flat-bottom 96-well plate (Costar). Harvested 447 

supernatants (containing 0.1 ng HIV-1 p24) were added to each well then incubated at 37C. Media was 448 

exchanged 24 h after incubation and a luciferin-galactoside substrate (6-O-β-galactopyranosyl-luciferin) was 449 

added after 48 h. The cleavage of the substrate by β-galactosidase generates luminescent signals measured 450 

in RLUs. Each test and control condition was tested in duplicate or triplicate. Assay controls included replicate 451 

wells of TZM-bl cells alone (cell control). The virus inputs were the diluted virus stocks yielding equivalent 452 

RLUs (typically ~100,000 RLUs) under the different assay conditions. The RLU present in uninfected samples 453 

were subtracted as background for all samples for each time point.  454 

 455 

Cytokine measurements. PBMCs were isolated from patient samples and 2.5 x 105 cells per well in a 96 well 456 

plate were incubated in the presence or absence of dilutions of inhibitor for 30 minutes. HIV-1MN (X4-tropic) 457 

was added at 300 ng/ml in the presence or absence of 1 pg/ml LPS (Sigma) and incubated for 12 hours. 458 

Supernatants were collected from PBMCs or samples of tonsil tissue and were analyzed for IL-10, IL-1β, TNF, 459 

IL-12p70, IL-8, and IL-6 using BDTM CBA Human Inflammatory Cytokines Kit (BD Biosciences). Standard 460 

curves were generated and cytokine concentrations were extrapolated using the FCAP Array software (BD 461 

Biosciences). The measurements indicated are representative of 3 separate PBMC donors and 6 separate 462 

tonsil donors. 463 

 464 

Statistical analysis and calculations. Comparisons were performed using GraphPad Prism 7, version 7.0d 465 

(GraphPad Software). DMSO- treated controls were set to 100% and drug-treated conditions were expressed 466 

as a percentage of control. Statistical analyses were performed on inhibition data that reached ≥50% with a 467 

one-tailed student’s t-test. A P value of less than 0.05 was considered statistically significant.  468 

 469 
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Study Approval.  ISMMS IRB protocol number 06-0980 was approved by the Program for the Protection of 470 

Human Subjects Institutional Review Board of the Mount Sinai Health System (New York, New York, USA). All 471 

patients participating in tonsil analysis gave written informed consent. 472 
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FIGURES 813 

 814 

Figure 1. NF449 and A438079 inhibit HIV-1 productive infection in PBMCs with minimal inhibition of 815 

inflammatory cytokines. (A) PBMCs were isolated, activated, and infected with HIV-1 NL-CI (X4-tropic) for 48 816 

hours. Cells were fixed and analyzed by flow cytometry then normalized to the HIV-1 infected condition for 817 

productive infection and (B) viability. (C) PBMCs were isolated and immediately exposed to HIV-1MN (X4-tropic) 818 

for 12 hours in the presence or absence of LPS (1 pg/ml). Supernatants were collected and subjected to 819 

cytokine bead array (BD) for analysis of production of IL-10, IL-1b, IL-6, IL-8 IL-12, and TNF. Mean values ± 820 

SEM are represented for IL-10 and IL-1β from three donors.  *, p ≤ 0.05, **, p ≤ 0.01, ***, p ≤ 0.001. 821 

 822 

Figure 2. Human lymphoid aggregate culture (HLAC) of tonsil explant model supports HIV-1 infection. 823 

(A) Human tonsil explants were collected, dissected, homogenized and passed through a cell strainer. Cells 824 

were subject to Ficoll fractionation and human lymphoid aggregate cells (HLACs) were plated, then infected 825 

with HIV-1 NL-CI. Cells were collected on 0, 2, 5, 8, and 12 DPI. (B) HLACs were collected on the indicated 826 

days and analyzed by flow cytometry for productive infection by NL-CI mCherry fluorescence. Infected cells 827 

were quantified by the percentage of positive PE-Texas Red events (C) HLACs were analyzed by flow 828 

cytometry to quantify viable cells. Viable cells were quantified by the percentage of negative DAPI events (D) 829 

Representative flow cytometry plots of uninfected and infected cells are shown for LIVE/DEAD Fixable Dead 830 

Cell staining (Thermo) by flow cytometry, indicating viability of the 12 day infection time course. (D) 831 

Representative flow cytometry plots of uninfected and infected cells are shown for mCherry signal as indicative 832 

of HIV-1 productive infection. Mean values ± SEM are represented from three donors. *, p ≤ 0.05, **, p ≤ 0.01, 833 

***, p ≤ 0.001. 834 

 835 

Figure 3. NF449, A438079, and AZT block HIV-1 replication in HLACs. HLACs were collected on 0, 2, 5, 8, 836 

and 12 DPI. (A) HLACs were analyzed by flow cytometry to quantify viable cells. (B) HLACs were analyzed by 837 

flow cytometry for productive infection by NL-CI mCherry fluorescence. (C) NF449, A438079 and AZT were 838 

tested for dose-dependent inhibition in infected HLACs at 8 DPI by a 1:5 titration down from 100 M. Mean 839 

values ± SEM are represented from two donors *, p ≤ 0.05, **, p ≤ 0.01, ***, p ≤ 0.001. 840 
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 841 

Figure 4. HIV-1 infection and inhibition in human tonsil explant tissue blocks. (A) Human tonsil explant 842 

tissue blocks were collected, dissected and plated in blocks on GelFoam for 24 hours prior to infection. Blocks 843 

were infected with HIV-1 NL-CI. Supernatants were collected on 2, 5, 8, and 12 DPI. (B) Supernatants 844 

collected from human tonsil explant tissue blocks at the indicated times were measured for HIV-1 p24 by 845 

ELISA. Unfilled circles indicate uninfected samples and black circles indicate infected samples. (C) 846 

Supernatants from human tonsil explant tissue blocks on each day were tested for HIV-1 infectivity as 847 

quantified by TZM-bl assay. (D) Human tonsil explants were infected with HIV-1 NL-CI in the presence or 848 

absence of indicated inhibitors (100 μM). Supernatants were collected on 2, 5, 8, and 12 DPI after infection. 849 

HIV-1 p24 antigen levels were measured by ELISA in samples in which infected tonsils were incubated in the 850 

presence or absence of inhibitors NF449, A438079, and AZT at 100M. Data represent cumulative HIV-1 p24 851 

production by adding the measurements at each successive time point. Mean values ± SEM are represented 852 

from six donors *, p ≤ 0.05, **, p ≤ 0.01, ***, p ≤ 0.001. 853 

 854 

Figure 5. HIV-1 stimulates production of IL-10 and IL-1β in human tonsil explant model. Human tonsil 855 

explant tissue blocks were infected with HIV-1 NL-CI. Supernatants were collected on 2, 5, 8, and 12 DPI. (A) 856 

Cytokines IL-10, IL-1β, TNF, IL-12, IL-8, and IL-6 were measured in the harvested supernatants, quantified by 857 

CBA (BD Biosciences) and analyzed by flow cytometry. Data represent cumulative cytokine production by 858 

adding the measurements at each successive time point. Mean values ± SEM are represented from six donors 859 

*, p ≤ 0.05, **, p ≤ 0.01, ***, p ≤ 0.001. (B) Quantification of TZM-bl infectivity by RLU and cytokine levels were 860 

compared by regression analysis for IL-10 and IL-1β. A positive correlation was identified between RLU and IL-861 

10 and IL-1β. Mean values ± SEM are represented from five donors *, p ≤ 0.05, **, p ≤ 0.01, ***, p ≤ 0.001. 862 

 863 

Figure 6. NF449 and A438079 reduce HIV-1 induced elevated cytokines IL-10 and IL-1β in ex vivo 864 

human tonsils. Human tonsil explants were infected with HIV-1 NL-CI in the presence or absence of indicated 865 

inhibitors (100 μM). (A) IL-10 and (B) IL-1β were measured from supernatants harvested on 2, 5, 8, and 12 DPI 866 

in the presence or absence of inhibitors NF449, A438079, and AZT. Cytokines were measured in the 867 

supernatants harvested samples and quantified by CBA (BD Biosciences) and analyzed by flow cytometry. 868 
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Data represent cumulative cytokine production by summing the measurements at each successive time point. 869 

Mean values ± SEM are represented from six donors *, p ≤ 0.05, **, p ≤ 0.01, ***, p ≤ 0.001. 870 

 871 

Figure 7. Model for signaling in HIV-1 mediated inflammation. (A) Table summarizing observations from 872 

drug activity across PMBC and tonsil models. Arrows indicate relative magnitude of effect of inhibition in each 873 

of the models depicted. (B) NF449 inhibits HIV-1 productive infection and downstream signaling of the NLRP3 874 

inflammasome. This pathway is activated in concert with TLR4 receptor activation which can drive caspase-1 875 

to cleave pro-IL-1β to mature IL-1β. Mature IL-1β can be secreted or induce pyroptosis in CD4+ T-cells. This 876 

signaling can also activate NF-kB dependent transcriptional regulation of IL-10. Inhibition of this mechanism by 877 

NF449 may explain enhanced cell survival in tonsil cells. A438079, by contrast, may act directly on P2X7 to 878 

inhibit receptor signaling that is required for HIV-1 entry. P2X7 inhibition results in the inability to activate the 879 

NLRP3 inflammasome and pyroptosis in tonsil cells, which does not occur in PBMCs. Therefore, A438079 880 

depends on intact inflammasome signaling to exert inhibition on HIV-1 productive infection.  881 

 882 

 883 
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