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Abstract

While cardiomyocytes differentiated from human induced pluripotent
stems cells (hiPSCs) hold great promise for drug screening, the electrophys-
iological properties of these cells can be variable and immature, producing
results that are significantly different from their human adult counterparts.
Here, we describe a computational framework to address this limitation, and
show how in silico methods, applied to measurements on immature car-
diomyocytes, can be used to both identify drug action and to predict its effect
in mature cells. Our synthetic and experimental results indicate that opti-
cally obtained waveforms of voltage and calcium from microphysiological
systems can be inverted into information on drug ion channel blockage, and
then, through assuming functional invariance of proteins during maturation,
this data can be used to predict drug induced changes in mature ventricular
cells. Together, this pipeline of measurements and computational analysis
could significantly improve the ability of hiPSC derived cardiomycocytes to
predict dangerous drug side effects.
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1 Introduction
The discovery of human induced pluripotent stem cells (hiPSCs) has started a new
era in biological science and medicine. These reprogrammed somatic cells can be
differentiated into a wide variety of cell lineages, and allow in vitro examination of
cellular properties at the level of the human individual. In particular, this technol-
ogy has large implications in drug development, moving us away from well stud-
ied but often unrepresentative animal models towards direct testing of compounds
in specific human phenotypes and genotypes. This new access offers the potential
for creating more cost effective, better, safer drug treatments; both from the ability
to target precision, patient specific approaches, and to reveal possible side effects
of drugs in the broader human population. However, despite its promise, the tech-
nology needed to fully utilize hiPSCs for drug testing is still under development
and currently faces many difficulties limiting practical applicability.

In particular, the problem of maturation is a major challenge to the successful
use of hiPSCs in drug discovery and development. Although hiPSCs can be used
to create specialized human cells and tissues, these rapidly grown cells and tissues
may have significant proteomic and structural differences to, and are often more
fetal-like than, their adult in vivo counterparts. This is especially true in hiPSC
derived cardiomyocytes (hiPSC-CMs), where the adult cells they are intended
to represent have undergone decades of growth and development under cyclical
physiological loading and stimulation. However, despite this limitation, hiPSC-
CMs have already been successfully used to assess unwanted side effects of drugs
(see e.g., [1, 2]), and new technologies such as microphysiological systems (MPS)
[3], are emerging to improve maturation and better capture drug effects. Still, the
overall applicability of hiPSC-CMs to find unwanted side effects of drugs for adult
cardiomyocytes remains limited by the fact that only relatively immature cells are
available for analysis (see e.g., [4, 5, 6, 7]). And, as pointed out in numerous
papers (e.g., [8, 9, 10, 11, 12]), the electrophysiological characteristics of hiPSC-
CMs and adult cardiomyocytes differ significantly and, for determining potential
dangerous drug side-effects, these differences may lead to both false positives and
false negatives (see e.g., [13, 3]).

Meanwhile, In silico methods for investigating the properties of the action po-
tential (AP) of excitable cells is a well-developed field (see e.g. [15, 16, 17]) and
includes models of human cardiomyocytes (see e.g., [18, 19, 20, 21]), and models
where the effect of drugs are taken into account (see e.g., [22, 23, 24]). Also,
mathematical models of the action potential of hiPSC-CMs have been developed
(see e.g., [9, 25]) based on measurements reported in [8, 26, 27, 28]. This field
has progressed to the point where computational models are now an active part of
cardiotoxicity research [29], and are being integrated into guidelines for compre-
hensive drug arrhythmia analysis.
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In this work, we discuss how computational models of immature (IM) and
mature (M) cardiomycytes can contribute to the improvement of the applicabil-
ity of exploiting hiPSCs in the drug development pipeline. Despite remarkable
progress in handling hiPSC-CMs under lab conditions (see, e.g [14]), the abil-
ity to create fully mature hiPSC-CMs for drug screening is likely to remain a
significant challenge. In the present report, we therefore address how in silico
computational modeling can be used to deduce properties of mature (adult) car-
diomyocytes based on two real time measurements of their immature counterpart.

A key idea in our approach is that individual proteins are functionally invari-
ant under maturation. Therefore, maturation is multiplication in the sense that,
for every type of protein, the number of proteins multiply during maturation, but
the function of every protein remains unaltered. In addition, the surface area of
the cell and the cell volume also increase significantly during maturation, leading
to large changes in current densities between the IM and M cells. The invariance
of the functional properties of the IM and M versions of every protein suggests a
proportionality between the associated individual currents of the IM and M cells
which may explain the results obtained in [12]. We use the proportionality be-
tween the individual currents to define a maturation matrix that maps the param-
eterization of a model of the IM cell to a parameterization of a model of the M
cell.

Our approach to estimate effects of drugs on M cells based on measurements
of IM cells can be summarized as follows and is shown in Figure 1:

1. A MPS system is used to collect time averaged voltage and intracellular
(cystolic) calcium waveforms, both under control conditions and in the pres-
ence of drug.

2. These voltage and calcium traces are inverted in order to define a mathemat-
ical model of the membrane and calcium dynamics of the tested IM cells.
The effect of the drug is reflected in terms of changes in the maximum con-
ducances of ion channels in the model.

3. The IM models are multiplied by a maturation matrix in order to obtain
models for the M cells. The effect of the drug for adult cells is estimated by
comparing the AP models of the M cells.

To demonstrate this process, we start by showing that a cost function, measur-
ing the difference between data and model, is sensitive with respect to changes in
the maximum conductance of major currents. Next, we show that this sensitivity
is sufficient to invert simulated data and obtain a mathematical model of a drug
effect. This model can be mapped from the IM case to the M case simply by mul-
tiplying a parameter vector by a diagonal maturation matrix. Finally, we apply
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Figure 1: Depiction of In silico modeling and analysis of an MPS system. Opti-
cal measurements of calcium and voltage are taken at baseline and in the presence
of drug. These waveforms are inverted using a mathematical model of cell dynam-
ics, into a set of parameters that define key ion channel conductances. Changes in
this parameter set give information about specific changes in conductances under
drug, and this parameter set can then mapped to a model of mature cell behavior
using the assumption of frunctional invariance of individual channels.

the method of inversion to obtain an IM model based on experimental data ob-
tained using voltage- and calcium sensitive dyes in an MPS. Again, the IM model
is mapped to an M model. The effects of drugs are identified by inverting MPS
data (voltage and cytosolic calcium concentration) and then mapping the resulting
model from IM to M giving a mathematical model of the mature cardiomyocytes
under the influence of a drug.

2 Results

2.1 Model inversion is sensitive to perturbations in major ion
channel currents

The inversion of data through the minimization of a cost function requires that
this cost function is sensitive to changes in model parameters. In Figure 2, we
illustrate the sensitivity of three cost functions utilizing voltage, calcium, or both,
to perturbations in the conductances of major cellular currents or fluxes. Here the
base model (see Methods) is defined by a modified version of the Paci et al. model
[9] (the details of the modification are given in the supplementary information).

Results indicate that cost function using voltage alone, HV , is sensitive to
only some of the currents and fluxes, and in particular, it is largely insensitive to
changes in Ito and IKs. Similar trends are seen in the the calcium mismatch, HCa,
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Figure 2: Sensitivity of maximum conductances of the immature base model as-
sessed by the three cost functions defined in (3)–(4) with ε = 0.2. The color in-
tensities correspond to the sum of the cost function upon reducing the maximum
conductance of the given current (or flux) by ±10%.

and this cost function is, in general, less sensitive than theHV version. Finally, we
consider the cost function combining both the voltage and calcium data, HV+Ca,
and observe that it is more sensitive to perturbations than both HV and HCa alone,
although some currents are still largely invisible.

Of note the maximum upstroke velocity of the action potential is not added
as a part of the HV cost function. Adding this component would likely improve
sensitivity, especially for the sodium current, but our measurements (see Methods)
do not at present provide sufficient accuracy of the upstroke velocity. However,
the upstroke velocity of the calcium transient can be accurately estimated from
the MPS measurements and is therefore a part of the cost function describing the
calcium mismatch.

2.2 Simulated channel block identification
Although Figure 2 shows the sensitivity of the computed cost functions with re-
spect to individual currents, we need to establish that the cost functions are ad-
equately sensitive when multiple currents are allowed to vary. In Figure 3, we
show the values of HV+Ca as a function of pairwise perturbations in the maxi-
mum conductances of four major channels. The traces are theoretically computed
using known effects of two chosen drugs; Verapamil which blocks ICaL and IKr,
and Cisapride which blocks IKr, see [29].

Our results indicate that the cost functional using both voltage and calcium can
theoretically identify the simulated channel block of the chosen drugs. The left
panels show the value ofHV+Ca as a function of the maximum conductances when
the control data are computed using the specified blocking due to the application
of Verapamil. Six different configurations of pairwise blocking perturbations were
tested and a minimum is clearly obtained close to the correct blocking of ICaL and
IKr. Meanwhile, in the right panel, we show the values of HV+Ca when IKr is
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Figure 3: Simulated data The cost function (4) with ε = 0.2 for simulated drug
data, evaluated with pairwise perturbations of maximum conductances to examine
if a unique minimum can be found corresponding to chosen drug effects. Left
panels: The effect of Verapamil is simulated by blocking the ICaL and IKr by
50% and 25%, respectively. Right panels: The effect of Cisapride is simulated
by blocking the IKr by 50%. For both drugs, clear minimums are observed at the
specified channel blockages.

blocked by 50%, simulating the effect of Cisapride. The pairwise perturbations
clearly identifies that IKr is blocked by around 50%. These results indicate that an
optimization algorithm of the cost function could find unique minima correspond-
ing to specific channel blocks.

2.3 Simulated drug effect identification using the inversion pro-
cedure

Our methodology for inversion and mapping from IM to M state is first illustrated
in Figure 4 using simulated data. This process is used to identify the theoretical ef-
fect of the two drugs of Verapamil and Cisapride on mature cells from waveforms

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2018. ; https://doi.org/10.1101/366617doi: bioRxiv preprint 

https://doi.org/10.1101/366617
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 500 1000

V
 (

m
V

)

-80

-40

0

40

IM model

V
er

ap
am

il 6
Na

  = 0

6
CaL

 = -0.5

6
Kr

   = -0.25

6
K1

  = 0

True drug
parameters

6
Na

  = -0.00

6
CaL

 = -0.50

6
Kr

   = -0.25

6
K1

  = -0.01

Inverted drug
parameters

0

0.4

0.8

1.2

0 500 1000
-80

-40

0

40

M model

[C
a

2+
] (
7

M
)

0

0.4

0.8

1.2V (control)
V (drug)
Ca (control)
Ca (drug)

t (ms)
0 500 1000

V
 (

m
V

)

-80

-40

0

40

C
is

ap
rid

e 6
Na

  = 0

6
CaL

 = 0

6
Kr

   = -0.5

6
K1

  = 0

6
Na

  = -0.03

6
CaL

 = -0.03

6
Kr

   = -0.52

6
K1

  = -0.00
0

0.4

0.8

1.2

t (ms)
0 500 1000

-80

-40

0

40

[C
a

2+
] (
7

M
)

0

0.4

0.8

1.2

Figure 4: Identification of drug effects on M cells based on simulated data of IM
cells. Left panel: Results of inversion by minimizing the cost function (4) with
ε = 0.2. Middle panel: Action potential (blue) and calcium transient (red) before
and after (dotted) the drug is applied. Right panel: Model results after application
of the maturation matrix.

that would be obtained from known channel blocking. From the left panel, we
observe that the inversion algorithm is able to identify the specified effect of both
Verapamil and Cisapride very accurately, reproducing chosen blocks nearly ex-
actly. This is consistent with the results of Figure 3. The figure also shows the IM
(middle panel) and M (right panel) action potentials and calcium transients. The
M models are then computed using the maturation map introduced in the Methods
section showing how these detected blocks would appear in mature cells.

2.4 Channel block identification using a combined in vitro / in
silico system

After demonstrating the theoretical sensitivity of inversion and drug effect pre-
diction, we turn to the application of inverting actual cardiac MPS data. Average
voltage and calcium traces (v, Ca) = (v(t), Ca(t)) from an MPS [3] were in-
verted to yield parameterized mathematical models of the IM cells. This was
done first for control data, denoted by (vC , CaC) to yield a control model. We
then show the sensitivity of the cost function HV+Ca comparing this model with
obtained voltage and calcium waveforms under the effect of actual doses of Ver-
apamil and Cisparide, (vD, CaD). In Figure 5, we present pairwise perturbations
of maximum conductances and we observe again that the cost function HV+Ca

is sensitive to these perturbations. For Verapamil, we see that the cost function
clearly indicates that ICaL is blocked by around 50%. Furthermore, IKr seems to
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Figure 5: Measured data The cost function (4) with ε = 0.2 evaluated for pair-
wise perturbations of maximum conductances using measured data from the MPS.
Left panels: The effect of a dose of 100 nM of Verapamil is shown; it clearly
blocks ICaL and it also block IKr. Right panels: The effect of a dose of 10 nM of
Cisapride is shown; it clearly blocks IKr. The results of the inversion is given in
Figure 6.

be blocked significantly, but it is not clear from the figure the extent of block. In
the right panel, we also consider the effect of Cisapride. Here, the cost function
indicates that IKr is blocked to a large extent.

The full inversion procedure (see the Methods section) is then applied, and it
finds that ICaL is blocked by 71% and IKr is blocked by 19% (see Figure 6) for
Verpamil, in rough agreement with known properties of Verapamil at this dose.
For Cisapride, the inversion predicts that IKr is blocked by 52%, and it predicts
that the other currents are nearly unaffected by the drug.

2.5 Mature AP change prediction using MPS data
In Panel 1 (leftmost) of Figure 6, we show the numeric results of inversion us-
ing measured data. The next three panels show action potentials and calcium
transients for measured data (Panel 2), simulation of IM cells (Panel 3) and sim-
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Figure 6: Results obtained by applying the inversion procedure to measured MPS
data. First column: Results of inversion by minimizing the cost function (4) with
ε = 0.2. Second column: Average voltage and calcium traces from MPS mea-
surements. Third column: The AP model of the IM cells. Fourth column: The AP
model of the M cells.

ulation of M cells (Panel 4). The simulations presented in Panel 3 are based on
inversion of the MPS data giving the block values shown in Panel 1. The parame-
ter vector (see the Methods section) representing the IM cells is multiplied by the
maturation matrix in order to define the parameter vector representing the M cells.
The figure illustrates how MPS measurements of IM cells can be used to estimate
effect of an unknown compound for M cells.

3 Discussion
In this paper, we present a mathematical analysis framework to define the electro-
physiologic mechanisms of drug action in mature human cardiomyocytes using
only optical recordings of membrane potential and calcium in hiPSC-CMs. This
novel procedure overcome a number of major existing challenges in hiPSC-CM-
based screening: (1) data inversion of measured drug effects can be successfully
applied to all-optical experimental data, thus allowing detailed pharmacologic
characterization without the need for intracellular electrodes, (2) the mathematical
approach to mapping between hiPSC-CM and adult myocyte electrophysiology is
straightforward and generalizable, and (3) the MPS-based optical recordings are
averaged over relatively large populations of hiPSC-CMs, thus reducing errors
associated with the well-known phenotypic heterogeneity of hiPSC-CM prepara-
tions.
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3.1 Inversion of voltage and calcium traces provide action po-
tential models

Modern cardiac AP models have been developed more or less continually since the
celebrated sinoatrial node model of Noble [30]. As a result, a range of cardiac cel-
lular models have evolved to represent the accumulated knowledge of nearly six
decades of multidisciplinary research, and the models are detailed and complex.
Conventional approaches to developing these models have relied heavily upon
voltage-clamp microelectrode data. These techniques provide exquisite resolution
of single-channel [31, 32, 33, 34], through to whole-cell currents [35, 36, 37], and
has thereby allowed the models to provide remarkably accurate reconstructions
of cardiac cellular APs and calcium dynamics. However, while generalized cell
models built using such data are widely used, especially to mechanistically un-
derstand how drug compounds alter electrophysiology, the experimental methods
used to build them are technically challenging, have intrinsically low-throughput
and cannot be used on tissue models like MPS.

In the present paper, we have developed an alternative approach that attempts
to exploit the decades of information stored in modern cardiac AP models to
rapidly parameterize base models for hiPSC-CMs. Rather than the data tradition-
ally used to develop AP models, we used metrics that can readily be measured in
a MPS, namely the optically assessed transmembrane potential and the cytosolic
calcium concentration. However, these data are fundamentally different from de-
tailed measurements of single currents traditionally used to invert measurements
into biophysical models, and new methodology is needed. The approach taken in
this report is based on minimization of a cost function comparing the predicted
and measured waveforms, which seems to provide reasonable accuracy in analy-
sis, but it is clear that some currents are still largely invisible even theoretically,
and alternative approaches may lead to broader or more focused results.

For example, it was observed in Figure 2 that the cost function HV+Ca is more
sensitive than both HV and HCa (see (3)–(4)). This indicates that both voltage
and calcium traces must be measured in order to get optimal inversion of the
measurements. However, this depends on the application. For instance, if the
main purpose is to study side effects on the IKr current, it may be sufficient to
only consider voltage traces. In addition, cost functions which take into account
measured extracellular potential or contractile for generated by the IM cells may
also be used to better invert specific drug induced changes.

3.2 The maturation map
While the inversion of data from hiPSC-derived cells will be essential for under-
standing the electrophysiology of immature cells, understanding how such elec-
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trophysiolgical changes translate into mature cells could provide powerful means
to screen drugs for side effects. We introduce the idea of a maturation map, which
assumes that the essential difference between an immature (IM) cell and a ma-
ture (M) cell can be described by the number of proteins, the membrane area and
the volume of the cell and the intracellular storage structures. Based on these as-
sumptions, we have argued that we can map any IM parameter vector, pIM , to an
associated M parameter vector, pM , simply by multiplying by a diagonal matrix
Q: pM = QpIM . We have illustrated this mapping and noted that reasonable
models of an IM AP are mapped over to a reasonable M AP. In addition, we have
seen that measured IM data can be inverted to yield pIM , and then the maturation
mapping gives the adult AP parameterized by pM = QpIM .

In the present report, we have simply addressed the mapping directly from
an IM state to the M cells. However, maturation is clearly a dynamic process
with rapid changes, and it may therefore be of interest to use this mapping to
investigate the time dependent behaviour of the cells. Measurements of several
time instances of IM cells may give insight into the developmental trajectories of
IPSC-CMs and how different maturation protocols alter the electrophysiological
properties of generated test cells. Such studies may be useful for both choosing
maturation protocols to optimize data inversion sensitivity, and for quality control
measures of batch to batch cells.

In addition, taking into account more aspects of cellular electrophysiology
could refine our approach. For example, one could take into account that proteins
exist in various forms; for instance, the sodium channel has nine different forms
with different associated possible channelopathies. These variants may proliferate
at different rates and thus potentially lead to significant changes in the properties
of the M cells.

3.3 hiPSC data sources
While our results show the promise of this methodology, considerable current lim-
itations exist that need to be addressed. First, variability in hiPSC-CMs remains a
challenge ([38, 39]). In the preparation of the data, we have dealt with variability
by discarding individual voltage and calcium traces that are significantly different
from the average behaviour of the cells. This seems to give sufficient accuracy for
inversion, and the effects of the drugs we have considered have shown significant
cellular changes. However, even if the average results clearly respond to the doses
of the drugs applied in this study, work on reducing the variability of generated
hiPSC-CMs in MPSs is clearly needed for batch to batch consistency.

In addition, improvements in data acquisition from the cell systems may also
improve the methodology, in particular it may increase the sensitivity of cost func-
tions to currents that are presently less visible. For instance, the voltage waveform
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can not currently be imaged at the time resolution needed to obtain accurate mea-
surements of the upstroke, due to a combination of hardware and optical light col-
lection limitations. In the same manner, the signal to noise ratio in this waveform,
due to background dye absorption, prevents adequate resolution of the plateau
phase and in particular of the notch in the action potential, preventing inversion of
the Ito current. Improvements in the methodology for collection of high resolution
optical voltage data will therefore lead to substantial improvements in mapping
resolution.

It should also be noted that it is possible to measure the extracellular field
potential in the microphysiological systems using a multi-electrode array (MEA)
system, see e.g., [40, 1]. Such data can be incorporated in our method by using
the EMI model (see e.g., [41]) instead of the common AP models. In this case,
the function H given by (4) would have to be extended to include the EFPs. This
would be considerably more computationally demanding than the present method,
but it may also increase the accuracy of the inversion.

3.4 Extension to specie - specie mapping
The basic idea underpinning the maturation mapping is that the proteins populat-
ing the cell membrane are the same for the IM cells and the M cells; the reason for
the significant difference in AP between these cell types is the difference in densi-
ties of membrane proteins. Similarly, the proteins of the cell membranes are also
quite similar from one specie to another, but again the densities of these proteins
vary considerably. Therefore, the procedure for detecting side effects of drugs
developed in this report may be generalized to be used between species. More
specifically; it may be possible to measure the effect of drugs for mouse cells
and deduce the effect for human cells following the steps detailed in the Method
section below. This may be of significance because of the abundance of mouse
data.

4 Methods
Our aim is to enable automatic characterization of side-effects of drugs for mature
cardiomyocytes based on measurements of voltage and calcium traces of imma-
ture cells in an MPS. Here, we describe the methods applied above; we briefly
how appropriate optical measurements of voltage and calcium are obtained, how
a model of the AP of a mature cardiomyocyte can be obtained from a model of
an immature cardiomyocyte, and how these data are inverted in order to define a
mathematical model of the AP of the immature cells. Furthermore, we describe
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how the effects of drugs on M cardiomyocytes can be estimated using measure-
ments of the effect on IM cardiomyocytes.

4.1 Measuring voltage and calcium traces using an MPS
Using previously developed techniques [3], cardiac MPS systems were loaded
and matured prior to drug exposure. On the day upon which studies were per-
formed, freshly measured drug was dissolved into DMSO (Cisapride) or media
(Verapamil) and serially diluted. Each concentration of the drug to be tested was
preheated for 15-20 min in a water bath at 37◦C and subsequently sequentially
injected in the device. At each dose, after 5 min of exposure, the drug’s response
on the microtissue was recorded using a Nikon Eclipse TE300 microscope fitted
with a QImaging camera. Fluorescent images were acquired at 100 frames per
second using filters to capture GCaMP and BeRST-1 fluorescence as previously
described. Images were obtained across the entire chip for 6-8 seconds, with cell
excitation paced at 1 Hz, to capture multiple beats for processing.

Fluorescence videos were analyzed using custom Python software utilizing
the open source Bio-Formats tool to produce characteristic voltage and calcium
waveforms for each chip and tested drug dose. Briefly, for each analysis, the
fluorescent signal for the entire visual field was averaged, excluding pixels which
did not change significantly in intensity over the acquisition. The signal was then
smoothed using a 3 point median filter, and 5-7 individual action potentials or
calcium transients overlayed by aligning the maximum dF/dt and then averaged
into a single transient.

4.2 Inversion of voltage and cytosolic calcium traces
In order to complete the description of the steps presented in Table 1, we need
explain how the inversion used in steps 4 and 5 is performed, and the key question
is how to do the inversion of the form (8). In order to explain this, we assume that
we have a base model of the form

vt = −
∑
i

qiIi(v, s), (1)

where Ii represents the dynamics of the individual membrane proteins and qi rep-
resents the maximum conductance of the ion channels (or the maximum rate of an
exchanger or a pump). Furthermore, v is the transmembrane potential and s rep-
resents the remaining state variables of the model. In order to adjust this model to
a set of measured data given by (v∗, c∗), we seek parameters λi such the solution
of

vt = −
∑

(1 + λi)qiIi(v, s) (2)
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is as close as possible to the measured data, (v∗, c∗). The distance from the com-
puted solution (v, c) = (v(λ), c(λ)) to the measured data (v∗, c∗) is given by a
cost function H = H(λ).

We consider the following cost functions

HV (λ) =

 4∑
j=1

Hj(λ) + ε
∑
i

λ2i

1/2

, HCa(λ) =

 8∑
j=5

Hj(λ) + ε
∑
i

λ2i

1/2

, (3)

HV+Ca(λ) =

 8∑
j=1

Hj(λ) + ε
∑
i

λ2i

1/2

, (4)

where

H1 =
|
∫ t1(λ)
t0(λ)

v(λ)dt−
∫ t∗1
t∗0
v∗dt|

|
∫ t∗1
t∗0
v∗dt|

, H2 =
|APDV,30(λ)− APD∗V,30|

|APD∗V,30|
,

H3 =
|APDV,50(λ)− APD∗V,50|

|APD∗V,50|
, H4 =

|APDV,80(λ)− APD∗V,80|
|APD∗V,80|

,

H5 =
|(dc
dt

)max(λ)− (dc
dt

)∗max|
|(dc
dt

)∗max|
, H6 =

|APDCa,30(λ)− APD∗Ca,30|
|APD∗Ca,30|

,

H7 =
|APDCa,50(λ)− APD∗Ca,50|

|APD∗Ca,50|
, H8 =

|APDCa,80(λ)− APD∗Ca,80|
|APD∗Ca,80|

.

Here, the star ∗ is used to denote observed data, either generated by simulations
or gathered from the MPS. Also, (dc

dt
)max is the maximal upstroke velocity of the

calcium concentration. Furthermore, APDV,30 is defined as the length (in ms) of
the time from the value of the transmembrane potential, in the upstroke, is 30%
below its maximum value (t0) until it again is repolarized to 30% of its maximum
value (t1). The values APDV,50 and APDV,80 are defined similarly. Likewise, the
terms APDCa,30, APDCa,50 and APDCa,80 represent the corresponding transient
durations for the calcium concentration. In H1, we compute the integral of the
transmembrane potential from t = t0 to t = t1. Note that HV only depends on
characteristics of the voltage trace, whereas HCa only depends on characteristics
of the calcium trace; finally, HV+Ca includes the terms of both the two former
cost functions and therefore depends on the characteristics of both the voltage
trace and the calcium trace.
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4.2.1 The minimization procedure

The inversion procedure aims to minimize the cost function measuring the dif-
ference between the target and model voltage and calcium waveforms. In every
minimization, we have an existing parameter vector p̄, and we seek an optimal
perturbation of this vector where each component is given by (1 + λi)p̄i. Here, i
runs over the components of the parameter vector and λi denotes the perturbation.
The cost function introduced above is irregular and hard to minimize. Therefore,
we introduce a brute force search algorithm that avoids any attempt to take the
gradient into account. To start searching for suitable values of λ = {λi}, we
first set up a bounding box of allowed values of λ. This is initially set up so that
each λi is in some interval, for instance [-0.5, 0.5]. Next, we draw N choices
of λ randomly from the bounding box and compute H(λ) for each of these N
choices. We then pick out the five choices of λ that give the smallest values of
H(λ) and set up a new bounding box of reduced size around each of these five
choices of λ. More specifically, these bounding boxes are set up by centering the
boxes around the chosen λ and letting the length of the interval for each λi be
reduced to 90% of the length of the previous intervals. Note that this means that
the new bounding boxes are not necessarily contained in the initial bounding box,
but may extend beyond the initial intervals. We do, however, set up a restriction
so that no bounding box is allowed to contain values of λ smaller than or equal to
−1. In addition, when searching for the effect of drugs, we assume that the drug
is a channel blocker and therefore only consider λ ∈ (−1, 0].

After setting up the five new bounding boxes, we draw N/5 choices of λ ran-
domly from each box and compute H(λ) for each of these N choices of λ. We
then select the five choices of λ that give the smallest values of H(λ) and repeat
the steps above for a given number of iterations. For the applications of the min-
imization method reported in the Results section, we generally use 10 iterations
and N = 5000.

4.3 Maturation through multiplication
Our model of the maturation process rely on the assumption that the individual
membrane proteins are functionally invariant under maturation, whereas the num-
ber of proteins, the membrane area and the cell volume change significantly (see
e.g., [42, 43, 44, 11]). Also, different membrane proteins proliferate at different
rates leading to large differences in the expression levels between IM and M cells.
This, in turn, leads to characteristic differences between the IM and M voltage and
calcium traces. The maturation process is illustrated in Figure 7.
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Figure 7: Illustration of the assumptions underlying our model of maturation. A:
The immature cell with two types of membrane proteins, with a cytosolic space
containing the sarcoplasmic reticulum with associated release and uptake proteins.
B: Maturation is multiplication in the sense that the number of proteins increases
at a protein specific rate. C: A specific protein in the IM cell is the same as in the
M cell. D: A drug affects every single protein in the IM cell in exactly the same
manner as for the M cell. E: Model of the transmembrane potential for IM and M
cells, and the relation between these models; and how these models are affected
when a drug is applied.
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4.4 A drug effects a singel protein in the same manner for IM
and M cells

Since we assume that exactly the same proteins are present in the IM and the
M cells, it follows that the effect of a given drug on a protein in the IM case is
identical to the effect on the same protein type in a M cell. This observation is
essential in order to understand side effects on M cells based on measurements of
the IM cells.

4.5 The membrane potential for IM and M cells in the presence
of a single current

In order to illustrate the modeling process going from IM to M, we consider the
following simplest possible case where the transmembrane potential v (in mV) is
governed by a single current

Cv′(t) = −I, (5)

with I = go(v − v0). Here, C is the membrane capacitance (in µF/cm2), g is
the maximum conductance (in mS/cm2), o is the open probability of the channels
(unitless), and v0 is the resting potential of the channel (in mV). In this formula-
tion, the current I is given in units of µA/cm2. The maximum conductance can be
written on the form

g =
Ng0
A

, (6)

where g0 is the conductance (in mS) of a single channel, N is the number of
channels and A is the membrane area of the cell (in cm2).

Let NIM and AIM denote the number of ion channels and the surface area of
the IM cell, respectively. Then there are constants qN and qA such that the number
of channels in the M cell is given by NM = qNNIM , and the membrane area of
the M cell is given by AM = qAAIM . Therefore, the maximum conductance of
the M cell can be expressed in terms of the maximum conductance of the IM cell
as follows,

gM =
NMg0
AM

=
qNNIMg0
qAAIM

=
qN
qA
gIM = qgIM , (7)

with q = qN
qA

.
Here, we have explained that the representation of a single current can be

mapped from IM to M simply by multiplying the maximum conductance by a
factor. This derivation relies heavily on the assumption that the dynamics of the
single channel, represented by the open probability o in (6), remains the same dur-
ing maturation (see Figure 7). As consequence, the Markov model (see e.g., [24])
representing the open probability of the single channel should be the same for
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Figure 8: Immature and mature versions of the Paci et al. model [9] and the
ten Tusscher et al. (tT) model [20]. The APs of the M cells are shorter and the
upstroke velocity is faster than for the IM case; compare left and right panels.
Also, the IM cells are pacemakers (middle panel), whereas the M cells reach a
stable repolarized equilibrium after an AP (right panel).

the IM and the M version of the channel protein. Similar arguments can be pre-
sented for other membrane proteins such as exchangers and pumps. Furthermore,
the intracellular Calcium machinery can be treated in exactly the same manner,
leaving the IM and M models of a single protein to be distinguished only by a
factor. Details of the mapping of Calcium concentration fluxes are provided in
supplementary information.

The factors for the individual components of an AP model can be gathered in
a parameter vector p, and a diagonal matrix Q can be used to store the maturation
mapping from the IM parameter vector to the M parameter vector such that pM =
QpIM .

In Figure 8, we illustrate the use of the maturation mapping for well estab-
lished AP models of hiPSC-CMs using the Paci et al. model [9], and of the adult
human cardiomyocyte using the ten Tusscher et al. model [20]. For the Paci et
al. model, we define the maturation map QP = diag( qA

qV
, qNa, qCaL, qto, qKs, qKr,

qK1, qNaCa, qNaK, qpCa, qf , qbNa, qbCa, qleak, qup, qrel) = (1.7, 0.5, 2.5, 10, 1, 0.25, 3,
0.3, 0.7, 1, 0.1, 0.32, 0.85, 200, 0.95, 35). Since pIM is given by the paper [9], we
can compute pM = QPpIM . Similarly, for the ten Tusscher et al. model we use
QT = diag( qA

qV
, qNa, qCaL, qto, qKs, qKr, qK1, qNaCa, qNaK, qpCa, qpK, qbNa, qbCa,

qleak, qup, qrel) = (1.7, 0.3, 2.5, 5, 10, 1.2, 50, 0.58, 0.7, 2, 0.5, 0.3, 0.85, 200, 0.6,
20), and since pM is given by the paper [20], we can compute the IM version by
pIM = Q−1T pM .

We observe that these AP models have the known characteristic differences
between IM and M cells; the upstroke of the IM cells are considerably slower
than for the M cells, the IM cells are pacemaker cells (middle panel of Figure 8),
and the M cell reaches a stable equilibrium (right panel of Figure 8).
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4.6 Estimating side-effects drugs
The method for identifying side effects of drugs is summarized in Table 1. The
method involves eight steps:

Step 1: Base model Assume that there exists an AP base model, characterized by
a parameter vector pIM,B, representing a prototypical IM cell, and an asso-
ciated base maturation map QB. The associated M cells are characterized
by pM = QBpIM,B. The M model, parameterized by pM , provides a normal
mature AP. No drug is involved in parameterizing the base model. Note
also that the base model is used for numerous (independent) measurements.
The base model in our computations is a modified version of the model of
hiPSC-CMs suggested by Paci et al. [9]; see the supplementary information
for details concerning the base model.

Step 2 and 3: MPS-measurements For the IM cells, we measure the transmem-
brane potential and the cytosolic calcium concentration, stored as (vC , cC),
and make similar measurements for the case when a drug has been applied,
stored as (vD, cD). Here C is for control (no drug) and D is for drug.

Step 4 and 5: Inversion Generally, the notation

(v, c)
inversion(q)−−−−−−→ p (8)

means that the data (v, c) are inverted to yield a model parameterized by the
vector p, using the model parameterized by the vector q as a starting point
for the inversion. The control data (no drug) given by (vC , cC) are inverted
to yield the model parameterized by pIM,C , using the parameter vector pB

as a starting point for the inversion. Likewise, the D-data are inverted to
give the model pIM,D, where the parameter vector pIM,C is used as starting
point.

Step 6: Update maturation map The maturation map can now be updated to se-
cure that if Q is applied to the IM parameter vector, pIM,C , the resulting pa-
rameter vector is the base model of the M cell parameterized by the vector
pM .

Step 7: Map from IM to M The updated maturation map Q is used to compute
the parameterization of the M version of the drugged cells.

Step 8: Drug affected M cell The effect of the drug on the M cells is analyzed
by comparing the vectors pM and pM,D. The components of pM,D that are
significantly different from its pM counterpart, has been significantly af-
fected by the drug. The effect of the drug on the mature AP is estimated by
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1 Base model pM,B = QBpIM,B

2 Measure control (C) data, no drug (vC , cC)
3 Measure data with drug (D) applied (vD, cD)

4 Invert C-data (vC , cC)
inversion(pIM,B)−−−−−−−−−→ pIM,C

5 Invert D-data (vD, cD)
inversion(pIM,C)−−−−−−−−−→ pIM,D

6 Update maturation map QpIM,C = pM

7 Parameterize M version of D cells pM,D = QpIM,D

8 Compare M version of C and D cells Simulate M cells with pM,D and pM

Table 1: The table shows a summary of the method for computing possible side
effects of drugs for mature cells based on measurements conducted on immature
hiPSC-derived cells.

comparing the result of simulations of the models characterized by pM and
pM,D.
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