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Abstract 19 
Lake La Cruz is considered a biogeochemical analogue to early Earth marine environments 20 
because its water column is depleted in sulfate, but rich in methane and iron, similar to 21 
conditions envisaged for much of the Precambrian. In this early Earth analogue environment, 22 
we show that conductive particles establish a tight metabolic coupling between electroactive 23 
microbial clades. We propose that mineral-based syntrophy is of potential relevance for the 24 
evolution of Earth’s earliest complex life forms. We show that the anoxic sediment of Lake 25 
La Cruz, which is rich in biogeochemically ‘reactive’ iron minerals, harbors known 26 
electroactive species such as Geobacter and Methanothrix, in addition to other groups which 27 
have not been previously associated with an electroactive lifestyle. Slurry incubations on 28 
various substrates in the presence of conductive particles showed significant methanogenic 29 
activity, whereas incubations with non-conductive glass beads resulted in low methanogenic 30 
rates similar to slurries without added particles. In the absence of conductive particles, all 31 
tested substrates were metabolized to acetate, which accumulated to ~10 mM. Similar to a 32 
previous study on iron-rich Baltic Sea sediments, we observed that conductive mineral 33 
additions to La Cruz slurries enabled acetate oxidation, thus preventing acetate accumulation. 34 
Acetate oxidation coupled to high methanogenic activity was only maintained in successive 35 
mud-free enrichments when these were amended with conductive minerals. In serial mud-free 36 
transfers, conductive particles conserved a consortium of Youngiibacter-Methanothrix, 37 
whereas Youngiibacter spp. died off in the absence of conductive particles. In contrast, mud-38 
free enrichments without conductive particles ceased any metabolic activity during the second 39 
transfers. Syntrophic consortia from this early Earth analogue environment only survived in 40 
the presence of conductive particles. Mineral-mediated syntrophy could be one of the earliest 41 
evolutionary interspecies associations. Conductive minerals might have fueled metabolic 42 
exchange between cells via intercellular electron transfer prompting tight cell-to-cell 43 
associations and possibly eukaryogenesis.   44 
 45 
Keywords 46 
Methanothrix, Geobacter, Youngiibacter, magnetite, conductive particles, granular activated 47 
carbon, direct interspecies electron transfer, mineral mediated syntrophy, ferruginous lake 48 
  49 
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Introduction 50 
It has been proposed that eukaryotic life arose from syntrophic interactions between 51 
Deltaproteobacteria and methanogenic archaea (López-García and Moreira, 1999; Martin and 52 
Russell, 2003; Moreira and Lopez-Garcia, 1998) in the anoxic and ferruginous (Fe-rich) early 53 
Archaean ocean (Crowe et al., 2008). Similar conditions can be found today in the anoxic 54 
deeper waters of some lakes (Crowe et al., 2008; Bura-Nakic et al., 2009; Llirós et al., 2015), 55 
including Lake La Cruz, Spain (Camacho et al., 2017; Walter et al., 2014). Most studies of 56 
these environments have focused on the phototrophic and methanotrophic communities in the 57 
water column, yet little attention has been given to either the methanogenic community buried 58 
in the sediments or the possible impact of iron-minerals on their physiology. Only recently 59 
researchers investigated the methanogenic community from Lake Matano, Indonesia which 60 
displayed high methanogenic rates when spiked with the iron-oxide, goethite (Bray et al., 61 
2017), however the possibility of a mineral-mediated syntrophic interaction was not assessed.  62 

Generally, syntrophic associations are carried out indirectly, in which case electron 63 
transfer between partners is assisted by diffusible chemicals (H2, formate, shuttles). These 64 
classical syntrophic interactions require two partners, a bacterium capable of oxidation of 65 
complex organics to reduced compounds (i.e. H2), which are then retrieved by a 66 
methanogenic archaeon, which reduces CO2 to methane (Shrestha and Rotaru, 2014). Recent 67 
studies have shown that, sometimes, interspecies electron transfer does not require a 68 
diffusible chemical carrier. In the absence of a diffusible electron carrier, interspecies electron 69 
transfer could occur via conductive particles (magnetite, chars, pyrite) (Chen et al., 2014; 70 
Kato and Igarashi, 2018; Liu et al., 2012, 2015; Wang et al., 2018) or directly by forging 71 
electric connections via a self-assembled extracellular network of conductive pili and c-type 72 
cytochromes between the two syntrophic partners (Rotaru et al., 2014b, 2014a; Summers et 73 
al., 2010), the latter being known as direct interspecies electron transfer (DIET). DIET was 74 
shown to be accelerated by conductive materials possibly because cells save energy by 75 
pausing the production of their own conductive extracellular network (Liu et al., 2015; Wang 76 
et al., 2018). Consequently, mineral-mediated syntrophy is energetically more favorable than 77 
the usual syntrophic associations.  78 

It has been proposed that Fe-minerals such as pyrite helped nucleate the membranes 79 
of the earliest cells (Russell et al., 1994; Wächtershäuser, 1988a). Many membrane bound 80 
proteins involved in electron transfer through the membranes of present day cells contain FeS 81 
centers (i.e. ferrodoxins). It is therefore likely that some of the earliest FeS proteins might 82 
have played a role in electron transfer between cells. 83 

It has been speculated that conductive-minerals also mediate the interaction between 84 
protocells with leaky cell walls and their environment, such as were probably present in the 85 
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mineral-rich Archaean ocean (Lane and Martin, 2012). Interactions between cells with 86 
different metabolisms is thought to be at the origin of eukaryogenesis, as such cells 87 
compartmentalized the functions within the eukaryotic cell (López-García and Moreira, 1999; 88 
Martin and Russell, 2003; Moreira and Lopez-Garcia, 1998). In the present study, we have 89 
investigated the conductive iron-mineral dependency of interspecies interactions between 90 
bacteria and methanogens from the sediments of the Fe-rich, stratified Lake La Cruz. 91 
Specifically, we were interested in whether reactive Fe minerals would support conductive-92 
mineral mediated interspecies interactions. As the biogeochemical setting of the lake makes it 93 
a prime early analogue (Walter et al., 2014, Camacho et al., 2017), we also discuss the 94 
context of today´s mineral-mediated syntrophy as a relic of ancestral associations.   95 
Materials and methods 96 
Sampling and incubations 97 
During an expedition at Lake La Cruz in central Spain (Fig. 1) in September 2014, we 98 
sampled the lake water and sediment. Lake La Cruz is a permanently stratified, meromictic, 99 
doline lake located in a karst region in the Iberian Mountain Range. The lake is circular with a 100 
diameter of 122 m. At the time of sampling, the maximum depth was 20 m and the 101 
chemocline was at ~12 m depth. Water samples were pumped from sampling depths above, 102 
within, and below the chemocline at the deepest part of the lake from a boat tethered from 103 
shore to shore of the lake. The pumping apparatus was designed to withdraw water samples 104 
without contact with the atmosphere, and both the apparatus and sampling protocol have 105 
previously been described in detail (Miracle et al., 1992; Posth et al., 2017).  Samples were 106 
gathered and fixed directly on the boat and stored until analysis in the lab. 107 

Three sediment cores were collected from the center and deepest part of the lake 108 
(coordinates: 1° 28’17” West; 39° 59’20 North, Fig 1) using a sediment corer (Kajak 109 
sediment core, KC Denmark). The cores (50 length × 7 cm diameter) were sealed without air 110 
bubbles as they were pulled up from depth with rubber stoppers immediately inserted to avoid 111 
exposure to the atmosphere. Within 24 hours of sampling, the sediment was partitioned into 112 
depth intervals, and fixed for biogeochemical and molecular analyses inside an N2-filled 113 
inflatable glove bag, as described in detail below.  114 

For downstream incubations, sediment from 0-15 cm depth was sampled and placed 115 
in Duran bottles secured with butyl-rubber stoppers, with a headspace of 2 bars N2:CO2 80:20 116 
mix. Samples were stored at 4°C until later used for incubations.  117 

Slurries were prepared in an N2-filled anaerobic chamber in the laboratory. For these 118 
slurries, we used 3 mL cut-off syringes to distribute 2.5 mL of sediment into 20 mL gas-tight 119 
vials filled with 7.5 mL of medium, either modified DSM 120 or DSM 334. Modified DSM 120 
120 medium was prepared as described previously (Rotaru et al., 2014b), but with 0.6 g/L 121 
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NaCl. Three successive ten-fold dilutions of the sediment slurries led to essentially mud-free 122 
enrichments in which sediment particles could not be detected visually or by microscopy. 123 
Before inoculation, the complete medium, which lacked the substrate and (semi)conductive 124 
minerals, was dispensed anaerobically by syringe into sterile degassed vials with or without 125 
minerals prepared as below. 126 

Two electrically conductive particle types (granular activated carbon and magnetite) 127 
were selected to be tested because they were previously confirmed to stimulate DIET in 128 
methanogenic co-cultures (Liu et al., 2012; Zheng et al., 2017).  Granular activated carbon 129 
(GAC, Sigma Aldrich) had a particle size between 180 and 300 µm diameter and estimated 130 
conductivity of circa 1000 S/m (Kastening et al., 1997), and magnetite (Sigma Aldrich) with 131 
particles less than 5 µM diameter, and estimated electrical conductivity ranging between 0.1 132 
and 1 S/m (Blaney, 2012; Rochelle and Schwertmann, 2003). Both materials have 133 
conductivities similar or higher than the pili that carry out extracellular electron transfer in 134 
Geobacter sulfurreducens (5 S/m (Adhikari et al., 2016)). 0.1 g/L of each material was 135 
weighed, added to vials, overlaid with 200 µl ultrapure water for wet sterilization, degassed 136 
for 3 minutes with N2:CO2 80:20 mix, and autoclaved at 121°C for 25 min. Control 137 
experiments with non-conductive particle were carried out with acid-washed glass beads (less 138 
than 105 µm diameter) instead of conductive minerals. Substrates (5 mM glucose, 5 mM 139 
sodium butyrate, 10 mM sodium acetate, 10 mM ethanol) were added to media from sterile 140 
anoxic 1M stocks using aseptic and anaerobic techniques. Control experiments without 141 
electron donors were carried out in order to identify whether the organics in the sediment 142 
served as substrates for methanogenesis. All incubations were carried out at room temperature 143 
(20-23°C) in triplicate, unless otherwise noted. 144 

Gas samples were withdrawn, stored anaerobically and then analyzed for methane on 145 
a Thermo Scientific gas chromatograph (Rotaru et al., 2018). To test for short chain volatile 146 
fatty acids (SCVFA) we used high performance liquid chromatography (HPLC) as described 147 
elsewhere (Rotaru et al., 2018). 148 
Biogeochemistry 149 
For biogeochemical parameters, we took water column samples at various depth intervals and 150 
sampled the sediment obtained via the gravity corer. Geochemical parameters of relevance to 151 
this work were methane, soluble ferrous iron, and particulate reactive iron mineral species. 152 
We will use the term reactive iron species to refer to oxalate, dithionite and HCl soluble iron 153 
oxides and sulfides (Phillips and Lovley, 1987; Poulton et al., 2004; Raiswell and Canfield, 154 
1998). 155 

Water column methane was sampled from the pumping apparatus through isoversinic 156 
tubing into 20 mL glass, GC vials (Supelco, Sigma-Aldrich).  For each sampling depth, 157 
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triplicate 5 mL samples were added to GC vials pre-doped with 10 mL 2 N NaOH to retain 158 
CO2 in the liquid phase. The vials were sealed with butyl-viton rubber stoppers, and stored 159 
upside down in the dark at 4˚C until analysis.   160 

Sediment methane concentrations were determined from sediment slices extracted 161 
every 2 cm in an anoxic glove bag filled with N2 gas.  162 

Our measurements of available electron acceptors at the sediment boundary layer 163 
corroborated previous investigations during summer months at this lake (Camacho et al., 164 
2017; Miracle et al., 1992; Walter et al., 2014) and showed a depletion of sulfate and Fe3+ 165 
(<10 µM sulfate, <1µM Fe3+) and no detection of oxygen and nitrate. Thus sediments mainly 166 
rely on methanogenesis for decomposition of organic matter below the water-sediment 167 
boundary, similar to previous observations on this lake during summer months (Miracle et al., 168 
1992; Walter et al., 2014). For sedimentary methane determination, sliced sediment was filled 169 
into glass GC vials, to which 1 M (2.5%) NaOH was added in order to stop any additional 170 
microbial activity. The vials were capped with butyl-viton stoppers, crimped, and inverted 171 
until lab analysis. Sedimentary methane concentrations were determined on a Perkin Elmer 172 
GC, as previously described (Rotaru et al., 2018).  173 

Porewater was analysed for reduced iron concentrations at ~2 cm depth resolution 174 
after extraction using Rhizons (Rhizosphere; pore size 0.2 µm) inside a glove bag with an N2-175 
atmosphere. Dissolved Fe2+ was determined immediately using the ferrozine assay (Lovley 176 
and Phillips, 1987; Phillips and Lovley, 1987; Stookey, 1970; Viollier et al., 2000). 177 

To determine iron mineral speciation, sediment was subsampled from each 2 cm-178 
depth interval and stored at -20°C. Reactive iron species (dithionite and HCl soluble iron 179 
species) (Phillips and Lovley, 1987; Poulton et al., 2004; Raiswell and Canfield, 1998) were 180 
identified from freeze-dried samples stored at -20°C by applying a modified sequential iron 181 
extraction procedure (Poulton and Canfield, 2005). In the first step, a room temperature 0.5 N 182 
HCl extraction was applied to dissolve poorly crystalline iron oxides such as ferrihydrite, 183 
surface absorbed Fe2+, iron carbonate minerals such as siderite, and acid volatile iron 184 
monosulfides (Zegeye et al., 2012). Subsequently, a pH 4.8 sodium dithionite extraction was 185 
employed to dissolve crystalline ferric oxide minerals such as goethite and hematite, followed 186 
by an oxalate extraction to dissolve magnetite (Poulton and Canfield, 2005). The total 187 
concentration of iron dissolved in each operationally defined extraction phase was determined 188 
by flame atomic absorption spectroscopy (AAS). For the 0.5 N HCl extraction, dissolved Fe2+ 189 
was also measured immediately via the ferrozine assay (Lovley and Phillips, 1987; Phillips 190 
and Lovley, 1987; Stookey, 1970; Viollier et al., 2000). Extraction of this Fe2+ from the total 191 
Fe determined for this extraction by AAS gave the Fe3+ concentration associated with poorly 192 
crystalline iron oxides such as ferrihydrite. Iron sulfide phases were determined via a two-step 193 
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 7 

sequential extraction procedure (Canfield et al., 1986). Acid volatile sulfide minerals (FeS) 194 
were determined by extraction with hot 6 N HCl under N2, with the released sulfide trapped 195 
as Ag2S. Pyrite (FeS2) was then determined after addition of chromous chloride, with the 196 
sulfide again trapped separately as Ag2S. After filtration, the concentrations of Fe in FeS and 197 
FeS2 were determined stoichiometrically. The concentration of Fe present as FeS was 198 
subtracted from the Fe2+ concentration determined by the 0.5 N HCl extractions, to give 199 
surface reduced and carbonate-associated Fe2+. Replicate extractions gave a RSD of <5% for 200 
all phases.  201 

 202 
Scanning electron microscopy 203 
Samples from the water column were preserved in 4% formalin, filtered on Nucleopore 204 
carbonate filters, with a pore size of 0.2 µm, and dehydrated in 20 minute steps with ethyl 205 
alcohol (30%, 50%, 70%, 90% and two times 100%). Then samples were critical point dried 206 
prior to palladium/gold sputter coating and visualization on a Hitachi S-4800 FE scanning 207 
electron microscope ran at an electron beam acceleration voltage of 10kV. 208 
 209 
Molecular analyses 210 
For molecular analyses we sampled 2 mL of sediment at 2 cm depth resolution using cut-off 211 
syringes inside a N2-filled glove bag. Sediment was pooled together every 4 cm and fixed 212 
with MoBio RNAlater 1:1 v/v (Rotaru et al., 2018). Prior to DNA extractions, most of the 213 
RNAlater was removed by centrifugation. For DNA extraction we used the top 16 cm of 214 
sediment from triplicate cores. Extractions were carried independently for each core with the 215 
MoBio RNA Soil kit coupled to the MoBio complementary DNA Soil kit, following the 216 
manufacturer’s protocol. DNA was quantified using a Nano Drop prior to downstream 217 
applications. The DNA extracted from each core was amplified with the following primer pair 218 
S-D-Arch-0519-a-S-15/ S-D-Bact-0785-b-A-18, which according to Klindworth et al. (2013), 219 
was the best for MiSeq amplicon sequencing, targeting more than 89% of Bacteria and more 220 
than 88% of Archaea. PCR amplification and indexing (using Nextera XT index kit, Illumina) 221 
of the PCR products for the triplicate samples was conducted following the Illumina 16S 222 
rRNA gene amplicon sequencing protocol (Illumina, USA). The DNA samples were then 223 
sequenced using ×300 PE MiSeq sequencing approach at Macrogen (www.macrogen.com), 224 
using Illumina’s protocol. The sequences generated circa 1 million reads for each core, which 225 
were imported into CD-HIT-OTU to remove noisy data and clustered into OTUs, using a 97% 226 
species cutoff. For taxonomy and diversity analyses, clean and clustered OTUs were analyzed 227 
using QIIME (Caporaso et al., 2010), against the Ribosomal Database Project database 228 
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version 11. Alpha rarefaction analyses showed sufficient coverage of the diversity in all three 229 
sediment cores. 230 

DNA extractions from mud-free incubations were performed using the MasterPure 231 
DNA purification kit as previously described (Rotaru et al., 2014b). Amplification of bacterial 232 
(27F, 5′-AGAGTTTGATCMTGGCTCAG and 1492R, 5′-TACCTTGTTACGACTT) and 233 
archaeal (344F – 5’-ACGGGGYGCAGCAGGCGCGA 234 
-3’ and 1059R – 5’- GCCATGCACCWCCTCT-3’) 16S rDNA sequences, library 235 
preparation, and 16S rRNA gene sequencing, was performed as previously described (Rotaru 236 
et al., 2018). Maximum likelihood phylogenetic trees were constructed using Geneious 237 
(Kearse et al., 2012). Sequence files can be found at NCBI under Bioproject ID: PRJNA (in 238 
the process of submission). 239 
 240 
Results and discussion  241 
Our hypothesis was that the iron-rich Lake La Cruz would be the breeding ground for 242 
conductive, mineral-based syntrophy (Rotaru et al., 2018). We discovered that 243 
microorganisms enriched from Lake La Cruz carried out syntrophic degradation strictly 244 
dependent on conductive mineral additions and were unable to carry unaided DIET 245 
associations.  246 
Geochemistry. We expected to find a niche for DIET/conductive-particle mediated IET in 247 
this Fe-rich methanogenic lake resembling the ocean in the Precambrian. La Cruz sediments 248 
displayed high methane concentrations in the top 15 cm, along with a significant proportion 249 
of reactive iron species ~70% of the total Fe content) (Thompson 2018), which is very high 250 
relative to normal non-ferruginous aquatic environments (Poulton and Raiswell, 2002; 251 
Raiswell and Canfield, 1998). During this sampling campaign, the sediments were overlain by 252 
~10 m of anoxic water (Fig. 1). During summer months, the lake is known to persistently 253 
have a 4-5 m monimolimnion zone above the sediment, which is rich in Fe2+ (Vincente and 254 
Miracle, 1988). In our study we also noticed a strong methane supersaturation near the 255 
bottom, where the methane concentration reached 4 mM, similar to concentrations in the 256 
surface sediment (Fig. 2). Gas ebullition from the deep water table during sampling and 257 
oftentimes gas bubbles, mainly consisting of methane and carbon dioxide (Camacho et al., 258 
2017), percolated through the surface of the lake from the middle, as documented by a 259 
ecogram of the lake (Fig. 1d). Previous studies suggested that the sediment is the source of 260 
water-column methane (Oswald et al., 2016). Indeed we observed that sediment methane 261 
concentrations were highest in the top centimeters of the sediment (Fig. 2). Methane 262 
concentrations were also high in the water column (17-20 m), indicating methanogenesis 263 
occurs in the bottom waters as well as the top layers of the sediment (Fig. 2). 264 
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Similar to previous studies (Camacho et al., 2017, Oswald et al., 2016), dissolved 265 
Fe2+ builds up below the chemocline to reach concentrations of ~250 µM above the sediment-266 
water interface. In the sediment, dissolved Fe2+ concentrations continue to increase 267 
(Thompsen 2018), reaching a peak of >1000 µM at a depth of ~22 cm. These high dissolved 268 
Fe2+ concentrations in the water column and sediment porewaters are similar to those found in 269 
other iron-rich lakes (Bura-Nakic et al., 2009; Crowe et al., 2011; Nordi et al., 2013; Vincente 270 
and Miracle, 1988). The La Cruz sediments were high in TOC (average = 6.68 ± 2.0 wt %), 271 
and carbonate minerals (average = 9.46 ± 1.3 wt% inorganic C) which diluted the total Fe-272 
content to 1.06 ± 0.18 wt% on average (Thompson, 2018). This is significantly lower than the 273 
average global total Fe content of riverine particulates supplied to oceans and lakes (4.49 274 
wt%; Poulton and Raiswell, 2002). Proportionally, however ‘reactive’ Fe phases (non-275 
sulphidized Fe2+, Fe-oxides, Fe-sulfides) were abundant (70±8%; Thompson, 2018) relative to 276 
the total Fe content of the sediment, of which only 18±5% was sulfur bound (pyrite, other Fe-277 
S minerals). Nevertheless, iron-oxide concentrations were rather low, with magnetite Fe 278 
accounting for less than 0.1% of the total Fe-content in this sediment. Other Fe oxide minerals 279 
accounted for ~10% of total Fe on average. Thus, non-sulphidized particulate Fe(II) was the 280 
dominant reactive Fe pool (~60% on average). 281 
Some of the iron minerals (Fe-sulfides and Fe-oxides) found in the sediments of lake La Cruz 282 
are electrically conductive (Fig. 3), of which magnetite and iron sulfides were documented to 283 
facilitate mineral mediated syntrophy (Kato and Igarashi, 2018; Liu et al., 2012, 2015; Rotaru 284 
et al., 2018; Zheng et al., 2017). Fe-sulfides, like pyrite were also shown to aid long-range 285 
extracellular electron transfer from cells (Kondo et al., 2015) or enzymes (Mahadevan and 286 
Fernando, 2018) to electrodes. Moreover La Cruz sediments also contain coal particles 287 
(Romero-Viana et al., 2011), which are conductive (Fig. 3). Indeed it has been documented 288 
that conductive carbon materials (i.e. granular activated carbon) facilitated mineral mediated 289 
syntrophy as effectively as conductive Fe-minerals (Liu et al., 2012; Rotaru et al., 2018). 290 
In situ bacterial diversity – with focus on described electrogens. We therefore anticipated 291 
that electrically conductive particles inherent to La Cruz sediments would facilitate mineral 292 
mediated interactions between electrogens and electrotrophic methanogens in this lake 293 
sediment. Indeed, our data demonstrate that the community harbours organisms affiliated to 294 
groups of electrogens including Geobacter (Fig. 4), and to DIET-methanogens including 295 
Methanothrix (Fig. 4). Geobacter and Methanothrix have previously been shown to carry out 296 
direct interspecies electron transfer in laboratory co-cultures (Rotaru et al., 2014a), and have 297 
been found to co-exist in several man-made environments, such as rice paddies (Holmes et 298 
al., 2017) and anaerobic digesters (Morita et al., 2011; Rotaru et al., 2014a). In this study we 299 
show that bacteria affiliated to known electrogens/iron-reducers like Geobacter (0.6% of all 300 
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Bacteria), Thiobacillus (0.2% of all Bacteria), Desulfobacterium (0.4% of all Bacteria), and 301 
Anaerolinea (0.1% of all Bacteria) co-exist with Methanothrix in Lake La Cruz sediments 302 
(Fig. 4). Together, all of these putative electrogens/iron reducers were represented in Lake La 303 
Cruz sediments, summing up to circa 1% of all Bacteria. Previously, members of these four 304 
genera, Geobacter, Thiobacillus, Desulfobacterium, Anaerolinea, were shown to be capable 305 
of extracellular electron transfer to and/or from electrodes or metallic iron (Dinh et al., 2004; 306 
Gregory et al., 2004; Kawaichi et al., 2018; Nakasono et al., 1997; Pous et al., 2014; Rotaru et 307 
al., 2015), as well as iron-minerals (Bosch et al., 2012; Kawaichi et al., 2013; Lovley et al., 308 
1993; Rotaru et al., 2015). The first two, Geobacter and Thiobacillus can also interact by 309 
DIET with other cells (Kato et al., 2012; Rotaru et al., 2014b, 2014a; Summers et al., 2010), 310 
and this interaction has been shown to be expedited in the presence of conductive particles 311 
(Chen et al., 2014; Kato et al., 2012; Liu et al., 2012, 2015; Rotaru et al., 2014b; Zheng et al., 312 
2017). It is therefore possible that all of these electrogenic species compete for the electron 313 
uptake of electrotrophic methanogens. 314 

However, one of the most abundant genera in these sediments was Smithella (2.6% of 315 
all Bacteria), which were also potentially electroactive and may carry DIET interactions with 316 
Methanothrix in an alkane-degrading consortium (Embree et al., 2014). Therefore, Smithella 317 
may establish a DIET-association with Methanothrix from Lake La Cruz sediments (see 318 
Archaea community below). Members of Verrucomicrobia were also very well represented 319 
(circa 4.6% of all Bacteria) similar to what has been observed for 90% of several lake 320 
sediments (He et al., 2017). Verrucomicrobia were recently proposed to carry extracellular 321 
electron transfer due to their genetic make-up, which comprises the appropriate porin systems 322 
and membrane-associated c-type cytochromes (He et al., 2017).  It is also possible that 323 
Verrucomicrobia play a role in mineral mediated interspecies interactions. Nevertheless, 324 
Verrucomicrobia has never been shown to have the ability to interact syntrophically or to 325 
carry out extracellular electron transfer in laboratory cultures, and thus this predicted 326 
physiology requires future investigation. Some of the most abundant phyla were 327 
Bacteroidetes (10.8% of the Bacteria), and Firmicutes (2.5% of all Bacteria) (Fig. 4).   328 
In situ archaeal diversity. Euryarchaeaota accounted for more than half of the Archaea 329 
represented through amplicon sequencing (Fig. 4). Here, we show that in the sediments of 330 
Lake La Cruz, Methanothrix co-existed with electrogens (Geobacter, Thiobacillus, 331 
Desulfobacterium, and Smithella). Besides the acetoclastic/DIET-associated Methanothrix 332 
(3.7% of all Archaea), we identified canonical hydrogenotrophic-methanogens belonging to 333 
Methanoregula (2.5% of all Archaea), and very low numbers of Methanobacterium (0.2% of 334 
all Archaea). The most abundant Archaea were the deep-branching Methanomassilicoccus 335 
(40.6% of all Archaea). The role of Methanomassillicoccus in sedimentary methanogenesis is 336 
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not well understood since their only cultivated species-representative, M. luminyiensis, is a 337 
human-gut isolate strictly capable of H2-dependent methylotrophic methanogenesis, but 338 
incapable of CO2-reductive methanogenesis or acetoclastic methanogenesis (Dridi et al., 339 
2012a). Besides their documented presence in the human gut (Adam et al., 2017; Dridi et al., 340 
2012b), Methanomassilicoccus species have also been found in the guts of insects (Paul et al., 341 
2012) and animals (Raymann et al., 2017; Salgado-Flores et al., 2018; Söllinger et al., 2016), 342 
anaerobic digesters (Chojnacka and B, 2015; Kuroda and Hatamoto, 2015), hydrothermal 343 
springs (Coman et al., 2013; Merkel et al., 2015, 2016), wetlands (Söllinger et al., 2016), 344 
subsurface aquifers and soils (Kadnikov et al., 2017; Rout et al., 2015), and riverine and 345 
marine sediments (Guo et al., 2018; Nunoura et al., 2016; Rotaru et al., 2018; Vigneron et al., 346 
2016). Methanomassiliicoccus was also one of the most abundant genera of methanogens, not 347 
only in the iron-rich sediments of Lake La Cruz, but also in Baltic Sea sediments that are 348 
potential niches for conductive particle-mediated syntrophy (Rotaru et al., 2018). It is possible 349 
that Methanomassilicoccus is involved in electroactive interactions via minerals, especially 350 
taking into account that this group was recently associated with electroactive communities 351 
abundant on electrodes from bioelectrochemical systems set up with inoculums from soils 352 
(Ahn et al., 2014) and anaerobic digester sludge (Park et al., 2018). 353 

Among the methanogens detected in La Cruz sediments, only species of 354 
Methanothrix have been previously shown to establish DIET-associations with Geobacter 355 
species (Holmes et al., 2017; Morita et al., 2011; Rotaru et al., 2014a; Wang et al., 2016). 356 
Methanothrix was earlier suggested to carry out DIET with Smithella (Embree et al., 2014), 357 
but the latter has never been shown to be capable of mineral-mediated or direct electron 358 
transfer. In a previous study, we have shown that a Methanothrix-species from the Baltic did 359 
not establish a mineral-mediated interaction with Baltic-Geobacter, but were instead 360 
competitively excluded by a Methanosarcina-Geobacter consortium, which carried a mineral-361 
mediated syntrophic association (Rotaru et al., 2018). However, although Methanosarcina is a 362 
very effective DIET partner (Rotaru et al., 2014b, 2015) and mineral-syntrophy partner (Chen 363 
et al., 2014; Liu et al., 2012; Rotaru et al., 2018; Wang et al., 2018) they were poorly 364 
represented in La Cruz sediments (Fig. 4). 365 
High methanogenic activity could only be maintained by conductive particles. 366 
In order to determine the effect of conductive particles on the Lake La Cruz methanogenic 367 
community, we compared incubations with or without additional conductive particles. These 368 
incubations showed that the methanogenic community was strictly dependent on the addition 369 
of conductive particles and independent of the type of substrate, conductive particle, or 370 
freshwater medium tested (Fig. 5). Incubations with conductive particles showed 2-4 fold 371 
increases in methanogenic rates (0.2-0.7 mM/day, depending on substrate) over incubations 372 
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with non-conductive glass beads or without particle-amendment (0.09 to 0.18 mM/day, 373 
depending on the substrate). Moreover, high methanogenic activity was maintained in 374 
subsequent incubations only if conductive particles were added (Fig. 5). Cultures without 375 
conductive particles could not sustain methanogenesis for more than one subsequent transfer. 376 
This indicates a strict dependency of the enriched methanogenic community on conductive 377 
particles.  378 

We observed that all tested substrates were transiently converted to acetate, which 379 
was converted quickly to methane in the presence of conductive particles, whereas acetate 380 
accumulated in the absence of conductive particles (Fig. 5). This is likely due to higher rates 381 
of acetate oxidation prompted by the addition of conductive particles, similar to previous 382 
observations of Bothnian Bay sediments where syntrophic acetate oxidation (SAO) relied on 383 
conductive minerals (Rotaru et al., 2018).  384 

We determined which organisms were enriched on acetate with or without conductive 385 
particles. For this we compared the acetate fed communities exposed to two types of 386 
conductive particles (GAC and magnetite) to a community exposed to no conductive 387 
particles. We determined that Youngiibacter and Methanothrix methanogens dominated the 388 
enrichments amended with both types of conductive particle (Fig. 6). On the other hand, in 389 
controls without conductive particles, after only one single transfer Youngiibacter could not 390 
be detected. In the absence of conductive particles methane production only occurred slowly 391 
for one transfer and in this case Methanothrix co-existed with Clostridium (Fig. 6).  392 

Youngiibacter was only found in enrichments with conductive particles and its 393 
presence could be associated with rapid acetate consumption coupled to methane production 394 
(Fig 5). We therefore anticipate that Youngiibacter plays a role in conductive-particle 395 
mediated syntrophy. Nevertheless, until now little is known about this group of Firmicutes, 396 
and only recently two species of Youngiibacter have been described (Lawson et al., 2014; 397 
Tanaka et al., 1991), of which one is associated with fermentation of organics on coal 398 
surfaces during coal conversion to natural gas (Lawson et al., 2014).  Coal, similar to 399 
activated carbon, is electrically conductive (Duba, 1977). Moreover, Methanothrix have been 400 
also found associated with coal conversion to natural gas (Beckmann et al., 2011; Lawson et 401 
al., 2014). It is therefore possible that Youngiibacter and Methanothrix play a role in 402 
conductive particle-mediated syntrophy in coal beds, and as well in Lake La Cruz sediments. 403 
However, a syntrophic association between Youngiibacter and Methanothrix has not been 404 
described before. We suggest that Youngiibacter released electrons from substrate/acetate 405 
oxidation onto conductive minerals that are then used as a source of electrons for 406 
Methanothrix in order to reduce CO2 to methane. It is possible that Youngiibacter releases 407 
electrons extracellularly using a similar mechanism to that described for Geobacter namely a 408 
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network of outer membrane c-type cytochromes and pili (Shrestha et al., 2013). During DIET, 409 
OMCs were not as necessary for a donor Geobacter strain to carry substrate oxidation 410 
coupled with extracellular electron transfer and respiration, since OMCs could be completely 411 
replaced by the conductive iron oxide, magnetite (Liu et al., 2015). Instead, when it plays the 412 
role of electron donor Geobacter seems to necessitate e-pili for long range electron transfer to 413 
partner cells, as exemplified in a recent study (Ueki et al., 2018). In agreement with previous 414 
observations in Geobacter (Ueki et al., 2018), Youngiibacter might employ type IV pili for 415 
EET to partner Methanothrix. Youngiibacter’s type IV pili gene sequence (T472_0202395) 416 
differs significantly from that of Geobacter species, yet it has a high content of aromatic 417 
aminoacids (10.3%) which could give this organism an advantage to carry EET (Walker et al., 418 
2018). It is possible that conductive particles ornate the pili of Youngiibacter in a similar way 419 
to how they do for Geobacter (Liu et al., 2015; Wang et al., 2018) facilitating electron 420 
transfer to syntrophic partner methanogens. 421 
Conductive-particle mediated syntrophy 422 
Syntrophy mediated by conductive particles could occur in three different ways (Fig. 7). A 423 
first mode of action includes electrogens with limited expression of surface cytochromes 424 
whose role would be replaced with that of conductive minerals (pyrite, pyrrhottite, magnetite, 425 
goethite) found in sediments (Fig. 7a). Molecular and microscopic evidence for this type of 426 
association has been brought by studies in laboratory Geobacter co-cultures provided with 427 
magnetite (Liu et al., 2015). A second possibility is that cells plug into macro-sized 428 
conductive rocks (i.e. iron/manganese-nodules) with one cell releasing electrons onto the rock 429 
and the other receiving electrons (Fig. 7b). Evidence for such interactions was previously 430 
obtained in laboratory co-cultures with macro-sized conductive chars.  In this case, using 431 
SEM, it was shown that the electrogen/Geobacter cells did not require direct contact to the 432 
electrotroph/Methanosarcina yet the conductive surface facilitated the syntrophic association 433 
(Chen et al., 2014; Liu et al., 2012). The third possibility (Fig. 7c), is that membrane-bound 434 
proteins facilitate the precipitation of Fe2+-ions, i.e., with thiol groups (Milner-White and 435 
Russell, 2005) to form a conductive surface-conduit surrounding the cell. Extracellular 436 
electron transfer between such mineral-coated cells has been proposed (Kato et al., 2012), but 437 
has not been confirmed. However, this could be a possibility for microbes without an 438 
extracellular apparatus for electron transfer to partner cells.  439 
It is plausible that mineral-mediated interactions preceded in evolutionary terms the 440 
interspecies electron transfer interactions based on diffusible chemicals, which require 441 
complex enzymes and cell-bound electrical conduits.  Primordial protocells had not 442 
developed enzymatic machineries to maintain redox and proton gradients across cell 443 
membranes (Martin et al., 2003; Russell et al., 1990, 1994; Wächtershäuser, 1988b). It has 444 
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therefore been suggested that minerals, which can uphold voltage differences, such as 445 
FeS/pyrite, might have helped nucleate the earliest membranes, playing the role of early 446 
membrane-bound catalysts, instead of electron transport chain enzymes today (Martin et al., 447 
2003). Later, the high reactive iron content of the Archaean ocean could have promoted the 448 
formation of proteins with Fe-S centers which are required and abundant in redox proteins of 449 
methanogens (Liu et al., 2010). Here, we propose that primitive cells with leaky membranes 450 
(Lane and Martin, 2012), allowed easy electron transfer via conductive minerals permitting 451 
energy exchange between separate metabolic protocell entities. Thus conductive particles 452 
could have fostered the earliest interspecies interactions in the methanogenic and iron-rich 453 
Early Earth oceans, and possibly nurtured adaptation of interspecies associations pre-454 
eukaryogenesis.  455 
 456 
Conclusion 457 
In conclusion, we show that the sediment of an early Earth ocean analogue is the niche for 458 
syntrophic associations dependent on conductive particles. Only if conductive particles were 459 
provided, could syntrophic bacteria coupled to methanogens oxidize their substrates. Thus, 460 
only in incubations with conductive particles members of the genus Youngiibacter were 461 
identified to co-exist with Methanothrix. Incubations without conductive particles resulted in 462 
the disappearance of Youngiibacter, and one transfer later to the demise of the methanogenic 463 
community. These data indicate that conductive particles were required to aid the pairing of 464 
the metabolism of Youngiibacter with that of Methanothrix, which sustained high rates of 465 
methanogenesis in this early Earth analogue – lake La Cruz. We propose that obligate 466 
mineral-syntrophy is an ancestral interspecies interaction established before complex 467 
membrane structures and enzymes evolved to intermediate direct or indirect associations 468 
between species with distinct metabolism. 469 
 470 
Acknowledgements 471 
This work is a contribution to a Danish Research Council grant 1325-00022 awarded to AER. 472 
During the writing of this manuscript, AER has been supported by three other grants: a 473 
Sapere Aude grant from Danish Research Council (4181-00203), a Novo Nordisk Foundation 474 
award and an Innovationsfonden grant (4106-00017), CRL was supported by the EU’s H2020 475 
program (#704272, NITROX). NP thanks the Seventh Framework Programme of the 476 
European Union Marie Skłodowska-Curie Intra-European Fellowships (BioCTrack 330064) 477 
for their support. JT acknowledges support from a NERC research studentship. We would like 478 
to acknowledge lab support by Lasse Ørum-Smidt, Erik Laursen, Heidi Grøn Jensen, Bente 479 
Hølbeck, and Susanne Møller. 480 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/366542doi: bioRxiv preprint 

https://doi.org/10.1101/366542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

 481 
References 482 
Adam, P. S., Borrel, G., and Brochier-armanet, C. (2017). The growing tree of Archaea : new 483 

perspectives on their diversity, evolution and ecology. ISME J. 11, 2407–2425. 484 
doi:10.1038/ismej.2017.122. 485 

Adhikari, R. Y., Malvankar, N. S., Tuominen, M. T., and Lovley, D. R. (2016). Conductivity 486 
of individual Geobacter pili. RSC Adv. 6, 8354–8357. doi:10.1039/C5RA28092C. 487 

Ahn, J. ., Jeong, W.-S., Choi, M.-Y., Kim, B.-Y., Song, J., and Weon, H.-Y. (2014). 488 
Phylogenetic diversity of dominant Bacterial and Archaeal communities in plant-489 
microbial fuel cells using rice plants. J. Microbiol. Biotechnol. 24, 1707–1718. 490 

Beckmann, S., Krüger, M., Engelen, B., Gorbushina, A. A., and Cypionka, H. (2011). Role of 491 
bacteria, archaea and fungi involved in methane release in abandoned coal mines. 492 
Geomicrobiol. J. 28, 347–358. doi:10.1080/01490451.2010.503258. 493 

Blaney, L. (2012). Magnetite (Fe3O4): properties, synthesis and applications. Lehigh Rev. 494 
15–2007, 208–211. doi:10.1016/j.ceramint.2011.11.027. 495 

Bosch, J., Lee, K., Jordan, G., Kim, K., and Meckenstock, R. U. (2012). Anaerobic, nitrate-496 
dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. Env. Sci 497 
Technol 46, 2095–2101. doi:10.1021/es2022329. 498 

Bray, M. S., Wu, J., Reed, B. C., Kretz, C. B., Belli, K. M., Simister, R. L., et al. (2017). 499 
Shifting microbial communities sustain multiyear iron reduction and methanogenesis in 500 
ferruginous sediment incubations. Geobiology 15, 678–689. doi:10.1111/gbi.12239. 501 

Bura-Nakic, E., Viollier, E., Jézéquel, D., Thiam, A., and Ciglenecki, I. (2009). Reduced 502 
sulfur and iron species in anoxic water column of meromictic crater Lake Pavin (Massif 503 
Central, France). Chem. Geol. 266, 311–317. doi:10.1016/j.chemgeo.2009.06.020. 504 

Camacho, A., Miracle, R., Romero-viana, L., Picazo, A., and Vincente, E. (2017). “Lake La 505 
Cruz, an iron-rich karstic meromictic lake in central Spain,” in Ecology of Meromictic 506 
Lakes, 187–233. doi:10.1007/978-3-319-49143-1. 507 

Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., and Berner, R. A. (1986). The 508 
use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and 509 
shales. Chem. Geol. 54, 149–155. doi:10.1016/0009-2541(86)90078-1. 510 

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., 511 
et al. (2010). QIIME allows analysis of high-throughput community sequencing data. 512 
Nat. Methods 7, 335. 513 

Chen, S., Rotaru, A.-E., Shrestha, P. M., Malvankar, N. S., Liu, F., Fan, W., et al. (2014). 514 
Promoting interspecies electron transfer with biochar. Sci. Rep. 4, 5019. 515 
doi:10.1038/srep05019. 516 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/366542doi: bioRxiv preprint 

https://doi.org/10.1101/366542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

Chojnacka, A., and B, K. (2015). Noteworthy facts about a methane- producing microbial 517 
community processing acidic effluent from sugar beet molasses fermentation. PLoS 518 
One, 1–23. doi:10.1371/journal.pone.0128008. 519 

Coman, C., Druga, B., Hegedus, A., Sicora, C., and Dragos, N. (2013). Archaeal and bacterial 520 
diversity in two hot spring microbial mats from a geothermal region in Romania. 521 
Extremophiles 17, 523–534. doi:10.1007/s00792-013-0537-5. 522 

Crowe, S. A., Jones, C., Katsev, S., Neill, A. H. O., Sturm, A., Canfield, D. E., et al. (2008). 523 
Photoferrotrophs thrive in an Archean Ocean analogue. Proc. Natl. Acad. Sci. 105, 524 
15938–15943. 525 

Crowe, S. A., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., et al. (2011). The 526 
methane cycle in ferruginous Lake Matano. Geobiology 9, 61–78. doi:10.1111/j.1472-527 
4669.2010.00257.x. 528 

Dinh, H. T., Kuever, J., Mußmann, M., Hassel, A. W., Mussman, M., Hassel, A. W., et al. 529 
(2004). Iron corrosion by novel anaerobic microorganisms. Nature 427, 829–832. 530 
doi:10.1038/nature02349.1.2.3.4.5.6.7.8.9.10.Wilson. 531 

Dridi, B., Fardeau, M., Ollivier, B., Raoult, D., and Drancourt, M. (2012a). 532 
Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon 533 
isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62, 1902–1907. 534 
doi:10.1099/ijs.0.033712-0. 535 

Dridi, D. I. S., Henry, M., Moulin, J., Cedex, M., and Drancourt, M. (2012b). Age-related 536 
prevalence of Methanomassiliicoccus luminyensis in the human gut microbiome. Acta 537 
Pathol. Microbiol. Immunol. Scand. 120, 773–777. doi:10.1111/j.1600-538 
0463.2012.02899.x. 539 

Duba, A. G. (1977). Electrical conductivity of coal and coal char. Fuel 56, 441–443. 540 
Embree, M., Nagarajan, H., Movahedi, N., Chitsaz, H., and Zengler, K. (2014). Single-cell 541 

genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-542 
degrading methanogenic community. ISME J. 8, 757–67. doi:10.1038/ismej.2013.187. 543 

Gregory, K. B., Bond, D. R., and Lovley, D. R. (2004). Graphite electrodes as electron donors 544 
for anaerobic respiration. Environ. Microbiol. 6, 596–604. doi:10.1111/j.1462-545 
2920.2004.00593.x. 546 

Guo, W., Xie, W., Li, X., Wang, P., Hu, A., and Zhang, C. L. (2018). Environmental factors 547 
shaping the archaeal community structure and ether lipid distribution in a subtropic river 548 
and estuary, China. Appl. Microbiol. Biotechnol. 102, 461–474. 549 

Guskos, N., Papadopoulos, G. J., Likodimos, V., Patapis, S., Yarmis, D., Przepiera, A., et al. 550 
(2002). Photoacoustic, EPR and electrical conductivity investigations of three synthetic 551 
mineral pigments: hematite, goethite and magnetite. Mater. Res. Bull. 37, 1051–1061. 552 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/366542doi: bioRxiv preprint 

https://doi.org/10.1101/366542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

doi:10.1016/S0025-5408(02)00742-0. 553 
He, S., Stevens, S. L. R., Chan, L.-K., Bertlisson, S., Glavina del Rio, T., Tringe, S. G., et al. 554 

(2017). Ecophysiology of freshwater Verrucomicrobia inferred from metagenome-555 
assembled genomes. mSphere 2, 1–17. Available at: 556 
https://doi.org/10.1128/mSphere.00277-17. 557 

Holmes, D. E., Shrestha, P. M., Walker, D. J. F., Dang, Y., Kelly, P., Woodard, T. L., et al. 558 
(2017). Metatranscriptomic evidence for direct interspecies electron transfer between 559 
Geobacter and Methanothrix species in methanogenic rice paddy. Appl. Environ. 560 
Microbiol. 2. doi:10.1128/AEM.00223-17. 561 

Kadnikov, V. V, Frank, Y. A., Mardanov, A. V, Beletsky, A. V, Ivasenko, D. A., and 562 
Pimenov, N. V (2017). Variability of the composition of the microbial community of the 563 
deep subsurface thermal aquifer in western Siberia. Microbiology 86, 765–772. 564 
doi:10.1134/S002626171706008X. 565 

Kastening, B., Hahn, M., Rabanus, B., Heins, M., and Felde, U. (1997). Electronic properties 566 
and double layer of activated carbon. Electrochim. Acta 42, 2789–2800. 567 

Kato, S., Hashimoto, K., and Watanabe, K. (2012). Microbial interspecies electron transfer 568 
via electric currents through conductive minerals. Proc. Natl. Acad. Sci. 109, 10042–569 
10046. doi:10.1073/pnas.1117592109. 570 

Kato, S., and Igarashi, K. (2018). Enhancement of methanogenesis by electric syntrophy with 571 
biogenic iron-sulfide minerals. Microbiol. Open, e00647. doi:10.1002/mbo3.647. 572 

Kawaichi, S., Ito, N., Kamikawa, R., Sugawara, T., Yoshida, T., and Sako, Y. (2013). 573 
Ardenticatena maritima gen . nov ., sp . nov ., a ferric iron- and nitrate-reducing 574 
bacterium of the phylum ‘ Chloroflexi ’ isolated from an iron-rich coastal hydrothermal 575 
field , and description of Ardenticatenia classis nov . Int. J. Syst. Evol. Microbiol. 63, 576 
2992–3002. doi:10.1099/ijs.0.046532-0. 577 

Kawaichi, S., Yamada, T., Umezawa, A., McGlynn, S., Suzuki, T., Dohmae, N., et al. (2018). 578 
Anodic and cathodic extracellular electron transfer by the filamentous bacterium 579 
Ardenticatena maritima. Front. Microbiol. 9, 1–11. doi:10.3389/fmicb.2018.00068. 580 

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). 581 
Geneious Basic: an integrated and extendable desktop software platform for the 582 
organization and analysis of sequence data. Bioinformatics 28, 1647–1649. 583 
doi:10.1093/bioinformatics/bts199. 584 

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., et al. (2013). 585 
Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-586 
generation sequencing-based diversity studies. Nucleic Acids Res. 41, 1–11. 587 
doi:10.1093/nar/gks808. 588 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/366542doi: bioRxiv preprint 

https://doi.org/10.1101/366542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Kondo, K., Okamoto, A., Hashimoto, K., and Nakamura, R. (2015). Sulfur-mediated electron 589 
shuttling sustains microbial long-distance extracellular electron transfer with the aid of 590 
metallic iron sulfides. Langmuir 31, 7427–7434. doi:10.1021/acs.langmuir.5b01033. 591 

Kuroda, K., and Hatamoto, M. (2015). Community composition of known and uncultured 592 
Archaeal lineages in anaerobic or anoxic wastewater treatment sludge. Microb. Ecol. 69, 593 
586–596. doi:10.1007/s00248-014-0525-z. 594 

Lair, V., Antony, H., Legrand, L., and Chaussé, A. (2006). Electrochemical reduction of ferric 595 
corrosion products and evaluation of galvanic coupling with iron. Corros. Sci. 48, 2050–596 
2063. doi:10.1016/j.corsci.2005.06.013. 597 

Lane, N., and Martin, W. F. (2012). The origin of membrane bioenergetics. Cell 151, 1406–598 
1416. doi:10.1016/j.cell.2012.11.050. 599 

Lawson, P. A., Wawrik, B., Allen, T. D., Johnson, C. N., Marks, C. R., Tanner, R. S., et al. 600 
(2014). Youngiibacter fragilis gen. nov., sp. nov., isolated from natural gas production-601 
water and reclassification of Acetivibrio multivorans as Youngiibacter multivorans 602 
comb. nov. Int. J. Syst. Evol. Microbiol. 64, 198–205. doi:10.1099/ijs.0.053728-0. 603 

Liu, F., Rotaru, A.-E., Shrestha, P. M., Malvankar, N. S., Nevin, K. P., and Lovley, D. R. 604 
(2012). Promoting direct interspecies electron transfer with activated carbon. Energy 605 
Environ. Sci. 5, 8982. doi:10.1039/c2ee22459c. 606 

Liu, F., Rotaru, A.-E., Shrestha, P. M., Malvankar, N. S., Nevin, K. P., and Lovley, D. R. 607 
(2015). Magnetite compensates for the lack of a pilin-associated c-type cytochrome in 608 
extracellular electron exchange. Environ. Microbiol. 17, 648–55. doi:10.1111/1462-609 
2920.12485. 610 

Liu, Y., Sieprawska-Lupa, M., Whitman, W. B., and White, R. H. (2010). Cysteine is not the 611 
sulfur source for iron-sulfur cluster and methionine biosynthesis in the methanogenic 612 
archaeon Methanococcus maripaludis. J. Biol. Chem. 285, 31923–31929. 613 
doi:10.1074/jbc.M110.152447. 614 

Llirós, M., García-Armisen, T., Darchambeau, F., Morana, C., Triadó-Margarit, X., Inceoğlu, 615 
Ö., et al. (2015). Pelagic photoferrotrophy and iron cycling in a modern ferruginous 616 
basin. Sci. Rep. 5, 13803. doi:10.1038/srep13803. 617 

López-García, P., and Moreira, D. (1999). Metabolic symbiosis at the origin of eukaryotes. 618 
Trends Biochem. Sci. 24, 88–93. 619 

Lovley, D. R., and Phillips, E. J. P. (1987). Rapid assay for microbially reducible ferric iron 620 
in aquatic sediments. Appl. Environ. Microbiol. 53, 1536–1540. 621 

Lovley, D. R., Roden, E. E., Phillips, E. J. P., and Woodward, J. C. (1993). Enzymatic iron 622 
and uranium reduction by sulfate-reducing bacteria. Mar. Geol. 113, 41–53. 623 

Mahadevan, A., and Fernando, S. (2018). Inorganic iron-sulfur clusters enhance electron 624 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/366542doi: bioRxiv preprint 

https://doi.org/10.1101/366542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

transport when used for wiring the NAD-glucose dehydrogenase based redox system. 625 
Microchim. Acta 2, 1–8. 626 

Martin, W., Russell, M. J., Horner, D., Blankenship, R., Cavalier-Smith, T., and Nisbet, E. 627 
(2003). On the origins of cells : a hypothesis for the evolutionary transitions from abiotic 628 
geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. 629 
Philos. Trans. R. Soc. London B 358, 59–85. doi:10.1098/rstb.2002.1183. 630 

Merkel, A. Y., Podosokorskaya, O. A., Chernyh, N. A., and Osmolovskaya, E. A. B. (2015). 631 
Occurrence, diversity, and abundance of methanogenic Archaea in terrestrial hot springs 632 
of Kamchatka and Sao Miguel island. Microbiology 84, 577–583. 633 
doi:10.1134/S002626171504013X. 634 

Merkel, A. Y., Podosokorskaya, O. A., and Sokolova, T. G. (2016). Diversity of 635 
methanogenic Archaea from the 2012 terrestrial hot Spring (valley of geysers, 636 
Kamchatka ). Microbiology 85, 342–349. doi:10.1134/S0026261716030073. 637 

Milner-White, E. J., and Russell, M. J. (2005). Sites for phosphates and iron-sulfur thiolates 638 
in the first membranes: 3 to 6 residue anion-binding motifs (nests). Orig. Life Evol. 639 
Biosph. 35, 19–27. 640 

Miracle, M. R., Vicente, E., and Pedros-Alio, C. (1992). Biological studies of spanish 641 
meromictic and stratified karstic lakes. Limnetica 8, 59–77. 642 

Moreira, D., and Lopez-Garcia, P. (1998). Symbiosis between methanogenic Archaea and 643 
delta-Proteobacteria as the origin of Eukaryotes : the syntrophic hypothesis. J. Mol. 644 
Evol. 47, 517–530. 645 

Morita, M., Malvankar, N. S., Franks, A. E., Summers, Z. M., Giloteaux, L., Rotaru, A. E., et 646 
al. (2011). Potential for direct interspecies electron transfer in methanogenic wastewater 647 
digester aggregates. MBio 2, e00159-11. doi:10.1128/mBio.00159-11. 648 

Nakasono, S., Matsumoto, N., and Saiki, H. (1997). Electrochemical cultivation of 649 
Thiobacillus ferrooxidans by potential control. Bioelectrochemistry Bioenerg. 43, 61–650 
66. 651 

Nordi, K. Á., Thamdrup, B., and Schubert, C. J. (2013). Anaerobic oxidation of methane in an 652 
iron-rich Danish freshwater lake sediment. Limnol. Oceanogr. 58, 546–554. 653 
doi:10.4319/lo.2013.58.2.0546. 654 

Nunoura, T., Takaki, Y., Shimamura, S., Kakuta, J., Kazama, H., Hirai, M., et al. (2016). 655 
Variance and potential niche separation of microbial communities in subseafloor 656 
sediments off Shimokita Peninsula, Japan. Environ. Microbiol. 18, 1889–1906. 657 
doi:10.1111/1462-2920.13096. 658 

Oswald, K., Jegge, C., Tischer, J., Berg, J., Brand, A., Miracle, M. R., et al. (2016). 659 
Methanotrophy under versatile conditions in the water column of the ferruginous 660 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/366542doi: bioRxiv preprint 

https://doi.org/10.1101/366542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

meromictic lake La Cruz ( Spain ). Front. Microbiol. 7, 1–16. 661 
doi:10.3389/fmicb.2016.01762. 662 

Park, J., Lee, B., Shi, P., Kwon, H., Jeong, S., and Jun, H. (2018). Methanol metabolism and 663 
archaeal community changes in a bioelectrochemical anaerobic digestion sequencing 664 
batch reactor with copper-coated graphite cathode. Bioresour. Technol. 259, 398–406. 665 
doi:10.1016/j.biortech.2018.03.009. 666 

Parkhomenko, E. I. (1990). “Electrical properties of rocks and minerals,” in Electrical 667 
properties of rocks (Cambridge: Cambridge University Press). 668 

Paul, K., Nonoh, J. O., Mikulski, L., and Brune, A. (2012). “Methanoplasmatales,” 669 
Thermoplasmatales-related Archaea in termite guts and other environments, are the 670 
seventh order of methanogens. Appl. Environ. Microbiol. 78, 8245–8253. 671 
doi:10.1128/AEM.02193-12. 672 

Pearce, C. I., Pattrick, A. D., and Vaughan, D. J. (2006). Electrical and magnetic properties of 673 
sulfides. Rev. Mineral. Geochemistry 61, 127–180. doi:10.2138/rmg.2006.61.3. 674 

Phillips, E. J. P., and Lovley, D. R. (1987). Determination of Fe(III) and Fe(II) in oxalate 675 
extracts of sediment. Soil Sci. Soc. Am. J. 51, 938–941. 676 

Posth, N. R., Bristow, L. A., Cox, R. P., Habicht, K. S., Danza, F., Tonolla, M., et al. (2017). 677 
Carbon isotope fractionation by anoxygenic phototrophic bacteria in euxinic Lake 678 
Cadagno. Geobiology 15, 798–816. doi:10.1111/gbi.12254. 679 

Poulton, S. W., and Canfield, D. E. (2005). Development of a sequential extraction procedure 680 
for iron: Implications for iron partitioning in continentally derived particulates. Chem. 681 
Geol. 214, 209–221. doi:10.1016/j.chemgeo.2004.09.003. 682 

Poulton, S. W., Krom, M. D., and Raiswell, R. (2004). A revised scheme for the reactivity of 683 
iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 68, 684 
3703–3715. doi:10.1016/j.gca.2004.03.012. 685 

Poulton, S. W., and Raiswell, R. (2002). The low-temperature geochemical cycle of iron: 686 
from continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805. 687 

Pous, N., Koch, C., Colprim, J., Puig, S., and Harnisch, F. (2014). Extracellular electron 688 
transfer of biocathodes : revealing the potentials for nitrate and nitrite reduction of 689 
denitrifying microbiomes dominated by Thiobacillus sp . Electrochem. commun. 49, 93–690 
97. doi:10.1016/j.elecom.2014.10.011. 691 

Raiswell, R., and Canfield, D. E. (1998). Sources of Fe for pyrite formation in marine 692 
sediments. Am. J. Sci. 298, 219–245. doi:10.2475/ajs.298.3.219. 693 

Raymann, K., Moeller, A. H., and Goodman, A. L. (2017). Unexplored Archaeal diversity in 694 
the great ape gut microbiome. mSphere 2, 1–12. 695 

Rochelle, C. M., and Schwertmann, U. (2003). “The iron oxides: structure, properties, 696 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/366542doi: bioRxiv preprint 

https://doi.org/10.1101/366542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

reactions, occurrences and uses,” in The iron oxides: structure, properties, reactions, 697 
occurrences and uses, 5–18. 698 

Romero-Viana, L., Julià, R., Schimmel, M., Camacho, A., Vicente, E., and Miracle, M. R. 699 
(2011). Reconstruction of annual winter rainfall since A.D.1579 in central-eastern Spain 700 
based on calcite laminated sediment from Lake La Cruz. Clim. Change 107, 343–361. 701 
doi:10.1007/s10584-010-9966-7. 702 

Rotaru, A.-E. A.-E., Shrestha, P. M. P. M., Liu, F., Shrestha, M., Shrestha, D., Embree, M., et 703 
al. (2014a). A new model for electron flow during anaerobic digestion: direct 704 
interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to 705 
methane. Energy Environ. Sci. 7, 408. doi:10.1039/c3ee42189a. 706 

Rotaru, A.-E., Calbrese, F., Stryhanyuk, H., Musat, F., Shrestha, P. M., Weber, H. S., et al. 707 
(2018). Conductive particles enable syntrophic acetate oxidation between Geobacter and 708 
Methanosarcina from coastal sediments. MBio 9, 1–14. 709 

Rotaru, A.-E., Shrestha, P. M., Liu, F., Markovaite, B., Chen, S., Nevin, K. P., et al. (2014b). 710 
Direct interspecies electron transfer between Geobacter metallireducens and 711 
Methanosarcina barkeri. Appl. Environ. Microbiol. 80, 4599–605. 712 
doi:10.1128/AEM.00895-14. 713 

Rotaru, A.-E., Woodard, T. L., Nevin, K. P., and Lovley, D. R. (2015). Link between capacity 714 
for current production and syntrophic growth in Geobacter species. Front. Microbiol. 6, 715 
744. doi:10.3389/fmicb.2015.00744. 716 

Rout, S. P., Charles, C. J., Garratt, E. J., Laws, A. P., Gunn, J., and Humphreys, P. N. (2015). 717 
Evidence of the generation of isosaccharinic acids and their subsequent degradation by 718 
local microbial consortia within hyper-alkaline contaminated soils, with relevance to 719 
intermediate level radioactive waste disposal. PLoS One, 1–13. 720 
doi:10.1371/journal.pone.0119164. 721 

Russell, M. J., Daniel, R. M., Hall, A. J., and Sherringham, J. A. (1994). A hydrothermally 722 
precipitated catalytic iron sulphide membrane as a first step toward life. J. Mol. Evol. 39, 723 
231–243. doi:10.1007/BF00160147. 724 

Russell, M. J., Hall, A. J., and Gize, A. P. (1990). Pyrite and the origin of life. Nature 344, 725 
387. 726 

Salgado-Flores, A., Bockwoldt, M., Hagen, L. H., Pope, P. B., and Sundset, A. (2018). First 727 
insight into the faecal microbiota of the high Arctic muskoxen (Ovibos moschatus ). 728 
Microb. Genomics, 1–11. doi:10.1099/mgen.0.000066. 729 

Shrestha, P. M., and Rotaru, A.-E. (2014). Plugging in or going wireless: strategies for 730 
interspecies electron transfer. Front. Microbiol. 5, 237. doi:10.3389/fmicb.2014.00237. 731 

Shrestha, P. M., Rotaru, A.-E., Summers, Z. M., Shrestha, M., Liu, F., and Lovley, D. R. 732 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/366542doi: bioRxiv preprint 

https://doi.org/10.1101/366542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

(2013). Transcriptomic and genetic analysis of direct interspecies electron transfer. Appl. 733 
Environ. Microbiol. 79, 2397–404. doi:10.1128/AEM.03837-12. 734 

Söllinger, A., Schwab, C., Schwab, C., Weinmaier, T., Loy, A., Tveit, A. T., et al. (2016). 735 
Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal 736 
intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol. Ecol. 92. 737 
doi:10.1093/femsec/fiv149. 738 

Stookey, L. L. (1970). Ferrozine-a new spectrophotometric reagent for iron. Anal. Chem. 42, 739 
779–781. doi:10.1021/ac60289a016. 740 

Summers, Z. M., Fogarty, H. E., Leang, C., Franks, A. E., Malvankar, N. S., and Lovley, D. 741 
R. (2010). Direct exchange of electrons within aggregates of an evolved syntrophic 742 
coculture of anaerobic bacteria. Science 330, 1413–1415. doi:10.1126/science.1196526. 743 

Tanaka, K., Nakamura, K., and Mikami, E. (1991). Fermentation of cinnamate by a 744 
mesophilic strict anaerobe, Acetivibrio multivorans sp. nov. Arch. Microbiol. 155, 120–745 
124. 746 

Thompson, J. (2018). Iron and phosphorus cycling under ferruginous conditions. Ph.D. 747 
Thesis. 748 

Ueki, T., Nevin, K. P., Rotaru, A.-E., Wang, L., Ward, J. E., Woodard, T. L., et al. (2018). 749 
Geobacter strains expressing poorly conductive pili reveal constraints on direct 750 
interspecies electron transfer. MBio 9. doi:10.1128/mBio.01273-18. 751 

Vigneron, A., Alsop, E. B., Chambers, B., Lomans, B. P., and Head, I. M. (2016). 752 
Complementary microorganisms in highly corrosive biofilms from an offshore oil 753 
production facility. Appl. Environ. Microbiol. 82, 2545–2554. doi:10.1128/AEM.03842-754 
15.Editor. 755 

Vincente, E., and Miracle, M. (1988). Physicochemical and microbial stratification in a 756 
meromictic karstic lake of Spain. Verh. Internat. Verein. Limnol. 23, 522–529. 757 

Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury,  a N., and Van Cappellen, P. (2000). 758 
The ferrozine method revisited: Fe (II)/Fe (III) determination in natural waters. Appl. 759 
Geochemistry 15, 785–790. doi:10.1016/S0883-2927(99)00097-9. 760 

Wächtershäuser, G. (1988a). Before enzymes and templates: theory of surface metabolism. 761 
Microbiol. Rev. 52, 452–484. 762 

Wächtershäuser, G. (1988b). Pyrite Formation, the First Energy Source for Life: a 763 
Hypothesis. Syst. Appl. Microbiol. 10, 207–210. doi:10.1016/S0723-2020(88)80001-8. 764 

Walker, D. J. F., Adhikari, R. Y., Holmes, D. E., Ward, J. E., Trevor, L., Nevin, K. P., et al. 765 
(2018). Electrically conductive pili from pilin genes of phylogenetically diverse 766 
microorganisms. ISME J. 12, 48–58. doi:10.1038/ismej.2017.141. 767 

Walter, X. A., Picazo, A., Miracle, M. R., Vicente, E., Camacho, A., Aragno, M., et al. 768 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/366542doi: bioRxiv preprint 

https://doi.org/10.1101/366542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

(2014). Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic 769 
lake. Front. Microbiol. 5, 1–9. doi:10.3389/fmicb.2014.00713. 770 

Wang, L., Nevin, K. P., Woodard, T. L., Mu, B., and Lovley, D. R. (2016). Expanding the 771 
diet for DIET: Electron donors supporting direct interspecies electron transfer (DIET) in 772 
defined co-cultures. Front. Microbiol. 7, 1–7. doi:10.3389/fmicb.2016.00236. 773 

Wang, O., Zheng, S., Wang, B., and Wang, W. (2018). Necessity of electrically conductive 774 
pili for methanogenesis with magnetite stimulation. PeerJ 2, 1–14. 775 
doi:10.7717/peerj.4541. 776 

Zegeye, A., Bonneville, S., Benning, L. G., Sturm, A., Fowle, D. A., Jones, C. A., et al. 777 
(2012). Green rust formation controls nutrient availability in a ferruginous water 778 
column. Geology 40, 599–602. doi:10.1130/G32959.1. 779 

Zheng, S., Wang, B., Liu, F., and Wang, O. (2017). Magnetite production and transformation 780 
in the methanogenic consortia from coastal riverine sediments. J. Microbiol. 55, 862–781 
870. doi:10.1007/s12275-017-7104-1. 782 

 783 
  784 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/366542doi: bioRxiv preprint 

https://doi.org/10.1101/366542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

 785 

 786 
Figure 1.  787 

Lake La Cruz with its geophysical features. Map of the Cuenca lake area with geographical 788 
coordinates (a); and an image of the sampling site - lake La Cruz (b). Schematic 789 

representation of the lake (c) including a bathymetric map (c-round inset), and in situ physic-790 
chemical characteristics of the water column (c-graphic inset). An echogram indicating the 791 

chemocline from 10-12 m, with visible gas ebullition in the central area (d). 792 
  793 
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 794 
 795 

Figure 2. 796 
Methane profiling through the water column and sediment of lake La Cruz. (a) In the water 797 
column of Lake La Cruz, the highest methane concentrations were below 17-m depth where 798 

Methanothrix-like cells (inset) could be observed by scanning electron microscopy. (b) 799 
Sediment cores showed very high methane concentrations especially in the top 15-cm, 800 

indicating that methane also has sedimentary origin. The water column average values are for 801 
triplicate samples taken at each specific water column depth; while values for sediments are 802 

from triplicate cores sampled every 2-cm. 803 
804 
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 805 
Figure 3. 806 

Conductivities of various Fe-oxides and Fe-sulfides, compared to that of the e-pili and the 807 
conductivities observed for different carbon particles including activated carbon used in this 808 
study. We have also listed the conductivity measured in lake La Cruz at the sediment-water 809 
boundary layer. (Adhikari et al., 2016; Blaney, 2012; Camacho et al., 2017; Guskos et al., 810 

2002; Kastening et al., 1997; Lair et al., 2006; Parkhomenko, 1990; Pearce et al., 2006; 811 
Rochelle and Schwertmann, 2003)  812 
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815 
Figure 4.  816 

Relative, phylum-level composition of (a) Bacteria and (b) Archaea harboring the top 16-cm 817 
of three sediment cores from lake LaCruz, as determined by 16S rRNA gene amplicon 818 

sequencing. 819 
 820 

  821 
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 822 

823 
Figure 5. 824 

Methanogenesis on different substrates in incubations from lake La Cruz. 825 
Methane production in initial slurry incubations provided with different substrates was 826 

stimulated by conductive particles (GAC or magnetite) independent of the media used (a) 827 
modified DSMZ 120 or (b) DSMZ 334. (c) Acetate accumulated in incubations without 828 

conductive particles, but was significantly lower at the addition of conductive particles. (d) 829 
For example, a third transfer free of sediment showed that methanogenesis and acetate 830 
consumption were strictly dependent of the presence of conductive particles (colored 831 

symbols), and ceased if conductive particles were not added consistently for subsequent 832 
transfers (white symbols).  833 

  834 
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 835 
Figure 6. 836 

Maximum likelihood phylogenetic trees (a, b) and venn diagrams with the relative 837 
distribution of 16S rRNA-gene sequences for Archaea (a, c) and Bacteria (b, d) in La Cruz 838 
incubations with or without conductive particles. Archaeal (a) and Bacterial (b) 16S rRNA 839 
genes were retrieved from third mud-free transfer of acetate- incubations with magnetite 840 

(pink), and GAC (black-bold) or from a first mud-free transfer without conductive particles 841 
(light gray-white). (c) The only Archaeal 16S phylotype encountered in all incubations 842 
independent of treatment was Methanothrix-related. (d) The most abundant Bacterial 843 

phylotype encountered only in conductive particle-amended incubations was Youngiibacter-844 
related.  845 

 846 
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 849 
Figure 7. 850 

Proposed model interspecies interactions in La Cruz sediments facilitated by conductive 851 
particles. (a) Syntrophy mediated by a conductive nano-particles replacing outer membrane 852 
cytochromes (OMCs). Nevertheless, pili involved in EET are still available. (b) Syntrophy 853 

mediated by a conductive macro-particle (i.e. GAC), which plays the role of both and electron 854 
plug and outlet. (c) Syntrophy mediated by a conductive-mineral coat padding the cell 855 

surface. In lake La Cruz, conductive minerals could for example result from the precipitation 856 
of Fe2+ as Fe-S/thiola- in the periplasmic space of cells. Cell surfaces encrusted with a metal-857 

S coat such as Fe-S might endorse the electron-transfer between the two distinct metabolic 858 
entities even in the absence of a typical EET/DIET conduit. 859 
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