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Active regulatory elements within CD4+ T cells harbor disproportionate 

heritability (h2) for rheumatoid arthritis (RA). We hypothesized that regulatory 

elements specific to pathogenic CD4+ T cell-states better capture RA h2; 

however, defining these elements is challenging. To this end, we introduce 

IMPACT, a genome annotation strategy to identify cell-state-specific regulatory 

elements defined by key transcription factor binding profiles, learned from 398 

chromatin and sequence annotations. Integrating IMPACT annotations of four 

CD4+ T cell-states with RA summary statistics of 38,242 Europeans and 22,515 

East Asians, we observe that on average the top 5% of Treg predicted regulatory 

elements explain 85.7% (s.e. 19.4%, enrichment p<1.6e-05) of RA h2, and other 

cell-states explain a similar proportion. IMPACT captures RA h2 better than active 

CD4+ T cell regulatory elements, including super enhancers and specifically 

expressed genes (all p<0.05). IMPACT is generalizable to non-immune cell types 

and can identify other complex trait associated regulatory elements. 

  

It is now well recognized that complex trait diseases have disproportionate heritability 

(h2) in subsets of genes and regulatory elements, particularly those that are specifically 

expressed in pathogenic cell and tissue types. For example, genetic studies of  

rheumatoid arthritis (RA), which is an autoimmune disease attacking synovial joint 

tissue leading to permanent joint damage and disability1, have suggested a critical role 

by CD4+ T cells2–10. However, developing safe and effective therapeutics requires 

knowledge of the key cellular subsets, or cell-states, underlying disease risk and their 

regulatory elements. Naive CD4+ T cells may differentiate into memory T cells, and then 
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into effector T cells Th(T helper)1, Th2, and Th17 and T regulatory (Treg) cells, 

requiring the action of a limited number of key transcription factors (TFs): T-bet or Stat4, 

Gata3 or Stat6, Stat3 or ROR-gamma-t, FoxP3 or Stat5, respectively11. Recently, we 

and others have identified CD4+ T cell-states significantly associated with RA: Tph (T 

peripheral helper)12 and Th1 super-effector13 cells. 

  

We hypothesized that regulatory elements specific to pathogenic CD4+ T cell-states 

capture RA h2 better than cell-state-nonspecific CD4+ T cell elements. However, 

defining cell-state-specific gene regulatory elements is challenging; identification of 

active promoters and enhancers through open chromatin assays in the cell-state of 

interest will highlight both cell-state-specific and nonspecific regulatory elements. 

  

To overcome this challenge, we take a two-step approach where we first choose a 

single cell-state-specific canonical TF and identify experimental binding regions. Then, 

IMPACT (Inference and Modeling of Phenotype-related ACtive Transcription) predicts 

TF occupancy at binding motifs by aggregating 386 cell-type-specific epigenomic 

features and 12 other sequence features in an elastic net logistic regression model 

(Methods: IMPACT Model). Epigenomic features include histone mark ChIP-seq, 

ATAC-seq, DNase-seq and HiChIP (Table S1) assayed in immune, muscular, skeletal, 

brain, and other cell types, while sequence features include coding, intergenic, etc. 

From this regression we learn a TF binding chromatin profile, which we use to 

probabilistically define other genomic regions as cell-state-specific regulatory elements 
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at nucleotide-resolution, distinguishing from nonspecific or non-regulatory elements 

(Figure 1A).  

 

We used IMPACT to predict regulatory elements in four CD4+ T cell-states: Th1, Th2, 

Th17, and Treg, in each case selecting a single regulator based on availability of high 

quality genome-wide TF occupancy data (ChIP-seq): T-bet, Gata3, Stat3, and FoxP3, 

respectively (Table S2)14–18. IMPACT predicts TF occupancy at binding motifs with high 

accuracy (mean AUC 0.94 (s.e. 0.03), 10-fold cross validation performed on 80% of 

training data, AUC evaluated on the withheld 20%, Figure 1B, Figure S1, Table S3). 

We find that cell-state-specific chromatin features are often the most important predictor 

variables (Figure S2). IMPACT performs significantly better than naive strategies that 

predict TF motif binding based on active promoters (H3K4me3 ChIP-seq) or cell-state-

specific open chromatin (DNase-seq) (all p<1.5e-15, Figure 1B). Restricting feature 

categories in the model, such as removing cell-state-specific features or features of the 

same epigenomic assay, revealed that only Th2 prediction accuracy significantly 

declines from exclusion of Th2-specific features (Table S3). While experimental binding 

data from ChIP-seq can only identify broad regions of binding signal (~300 bp), IMPACT 

provides nucleotide resolution, illustrated by predictions at canonical TF-specific targets 

(Figure 1C, Figure S3). We find that IMPACT annotations are highly correlated with 

one another and with particular epigenomic training annotations, such as Th2 open 

chromatin (Figure S4). In particular, Th17 IMPACT is correlated with H3K4me3 

annotations and T-bet IMPACT with H3K4me1 annotations, reflecting CD4+ T promoter 

co-localization. 
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To test our hypothesis that IMPACT captures RA h2, we used stratified LD (linkage 

disequilibrium) score regression (S-LDSC)9 with publicly available European (EUR, N = 

38,242)9 and East Asian (EAS, N = 22,515)19 RA GWAS summary statistics to partition 

the common SNP h2 of RA, which is estimated to be about 18% for EUR and 21% for 

EAS (Methods: S-LDSC). We computed CD4+ T cell-state-specific (Th1, Th2, Th17, 

and Treg) regulatory element probabilities at all common SNPs (MAF ≥ 0.05) genome-

wide, excluding the major histocompatibility complex (MHC) due to its outlier LD 

structure. We then created S-LDSC models, composed of one or more IMPACT 

annotations and a set of 69 baseline annotations, controlling for cell-type-nonspecific 

functional, LD-related, and MAF associations, referred to as the baseline-LD model20. 

We found that each CD4+ T cell-state-specific IMPACT annotation is significantly 

enriched with RA h2 in both populations (average enrichment = 20.05, all p<1.9e-04, 

Figure 2A, Table S4). The standardized annotation effect size, 𝜏*, is defined as the 

proportionate change in per-SNP h2 associated with a one standard deviation increase 

in the value of the annotation. The 𝜏* of an annotation that captures RA h2 will be 

significantly greater than zero and the greater the 𝜏*, the more that annotation captures 

RA h2. 𝜏* is significantly positive for all CD4+ IMPACT annotations (all p<2.1e-03, 

Figure 2B, conditional analysis in Figure S5), demonstrating that IMPACT captures RA 

h2 not explained by the baseline-LD annotations. We then created annotations 

consisting of the top 5% of regulatory SNPs according to each IMPACT cell-state and 

show that the Treg annotation explains the greatest proportion of RA h2, 84.0% (s.e. 

17.1%) in Europeans and 88.6% (s.e. 22.3%) in East Asians (Figure 2C). Lastly, we 
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show that while IMPACT annotations are strongly correlated with one another, they are 

weakly correlated with baseline-LD annotations (Figure 2D), consistent with 

significantly positive 𝜏* in Figure 2B. 

  

We hypothesized that the CD4+ T cell-state IMPACT annotations would capture RA h2 

better than other T cell functional annotations. To this end, we compared the 

enrichments and 𝜏* of each CD4+ IMPACT annotation to that of various functional 

annotations, in EUR: TF binding motifs, genome-wide TF occupancy (ChIP-seq), an 

annotation that assigns each SNP a value proportional to the number of IMPACT 

epigenomic features it overlaps (Averaged Tracks), the five largest 𝜏* CD4+ T cell-

specific histone mark annotations9, the five largest 𝜏* CD4+ T cell-specifically expressed 

gene sets and their regulatory elements6, and T cell super enhancers21 (Figure 3, 

Figure S6). Then, we computed the annotation 𝜏* while pairwise conditioned on each 

other and on baseline-LD. We found that, even when conditioned on annotations with 

highly significant enrichment, the CD4+ Treg and Th2 IMPACT 𝜏* are significantly 

positive (all p<0.01) and are more significant, thereby capturing RA h2 better than all 

other annotations, except H3K27ac in Th2 cells.  

  

We next hypothesized that IMPACT would inform functional variant fine-mapping. Using 

a GWAS of 11,475 European RA cases and 15,870 controls22, an independent study 

from the European summary statistics23 used in our h2 analyses, our group recently 

fine-mapped a subset of 20 RA risk loci, each with a manageable number of putatively 

causal variants, and created 90% credible sets of these SNPs24. We computed the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 12, 2018. ; https://doi.org/10.1101/366864doi: bioRxiv preprint 

https://doi.org/10.1101/366864


enrichment of fine-mapped causal probabilities across these 20 loci in the top 1% of our 

CD4+ T cell-state-specific IMPACT annotations (Methods: Posterior Probability 

Enrichment). We found that only the Treg annotation is significantly enriched (2.87, 

permutation p<8.6e-03, Figure 4A, Table S5), suggesting this annotation may be useful 

to prune putatively causal RA variants. Furthermore, we observe uniquely high Treg 

enrichment in the BACH2 and IRF5 loci (16.2 and 8.1, respectively), suggesting 

putatively causal SNPs in these loci may function in a Treg-specific context.  

 

In related work, our group observed both differential binding of CD4+ nuclear extract via 

EMSA and differential enhancer activity via luciferase assays at two credible set SNPs, 

narrowing down the list of putatively causal variants in the CD28/CTLA4 and TNFAIP3 

loci24. We observed that both variants with functional activity were located at predicted 

IMPACT regulatory elements, suggesting that IMPACT may be used to narrow down 

credible sets to reduce the amount of experimental follow up. First, at the CD28/CTLA4 

locus, we observe high probability regulatory elements across the four CD4+ T cell-

states at the functional SNP rs117701653 and lower probability regulatory elements at 

other credible set SNPs rs55686954 and rs3087243 (Figure 4B). Second, at the 

TNFAIP3 locus, we observe high probability regulatory elements at the functional SNP 

rs35926684 and other credible set SNP rs6927172 (Figure 4C) and do not predict 

regulatory elements at the other 7 credible set SNPs. The CD4+ Th1 specific regulatory 

element at rs35926684 suggests that this SNP may alter gene regulation specifically in 

Th1 cells and hence, we suggest any functional follow-up be done in this cell-state. Few 

other credible set SNPs in the other 18 fine-mapped loci have high IMPACT cell-state-
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specific regulatory element probabilities (Figure S7). We note that disease-relevant 

IMPACT functional annotations may be integrated with existing functional fine mapping 

methods, like PAINTOR25, to assign causal posterior probabilities to variants.  

 

We then applied our CD4+ T IMPACT annotations to 41 additional polygenic traits20,26 

and observed significantly positive 𝜏* for autoimmune traits, Crohn’s and ulcerative 

colitis (both p<0.04), and several blood traits, eosinophil and white blood cell counts 

(both p<0.02), but not for non-immune-mediated traits (Figure 5, Table S6). For 

comparison, we built an HNF4A (hepatocyte nuclear factor 4A) IMPACT annotation to 

target LDL and HDL, liver-associated traits27. As expected, HNF4A IMPACT	𝜏* is not 

significant for autoimmune-mediated traits, but is significantly positive for LDL and HDL 

(both p<0.02), suggesting that IMPACT can find complex trait associated regulatory 

elements specific to a range of cell types.  

 

In summary, IMPACT predicts cell-state-specific regulatory elements based on 

chromatin profiles of experimental TF binding and may help elucidate complex trait 

biology. First, we observed highly significant enrichments of RA h2 in IMPACT 

regulatory elements and explain the majority of RA h2 with just the top 5%. Second, we 

found that IMPACT annotations capture RA h2 better than most CD4+ T cell functional 

annotations. Lastly, we have briefly shown another utility of IMPACT to narrow down 

credible sets to reduce functional follow-up. We recognize several limitations to our 

work: 1) we have not experimentally validated the activity of any of our predicted 

regulatory elements, 2) predicted regulatory elements are limited to genomic regions 
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that have been epigenetically assayed, 3) while IMPACT models appear unique 

between cell-states in terms of which epigenomic features best indicate TF motif 

binding, predicted regulatory element probabilities across cell-states are highly 

correlated due to the correlated nature of epigenomic features. In light of these 

limitations, IMPACT is an emerging strategy for identifying trait associated regulatory 

elements and generating hypotheses about the cell-states in which variants may be 

functional, motivating the need to develop therapeutics that target specific disease-

driving cell-states.    

 

Methods 

 

Rationale 

 

To explore if we could predict cell-state-specific regulatory elements, we selected RA 

and CD4+ T cells as the trait and cell type for our model because multiple lines of 

evidence support the role of CD4+ T cells in the pathogenesis of RA. First, classical 

HLA typing studies implicated the MHC region2, more recently fine-mapped to the 

individual amino acid residues of HLA-DRB13, which presents antigens to CD4+ T cells. 

Second, we7,8 and others9,10 have demonstrated that there is an enrichment of RA 

causal variation in active regulatory elements of CD4+ T cells. Similarly, genes within 

RA risk loci are enriched for specific expression in CD4+ T cells5 and genes expressed 

specifically within CD4+ T cell subpopulations are enriched for RA h29. Finally, recent 
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fine-mapping efforts have identified putatively causal variants within the CD28/CTLA4 

and TNFAIP3 loci that have differential enhancer effects in-vivo24. 

  

Data 

  

Genome-wide Annotation Data. We obtained publicly available genome-wide 

annotations in a broad range of cell types for the GRCh37 (hg19) assembly. The 

accession numbers and or file names for features downloaded from NCBI, Blueprint, 

Roadmap, and chromHMM are listed in Table S1. Features from Finucane et al 20159 

are labeled as they were in supplemental tables of this study. Cell-type-specific 

annotation types include ATAC-seq, DNase-seq, FAIRE-seq, HiChIP, polymerase and 

elongation factor ChIP-seq, and histone modification ChIP-seq. Sequence annotations 

were downloaded from UCSC’s publicly available bedfiles and include conservation, 

exons, introns, intergenic regions, 3’UTR, 5’UTR, promoter-TSS, TTS, and CpG 

islands). All genome-wide feature data, except conservation, is represented in standard 

6-column bedfile format. Conservation is represented in bedgraph format, in which the 

average score is reported for each 1024 bp window genome-wide.  

 

TF ChIP-seq data. We determined genome-wide TF occupancy from publicly available 

ChIP-seq (Table S2) of the four key regulators (T-bet14,15, Gata316, Stat317, and 

FoxP318) assayed in their respective primary cell-states Th1, Th2, Th17, and Tregs. 

ChIP-seq peaks were called by macs28 [v1.4.2 20120305] (FDR<0.05).  
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IMPACT Model 

  

We build a model that predicts TF binding on a motif by learning the epigenomic profiles 

of the TF binding sites. We use logistic regression to model the log odds of TF binding 

based on a linear combination of the effects 𝛽$	of the j epigenomic features, where 𝛽%	is 

an intercept.  

 

log
𝑝

1 − 𝑝
= 	𝛽% + 𝛽.𝑋. + 𝛽0𝑋0 + ⋯+	𝛽$𝑋$ 

 

From the log odds, which ranges from negative to positive infinity, we compute the 

probability of TF binding, ranging from 0 to 1.    

𝑝 = 	
1

1 +	𝑒3(567589875:9:7⋯7	5;9;)	
 

 

We use an elastic net logistic regression framework implemented by the cv.glmnet R 

[v1.0.143] package29, in which optimal 𝛽 are fit according to the following objective 

function, 

 

𝑎𝑟𝑔𝑚𝑖𝑛
5

𝑌 − 𝑋𝛽 0 + 𝜆0 𝛽 0 + 𝜆. 𝛽  

We use a regularization strategy to constrain the values of 𝛽and help prevent overfitting. 

Elastic net regularization is a compromise between the lasso (L1) and ridge (L2) 

penalties. Both penalties have advantageous effects on the model fit of j features. Lasso 

performs feature selection, allowing only a subset to be used in the final model, pushing 
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some	𝛽$to 0, which is useful for large feature sets such as IMPACT and avoids 

overfitting. When used alone, lasso will arbitrarily select one of several correlated 

features to be included in the final model; incorporating the ridge term limits this effect of 

lasso. Furthermore, ridge provides a quadratic term, making the optimization problem 

convex with a single optimal solution. The elastic net logistic regression has the 

following parameters: alpha, lambda, and type. Alpha is the mix term between the lasso 

and ridge penalties in the objective function, which controls the sparsity of betas. We set 

alpha to 0.5, such that the L1 and L2 terms equally contribute, correlated features may 

be retained to some degree, and not too many betas are pushed to 0. We set lambda to 

lambda.min, the value of λ that yields minimum mean cross-validated error, and type set 

to response, such that our predictions are in probability space rather than log odds 

space. 

  

Training IMPACT. We train IMPACT on gold standard regulatory and non-regulatory 

elements of a particular TF, meaning that there is one IMPACT model per TF/cell-state 

pair. To build the regulatory class, we scanned the TF ChIP-seq peaks, mentioned 

above, for matches to the TF-specific binding motif, using HOMER30 [v4.8.3]. Each 

match must receive a sequence similarity score greater than or equal to the threshold 

provided by the PWMs (position weight matrices) in the Jaspar database (Table S2). 

We only scan for the TF motif of the corresponding TF ChIP-seq dataset, e.g. we only 

looked for T-bet motifs in the T-bet ChIP-seq data. We retained the highest scoring 

motif match for each ChIP-seq peak and used the genomic coordinates of the center 

two nucleotides to create a GenomicRanges object in R. For the T-bet data, there were 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 12, 2018. ; https://doi.org/10.1101/366864doi: bioRxiv preprint 

https://doi.org/10.1101/366864


10,086 such ranges, 1,224 for Gata3, 1,181 for Stat3, and 1,005 for FoxP3. For every 

run of IMPACT, 1,000 regulatory ranges are randomly selected, labeled with a 1, to train 

the model. Controlling the number of ranges used will standardize the logistic 

regression output such that predictions and model fits will be more comparable between 

cell-state models. 

  

To build the non-regulatory class, we scanned the entire genome for TF motif matches, 

again using HOMER, and selected motif matches with no overlap with that TF’s ChIP-

seq peaks, e.g. we scan for T-bet motifs, and only retain regions not overlapping T-bet 

ChIP-seq peaks. We do not check for overlap with other TF (i.e. Gata3, Stat3, FoxP3) 

ChIP-seq peaks. Similarly to the regulatory set, we used the genomic coordinates of the 

center two nucleotides of retained motifs to create the non-regulatory set, and label 

them as 0 in the regression. The motif matching process in both classes serves as a 

modest control for sequence content, as motifs are conserved regions of DNA. For 

every run of IMPACT, 10,000 regions of the non-regulatory set are randomly selected to 

train the model. This value is one order of magnitude larger than the regulatory set to 

reflect that genome-wide, we expect far more non-regulatory than regulatory elements. 

We justify setting this value to 10,000 if we assume that ~10% of the genome is 

regulatory, then for every positive region, we need nine negative regions. This would 

require 9*1,000 regulatory elements = 9,000 non-regulatory elements, a conservative 

estimate of the number of non-regulatory elements we actually use. 
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The sets of regulatory and non-regulatory elements are first partitioned into a random 

sampling of 80% each, to be used for 10-fold cross validation (CV), in which these sets 

are further partitioned into 90%/10% train/test. The remaining 20% to be used as a 

validation set (data completely unseen by the CV). 

 

IMPACT is trained on standard 6-column bedfiles, of regions that are 2 base pairs wide, 

i.e. 

 

chr1  2500 2501 region_1     0     + 

 

Epigenomic and sequence features are represented twice in the model, first with 

respect to local regions, and secondly with respect to distal regions. In the local case, 

for each region we annotate, we iterate through all genome-wide features, asking if 

there is overlap. In the distal case, we look for feature overlap of a more distal 

nucleotide (i.e. 1,000 base pairs up or downstream, such that overlap at either distal 

position will count and we do not distinguish between the upstream or downstream 

overlap in the feature matrix). Our rationale is that although a nucleotide may not 

intersect a particular feature, it may be informative to know that there is one nearby. The 

upstream and downstream distal coordinates (parameter set to 1,000 bp) are computed 

by subtracting or adding, respectively, the parameter value to these coordinates. If the 

computed distal coordinate is negative, the value is replaced with 1. If the computed 

distal coordinate is larger than the length of the chromosome, the value is replaced with 

the length of the chromosome. We set our distal parameter to 1,000 bp (Table S3) and 
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do not check for overlap of any additional nucleotides within this distance. The feature 

matrix, on which the model is trained, may look like the following with dimensions 

(11,000 rows by 2+2X columns): 

  

Training 

region 

Regulatory 

Class (1 or 0) 

Conservation Feat. 1 

(local) 

Feat. X 

(local) 

Feat. 1 

(distal) 

Feat. X 

(distal) 

Regulatory 

region 

Nr=1 

1 43.25 1 0 1 1 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

     

Regulatory 

Region 

Nr=1,000 

1 68.75 1 1 0 1 

Non-

regulatory 

Region 

Nnr=1 

0 13.20 0 0 0 0 
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. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

     

Non-

regulatory 

Region 

Nnr=10,00

0 

0 14.34 0 0 1 0 

   

We applied IMPACT genome-wide to assign nucleotide-resolution regulatory 

probabilities, using the model 𝛽 learned from the elastic net logistic regression CV. 

Model 𝛽 from the run of IMPACT used to produce genome-wide annotations as well as 

the averaged model 𝛽 over 10 runs can be found in Table S1. We show the largest 

magnitude 𝛽 for each cell-state IMPACT model in Figure S2.  

  

Stratified-LD Score Regression (S-LDSC) 

  

Genome-wide association data. We collected RA GWAS summary statistics23 for 

38,242 European individuals, combined cases and controls, and 22,515 East Asian 

individuals, comprised of 4,873 RA cases and 17,642 controls19. Reference SNPs, used 

to estimate European LD scores, were the set of 9,997,231 SNPs with minor allele 
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count greater or equal than five in a set of 659 European samples from phase 3 of 1000 

Genomes Projects31. The regression coefficients were estimated using 1,125,060 

HapMap3 SNPs and heritability was partitioned for the 5,961,159 reference SNPs with 

MAF ≥ 0.05. Reference SNPs, used to estimate East Asian LD scores, were the set of 

8,768,561 SNPs with minor allele count greater or equal than five in a set of 105 East 

Asian samples from phase 3 of 1000 Genomes Projects31. The regression coefficients 

were estimated using 1,026,051 HapMap3 SNPs and heritability was partitioned for the 

5,469,053 reference SNPs with MAF ≥ 0.05. Frequency and weight files (1000G EUR 

phase3, 1000G EAS phase3) are publicly available and may be found in our URLs. 

   

Methodology. We apply S-LDSC9 [v1.0.0], a method developed to partition polygenic 

trait heritability by one or more functional annotations, to quantify the contribution of 

IMPACT cell-state-specific regulatory annotations to RA and other autoimmune disease 

heritability. We annotate common SNPs (MAF ≥ 0.05) with multiple cell-state-specific 

IMPACT models, assigning a regulatory element score to each variant. Then S-LDSC 

was run on the annotated SNPs to compute LD scores. Here, the two statistics we use 

to evaluate each annotation’s contribution to disease heritability are enrichment and 

standardized effect size (𝜏*).  

 

If acj is the value of annotation c for SNP j, we assume the variance of the effect size of 

SNP j depends linearly on the contribution of each annotation c:  

𝑉𝑎𝑟( 𝛽$) = 	 𝑎F$𝜏F	
F
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where 𝜏F is the per-SNP contribution from one unit of the annotation 𝑎F to heritability. To 

estimate 𝜏F, S-LDSC estimates the marginal effect size of SNP j in the sample from the 

chi-squared GWAS statistic 𝑋$0: 

𝑋$0 = 	𝑁	𝛽$0 

Considering the expectation of 𝑋$0 and following the derivation from Gazal et al 201720,  

 

Χ$0 = 	𝑁	 (𝜏F 	 𝑎F(𝑘)
J

𝑟$J0 ) + 1
F

 

 

𝐸 Χ$0 = 	𝑁	 𝜏F	𝑙 𝑗, 𝑐 + 1
F

 

 

where N is the sample size of the GWAS, 𝑙(𝑗, 𝑐) is the LD score of SNP j with respect to 

annotation c, and 𝑟$J0  is the true, e.g. population-wide, genetic correlation of SNPs j and 

k. Since 𝜏F is not comparable between annotations or traits, Gazal et al 201720 defines 

𝜏F∗ as the per-annotation standardized effect size, a function of the standard deviation of 

the annotation c, 𝑠𝑑(𝑐), the trait-specific SNP-heritability estimated by LDSC ℎT0, and the 

total number of reference common SNPs used to compute ℎT0, M = 5,961,159 in EUR 

and 5,469,053 in EAS: 

𝜏F∗ 	= 	
𝑠𝑑(𝑐)𝜏F
ℎT0

𝑀

 

We define enrichment of an annotation as the proportion of heritability explained by the 

annotation divided by the average value of the annotation across the M common (MAF 
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≤ 0.05) SNPs. Enrichment may be computed for binary or continuous annotations 

according to the equation below, where ℎT	0 𝑐  is the h2 explained by SNPs in annotation c.  

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 = 	

ℎT	0 𝑐
ℎT0

𝑎F 𝑗$
𝑀

= 	

𝑎F 𝑗 𝜏F$
𝑎F 𝑗 𝜏FF$

𝑎F 𝑗$
𝑀

 

Enrichment does not quantify effects that are unique to a given annotation, whereas 𝜏* 

does. 

Each S-LDSC analysis involves conditioning IMPACT annotations on 69 baseline 

annotations, referred to as the baseline-LD model, consisting of 53 cell-type-nonspecific 

annotations9, which include histone marks and open chromatin, 10 MAF bins, and 6 LD-

related annotations20 to assess if functional enrichment is cell-type-specific and to 

control for the effect of MAF and LD architecture. Consistent inclusion of MAF and LD 

associated annotations in the baseline model is a standard recommended practice of S-

LDSC. When conditionally comparing two annotations, say A and B, in a single S-LDSC 

model, the two annotations may have similar enrichments if they are highly correlated. 

However, the 𝜏* for the annotation with greater true causal variant membership will be 

larger and more statistically significant (e.g. > 0). Specifically, a 𝜏* of 0, means that the 

annotation does not change per-SNP h2. A strongly negative 𝜏 ∗ means that 

membership to the categorical annotation decreases per-SNP h2, while a strongly 

positive 𝜏* means that membership to the annotation increases per-SNP h2. The 

significance of 𝜏* is computed based on a test of how different from 0 the 𝜏 ∗ is. 

  

MHC exclusion. We note that S-LDSC excludes the MHC (major histocompatibility 

complex) due to its extremely high gene density and outlier LD structure, which is 
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thought to be the strongest contributor to RA disease h213. However, our work supports 

the notion that there is an undeniably large amount of RA h2 located outside of the 

MHC. 

  

Posterior probability enrichment 

  

Previous work from our group aimed to define the most likely causal RA variant for each 

locus harboring a genome-wide significant variant24. To this end, posterior probabilities 

were computed with the approximate Bayesian factor (ABF), assuming one causal 

variant per locus. The posteriors were defined as: 

𝑃Y	 = 	
𝐴𝐵𝐹Y
𝐴𝐵𝐹J]

J^	%
 

where i is the ith variant, and n is the total number of variants in the locus. As such, the 

ABF over all variants in a locus sum to 1. Then, for each of the defined 20 RA-

associated loci24, we computed the enrichment of high posterior probabilities in the top 

1% of cell-state-specific IMPACT regulatory elements (Table S5). For each RA-

associated locus l, 

𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =
𝑃𝑐 𝑖

𝑀𝑙
𝑖

1
𝑀𝑙

𝑀𝑙
𝑗

		 

where 𝑃F(𝑖) is the posterior causal probability of SNP i, such that i belongs to the top 1% 

of the cell-state-specific IMPACT annotation c, 𝑀_ is the number of SNPs in locus l for 

which we have a computed posterior probability. The denominator formulates the null 

hypothesis that each SNP in a locus is equally causal. We computed the average of 

these enrichment values over the 20 RA-associated loci. A permutation distribution was 
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calculated by computing an average enrichment value over these 20 loci, in 1,000 trials, 

in which random posterior probabilities (of the same quantity 𝑀_) were selected. The 

permutation p-value was calculated by comparing the quantile value of the IMPACT 

enrichment to the assumed-normal permutation distribution defined by its mean and 

standard deviation, using the pnorm function in R. 

 

Caveats 

  

This approach might be easily applied to a wide-range of other diseases, recognizing 

several important caveats. First, it relies on choosing a key regulator TF with a known 

consensus binding motif. While for CD4+ T cells there is extensive literature of cell-

states and their key regulatory drivers, this may not be readily available for all cell types. 

Second, it requires that primary cell ChIP-seq data, and therefore a specific antibody, 

are available for the desired TF in the disease-driving cell type. We prefer primary cell 

ChIP-seq data as opposed to cell line data in order to more closely approximate 

physiological regulatory element activity. Most immune populations are difficult to sort 

ex-vivo, however IMPACT models should be robust to experimental binding data of a 

heterogeneous population of cells. For instance, in a population of T cells that are 25% 

Tregs, and 75% other T lymphocytes, we expected more FoxP3 binding in the Tregs 

relative to the other cells, and as such our TF occupancy profile should predominantly 

reflect that of Tregs. As there is especially poor availability of TF occupancy data in non-

immune primary cells, we encourage the generation of more of this cell-state-specific 

data. Furthermore, due to IMPACT’s skew toward immune cell type features (~50%), we 
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recommend supplementing relevant cell-type-specific features to avoid overfitting to 

immune cell types. 

 

Data Availability 

  

All code for this paper has been made publicly available in the following GitHub 

repository: 

https://github.com/immunogenomics/IMPACT 

  

URLs 

1. S-LDSC tutorial and instructions: github.com/bulik/ldsc  

2. 1000G: www.1000genomes.org 

3. RA EUR summary statistics: 

http://plaza.umin.ac.jp/yokada/datasource/software.htm 

4. RA EAS summary statistics: http://jenger.riken.jp/en/result 

5. 1000G Phase 3 LD scores, CD4+ T cell specifically expressed genes (binary 

functional annotations): http://data.broadinstitute.org/alkesgroup/LDSCORE/ 

6. Immgen.tsv: https://gist.github.com/nachocab/3d9f374e0ade031c475a 
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Figure 1.  

(a) IMPACT learns a chromatin profile of cell-type-specific regulation, characteristic of 

the master regulator TF (red) “gold standard” regulatory elements (TF motif and ChIP-

seq peak, yellow) and non-regulatory elements (TF motif, no ChIP-seq peak, purple). In 
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this toy example, IMPACT learns that cell-type-specific open chromatin and H3K4me1 

are strong predictors of cell-type-specific regulatory elements, while cell-type-

nonspecific DHS and H3K4me1 are less informative. IMPACT also learns that 

H3K9me3 is a strong predictor of non-regulatory elements. IMPACT is expected to re-

identify regulatory elements marked by master TF binding (ChIP-seq and motif) [peak 

1], while also identifying others where the chromatin profile is similar, perhaps 

representing cell-type-specific transcriptional processes [peak 2]. IMPACT is not 

expected to predict regulation at cell-type-nonspecific elements [peak 3], such as 

promoters of generic housekeeping genes, assuming these elements have different 

chromatin profiles. (b) IMPACT significantly outperforms cell-state-specific active 

promoter (H3K4me3, green) and open chromatin (DNase, red) annotations in predicting 

TF binding on a motif over 10 trials measured by computing the average ROC AUC 

(receiver operator characteristic area under the curve). As there is no Treg DNase data, 

there is no comparison AUC distribution. (c) Cell-state-specific regulatory element 

IMPACT predictions for canonical target genes of T-bet, Gata3, Stat3, and FoxP3.  
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Figure 2. 

(a) Enrichment of RA h2 in CD4+ T IMPACT for EUR and EAS populations. Values 

below cell-states are the average annotation value across all common variants and 

represent the effective genome-wide size of the annotation. (b) Annotation effect size 

(𝜏*) of each annotation separately conditioned on the baseline-LD. (c) Proportion of total 

causal RA h2 explained by the top 5% of SNPs in each IMPACT annotation. For all 
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panels, 95% CI represented by black lines. For panels a and b, no asterisk denotes 

p>0.05, 1 asterisk p<0.05, 2 asterisks p<0.01, 3 asterisks p<0.001. (d) 2D hierarchical 

clustering of pairwise signed Pearson R-squared correlations between CD4+ IMPACT 

annotations and most strongly correlated baseline-LD annotations. 
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Figure 3.  

(a) RA h2 enrichment of CD4+ Treg related annotations and compared T cell functional 

annotations. Values below cell-states represent the effective genome-wide size of the 

annotation. From left to right, we compare Treg IMPACT to genome-wide FoxP3 motifs, 

FoxP3 ChIP-seq, a genome-wide averaged track of features in the IMPACT framework 

(Averaged Tracks), the top 5, in terms of independent 𝜏*, cell-type-specific histone 

modification annotations9, the top 5, in terms of independent 𝜏*, cell-type-specifically 

expressed gene sets (URLS)6, and T cell super enhancers21. (b) CD4+ Treg IMPACT 

annotation standardized effect size (𝜏*) consistently significantly greater than zero when 

conditioned on other T cell related functional annotations.	𝜏* for independent (e.g. non-

conditional) analyses are denoted by the top of each black bar, as a reference for the 

conditional analyses, denoted by the top of each colored bar. The Treg IMPACT 

annotation captures a significant amount of RA h2, denoted by significantly positive 𝜏*, 
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regardless of the conditioned annotation. For panels a and b, no asterisk denotes 

p>0.05, 1 asterisk p<0.05, 2 asterisks p<0.01, 3 asterisks p<0.001. 
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Figure 4. 

(a) Significant enrichment of posterior probabilities of putatively causal RA SNPs in the 

top 1% of SNPs annotated with CD4+ Treg regulatory element probabilities, highlighting 

particularly strong enrichment at the BACH2, ANKRD55, CTLA4/CD28, IRF5, and 

TNFAIP3 loci. (b,c) IMPACT corroborates experimental validations of putatively causal 
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RA SNPs. For two RA-associated loci, CTLA4/CD28 and TNFAIP3, we examine the 

putatively causal SNP with experimentally validated differential enhancer activity 

(bolded) and other 90% credible set SNPs (unbolded)24. IMPACT scores at these SNPs 

are highlighted with a black line. (b) We observe high probability  IMPACT regulatory 

elements in all four CD4+ T cell-states for the functional SNP rs117701653 in the 

CD28/CTLA4 locus. (c) We observe a high probability Th1-specific IMPACT regulatory 

element for the functional SNP rs35926684 in the TNFAIP3 locus. 
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Figure 5.  

Signed log10 p-values of 𝜏* for 42 traits across the four CD4+ T IMPACT annotations 

and Liver (HNF4A) IMPACT for comparison. Both sets of annotations capture h2 in 

distinct sets of complex traits, with significantly positive 𝜏* for expectedly related traits. 

Color shown only if p-value of  𝜏* < 0.025. 

5

Cr
oh

ns
 D

ise
as

e 
Rh

eu
m

at
oi

d 
Ar

th
rit

is 
Ul

ce
ra

tiv
e 

Co
liti

s 
Al

l A
ut

oi
m

m
un

e 
Di

se
as

e 
Di

ab
et

es
 

Ty
pe

 2
 D

ia
be

te
s 

Re
sp

ira
to

ry
 E

ar
/N

os
e/

Th
ro

at
 

Al
le

rg
y 

an
d 

Ec
ze

m
a 

Eo
sin

op
hi

l C
ou

nt
 

W
hi

te
 B

lo
od

 C
el

l C
ou

nt
 

Pl
at

el
et

 C
ou

nt
 

Re
d 

Bl
oo

d 
Ce

ll C
ou

nt
 

Co
ro

na
ry

 A
rte

ry
 D

ise
as

e 
Hi

gh
 C

ho
le

st
er

ol
 

LD
L 

HD
L 

Re
d 

Bl
oo

d 
Ce

ll W
id

th
 

Re
tic

ul
oc

yt
e 

Co
un

t 
Sy

st
ol

ic 
Bl

oo
d 

Pr
es

su
re

 
Im

pe
da

nc
e 

Ba
sa

l M
et

ab
ol

ic 
Ra

te
 

Ba
ld

in
g 

Le
ss

 S
ev

er
e 

Ba
ld

in
g 

M
or

e 
Se

ve
re

 
He

el
 T

sc
or

e 
BM

I 
BM

I a
dj

 fo
r W

HR
 

He
ig

ht
 

Sm
ok

in
g 

St
at

us
 

Ev
er

 S
m

ok
ed

 
Lu

ng
 S

m
ok

in
g 

FE
V1

 F
VC

 
Lu

ng
 S

m
ok

in
g 

FV
C 

M
en

ar
ch

e 
Ag

e 
M

en
op

au
se

 A
ge

 
Sk

in
 P

ig
m

en
t 

Ta
nn

in
g 

Su
nb

ur
n 

Ha
ir 

Pi
gm

en
t 

Sc
hi

zo
ph

re
ni

a 
Au

tis
m

 
Do

wn
s 

Sy
nd

ro
m

e 
An

or
ex

ia
 

Ye
ar

s 
of

 E
du

ca
tio

n 
M

or
ni

ng
 P

er
so

n 

Liver (HNF4A) IMPACT
Treg (FoxP3) IMPACT
Th17 (Stat3) IMPACT
Th2 (Gata3) IMPACT
Th1 (T−bet) IMPACT

−10 −5 0 5 10
signed log10 p τ*

Immune
Blood
Metabolism
Body
Lung
Reproductive
Pigment
Brain
Other

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 12, 2018. ; https://doi.org/10.1101/366864doi: bioRxiv preprint 

https://doi.org/10.1101/366864

