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Abstract 20 

Expression quantitative trait loci (eQTLs) identified using tumor gene expression data could affect gene expression 21 

in cancer cells, tumor-associated normal cells, or both. Here, we demonstrate a method to identify eQTLs affecting 22 

expression in cancer cells by modeling the statistical interaction between genotype and tumor purity. Only one-third 23 

of breast cancer risk variants, identified as eQTLs from a conventional analysis, could be confidently attributed to 24 

cancer cells. The remaining variants could affect cells of the tumor microenvironment, such as immune cells and 25 

fibroblasts. Deconvolution of tumor eQTLs will help determine how inherited polymorphisms influence cancer 26 

risk, development, and treatment response.   27 
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Background 28 

Expression quantitative trait loci (eQTLs) have been mapped in many tumor types, including high-profile studies in 29 

glioma[1], colon[2], breast[3] and prostate cancer[4]. These studies measured genome-wide gene expression in 30 

tumors and identified associations between these gene expression levels and common inherited (germline) genetic 31 

variants (e.g. single nucleotide polymorphisms (SNPs)) profiled in the same patients. These results have been very 32 

widely applied: For example, the majority of inherited cancer risk variants implicated by GWAS[5] are in non-coding 33 

likely-regulatory[6,7] regions of the genome. Thus, to identify genes regulated by these variants, eQTLs identified 34 

from tumor tissue[2,3] (and sometimes normal tissue[8]) are typically interrogated—facilitating rational functional 35 

follow-up studies[9]. Indeed, inherited genetic variation is associated with the development of specific somatic 36 

mutation profiles in cancers, and functional work demonstrated that this can be caused by germline mediated 37 

changes in gene expression in cancer cells[10]. Additionally, cancer eQTLs have been extensively studied in the 38 

context of pharmacogenomics, for example, inherited variants affect the expression levels of membrane 39 

pump/transporter genes modulating chemotherapeutic response[11]. Notably, inherited variants associated with 40 

chemotherapeutic response in cell lines are also enriched for eQTLs[12]. Putative drug target genes with existing 41 

evidence of disease relevance from genetic association studies are also more likely to be successful in the drug 42 

development pipeline; however, this is critically dependent on correctly assigning variants to the genes they 43 

regulate[13]. These examples, pertaining to cancer risk, development, and treatment, include only a small subset of 44 

applications of cancer eQTL profiles. 45 

 46 

However, previous cancer eQTL studies quantified cancer gene expression by extracting RNA from tumor biopsies, 47 

which are not a pure sample of cancer cells; instead, these are a heterogeneous mixture of, for example, cancer cells, 48 

tumor-infiltrating immune cells, supporting tissue (stroma) and normal epithelial cells from the surrounding tissue. 49 

Therefore, the expression profiles obtained reflect both cancer and non-cancer cells. Hence, eQTLs identified this 50 

way could arise from cancer cells, tumor-associated normal cells, or both.  51 

 52 
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Recent studies have developed reliable computational deconvolution methods that use genomics data to estimate 53 

the proportion of different cell types in tumor biopsies[14,15], such as those collected by The Cancer Genome Atlas 54 

(TCGA). These methods have been shown to accurately recapitulate cell type proportions in controlled 55 

experiments, where cell type mixtures are known[16]. Methods have been developed to generate such estimates 56 

from gene expression, methylation, and copy number data; these have been compared to estimates from 57 

Hematoxylin and Eosin (H&E) staining and it has been observed that all approaches are reasonably concordant, 58 

leading to the development of consensus methods, which combine estimates from these approaches[15]. Crucially, 59 

these studies have found pervasive differences in tumor purity, both within and across different types of cancer. For 60 

example, while samples can be admitted into TCGA with as little as 60% cancer cell content based on H&E 61 

staining, the tumor purity inferred from genomics approaches is even lower for some TCGA samples[15]. However, 62 

no previous cancer eQTL mapping study has appropriately dealt with the influence of tumor-associated normal 63 

cells. In fact, they have essentially treated bulk tumor expression as representative of gene expression in cancer cells. 64 

As such, it is plausible that any conclusions drawn about the eQTL landscape of cancer, for example, their similarity 65 

to their matched tissue-of-origin[2], could simply result from eQTLs in the tumor-associated normal tissue being 66 

misattributed to cancer cells.  67 

 68 

In this study, we have developed a statistical approach, which by integrating bulk tumor expression data with 69 

estimates of tumor purity, can identify the eQTLs that can be confidently attributed to cancer cells. Using TCGA 70 

breast cancer data as a case study and METABRIC as validation, we show that a substantial proportion of reported 71 

eQTLs, including known breast cancer risk variants, show no evidence of an effect in cancer cells, but may in fact 72 

affect expression in tumor-associated normal cells. Thus, the functional role of these variants must be re-evaluated. 73 

 74 

Note: throughout this manuscript we use the terms “bulk tumor” or “tumor” to refer to the heterogeneous mixture 75 

of cells found in a solid tumor biopsy; we use “tumor-associated normal” to refer to all non-cancer cell types found 76 

in solid tumors (e.g. immune cells, normal epithelial cells) and “cancer” cells to specifically refer to transformed 77 

cells.  78 
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Results 79 

A conventional tumor eQTL mapping strategy will recover eQTLs from both cancer cells and tumor-80 

associated normal cells in simulated data 81 

To establish whether eQTLs in tumor-associated normal cells may indeed influence eQTL profiles recovered from 82 

bulk tumor expression data, we first created a simulated dataset where underlying cancer/normal eQTL profiles 83 

were known a priori. Simulations consisted of expression levels of 600 genes in pure “cancer” samples and in pure 84 

“normal” tissue samples. These were then combined to simulate a “bulk tumor” expression dataset, consisting of 85 

1,000 samples. Six classes of eQTLs were created, each represented by 100 genes; these were (1) genes with eQTLs 86 

in cancer and normal, but with different effects in the two cell types (2) genes with eQTLs in cancer only (3) genes 87 

with eQTLs in normal only (4) genes with no eQTL in either cell type (5) genes with the same eQTL in both cell 88 

types and (6) genes with similar eQTLs in both cell types. Because the purpose of these simulations was to study the 89 

performance of this model in real cancer data, the parameters, such as sample size, expression levels, effect sizes 90 

and proportions of cancer/normal cells, were chosen to resemble the TCGA breast cancer cohort (see Methods). 91 

 92 

We applied the current standard eQTL mapping strategy to these simulated data, where the expression levels from 93 

bulk tumors were treated as representative of cancer itself (henceforth referred to as the “conventional model”; see 94 

Methods). Importantly, the assumption here is that the goal is to identify eQTLs influencing gene expression in 95 

cancer cells, therefore true simulated cancer eQTLs were treated as the ground-truth for all statistical measures of 96 

performance reported in this and the next section. By comparing the results obtained from the model to the true 97 

known cancer eQTLs created as part of the simulation, this approach achieved reasonable sensitivity and specificity 98 

(79.5% and 80.3% respectively). However, there was a clear influence of the simulated eQTLs in the normal cells on 99 

the recovered effects from bulk tumor expression (Pearson’s correlation (r) = 0.9, P = 1.3 × 10-38 between simulated 100 

effect size of eQTLs with an effect in normal but not cancer cells and their estimated effect size from the 101 

conventional model;  Fig. 1(a)). Furthermore, while we expected a false discovery rate (FDR; estimated using the 102 

Benjamini and Hochberg approach) of 5%, the true FDR was 11.1%, when the known simulated set of cancer 103 
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eQTLs was treated as the ground-truth. Most (37 of 40) of these false discoveries were falsely attributed 104 

associations resulting from eQTLs in normal cells (Supplementary Table 1). 105 

 106 

Cancer eQTLs can be accurately identified from bulk tumor expression data by modeling the interaction 107 

of tumor purity and genotype in simulated data 108 

To recover cancer eQTLs from bulk tumor expression data, we have built upon (see Methods) a previous study to 109 

identify eQTLs with different effects in human neutrophils and lymphocytes using whole blood expression data[17]. 110 

Like conventional eQTL mapping, our new approach involves fitting a linear regression model of gene expression 111 

level against genotype: However, in addition to genotype, the estimated proportion of tumor-associated normal cells 112 

(tumor purity) is included as a covariate, as well as the interaction between the estimated tumor purity and genotype 113 

(henceforth referred to as the “interaction model”; see Methods). Critically, the estimate of the main effect 114 

associated with this interaction term allows the eQTL to be assigned to cancer, not the interaction term itself (see 115 

Methods). Intuitively, this works by estimating how the magnitude of the association between bulk tumor gene 116 

expression and genotype changes as a function of the proportion of cancer/normal cells, then extrapolating the 117 

effect size to 100% cancer cells. Under reasonable assumptions, we have proved this approach mathematically and 118 

demonstrated how this model should be interpreted (see Supplementary Information – Model Derivation). 119 

 120 

The interaction model recovered simulated cancer eQTLs with a sensitivity and specificity of 58.3% and 96.1% 121 

respectively. A small drop in power (Supplementary Tables 1 & 2; Supplementary Figure 1) was expected given the 122 

extrapolation to a cell type-specific state and the simulations taking account of the potential for shared eQTLs 123 

between cancer and normal cell types. However, the true FDR dropped to 3.3%, below the expected rate of 5%. 124 

Only two “normal only” (group 3; see Methods) eQTLs were misattributed to cancer and the influence of normal 125 

cells observed for the conventional model was eliminated (Fig. 1(b); Supplementary Table 2). To further illustrate 126 

the utility of the model, a normal-driven eQTL analyzed with a conventional model is shown in Fig. 1(c), along with 127 

the capacity of the interaction model to extrapolate the correct effect size in cancer cells, deducing that this signal 128 

was driven by samples with large quantities of tumor-associated normal cells (Fig. 1(d)). 129 
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 130 

In cancer eQTL mapping, the assumption has been implicit that the eQTLs identified from tumor samples affect 131 

gene expression in cancer cells. However, the pervasive genomic aberrations and dysregulation of key master 132 

regulators that occurs in cancer cells[18] could obscure or eliminate associations between germline polymorphisms 133 

and gene expression, either by increasing transcriptional noise or by disrupting the regulatory landscape. Thus, the 134 

inherited genetic influence on gene expression could be far greater in normal cells than in cells that have undergone 135 

neoplastic transformation. To assess the plausibility that eQTLs previously discovered from tumor expression data 136 

could be largely driven by normal cells, we included an additional 500 genes with “normal only” eQTLs in our 137 

simulated dataset. Again, assuming the objective is to identify eQTLs that affect gene expression in cancer cells, a 138 

conventional model applied to bulk tumor expression data performs very poorly. Using an FDR threshold of 5% 139 

we in fact observed a rate of false discovery rising to 46% of significant associations (Supplementary Table 3). Of 140 

the 270 false discoveries, 267 were misattributed eQTLs affecting gene expression in normal cells only. However, 141 

when the interaction model was used, the rate of false discovery was again accurately controlled (3% false 142 

discoveries at an imposed FDR threshold of 5%) and only 5 eQTLs in normal cells (<1%) were misattributed to 143 

cancer. Furthermore, the interaction model could accurately identify true cancer eQTLs even when tumor purity 144 

was measured with noise similar to levels expected in real data[19] (Fig. 1(e); see Methods for details). Notably, just 145 

including the proportion of cancer cells as a covariate in a conventional model had no impact on the performance, 146 

with the observed FDR remaining at 45.9% (at the imposed 5% threshold; Supplementary Table 3). Thus, tumor 147 

purity cannot simply be “accounted for” by including it as a model covariate or including surrogate variables that 148 

approximate tumor purity such as principal components or PEER factors—modeling the interaction of tumor 149 

purity and genotype is absolutely critical to correctly assign eQTLs to cancer cells. Ignoring this can potentially 150 

falsely attribute enormous numbers of eQTLs from tumor-associated normal cells. Notably, simply restricting to 151 

tumors with higher cancer cell content is also likely not an optimal solution this problem; doing so caused a large 152 

drop in sensitivity compared to the interaction model, at a true FDR < 5% (Supplementary Figure 2). 153 

 154 
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While no simulated dataset can capture the full complexity of in vivo biology, these analyses suggest that (i) it is 155 

plausible that many, if not most eQTLs identified from tumor expression data using conventional approaches 156 

actually affect gene expression in normal cells, not in cancer cells and (ii) using the parameters of the TCGA breast 157 

cancer data, modeling the interaction of tumor purity and genotype performs well at correctly attributing true cancer 158 

eQTLs. Below, we perform a case-study using an integrative analysis of real data from TCGA breast cancer, breast 159 

cancer GWAS results, and samples from the Genotype-tissue Expression (GTEx) project. 160 

 161 

Case-study: mapping cis-eQTLs in breast cancer 162 

To test the utility of the interaction model on real data, we conducted cis-eQTL mapping in TCGA breast cancer 163 

samples, where both germline genotype and bulk tumor RNA-Seq data were available (n = 894). We also applied a 164 

conventional model to bulk tumor expression data (see Methods). We focused on breast cancer as it has the largest 165 

available sample size, and is reasonably representative of tumor types with high normal cell contamination (Fig. 166 

2(a)). We estimated tumor purity using a consensus approach that combined the estimates from copy number 167 

variation, gene expression, DNA methylation and H&E staining[15]. Tumor purity varied substantially in TCGA 168 

breast cancer samples (Fig. 2(b)) and was significantly correlated with the expression of 11,927 of 15,574 genes 169 

(FDR < 0.05; Fig. 2(c)), highlighting the obvious potential of eQTLs in these normal cells to influence eQTL 170 

profiles inferred from bulk tumor expression. 171 

 172 

 173 

We evaluated 3,602,220 associations between tag SNPs and the expression levels of genes within 500 kilobases of 174 

each tag SNP. The data were filtered and preprocessed based on the recent guidelines of GTEx, including steps to 175 

control for population structure, unmeasured confounders, and expression heterogeneity (see Methods). We 176 

identified 57,189 significant cis-eQTL associations (FDR < 0.05; Fig. 3(a)) using the conventional model. However, 177 

using the interaction model, just 8,833 eQTLs could be confidently attributed to cancer cells (FDR < 0.05; Fig. 178 

3(a)). Of the 8,833 associations attributed to cancer cells, 7,542 were also identified by the conventional model and 179 

751 were novel. Results were similar when copy number or methylation were included as an additional covariate (as 180 

per Li et al.[3] (Supplementary Figure 3)) and when samples were grouped by subtype (Supplementary Tables 4 & 5; 181 
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see Methods). When we randomly permuted the tumor purity estimates, the number of eQTLs that could be 182 

attributed to cancer cells was just 239 (Fig. 3(a)). We show a specific example in Figs. 3(b-e) to illustrate the process 183 

of attributing eQTLs to the affected cell type. In this example, the association between SNP rs6458012 and the 184 

expression of MDGA1 in breast tumors (P = 1.5 × 10-29; Fig. 3(b)) could not be attributed to breast cancer cells (P 185 

= 0.26; Fig. 3(c)), given the tumor purity values. This eQTL likely arises from tumor-associated stromal and 186 

immune cells, in which the genotype of this locus has a strong effect on gene expression with the same 187 

directionality as the eQTL estimated by the conventional model (P = 6.3 × 10-13 and 1.4 × 10-10 in GTEx 188 

transformed fibroblasts and lymphoblastoid cell lines (LCLs), respectively; Fig. 3 (d & e)) 189 

 190 

The interaction model attributes fewer immune and fibroblast-specific eQTLs to breast cancer cells in the 191 

TCGA cohort 192 

As outlined above, when the interaction model was used, we found that the majority (49,647; 86.8%) of the eQTLs 193 

identified from bulk tumor expression data could not be attributed to cancer cells. Indeed, 18,595 of these 194 

potentially falsely-attributed eQTLs were also eQTLs, with concordant directionality in one or more of normal 195 

breast (8,536 eQTLs), LCL (4,531 eQTLs) or fibroblast (15,810 eQTLs) tissues in GTEx. However, cancer eQTL 196 

profiles have never been studied in the absence of normal cells and germline genotypes are not typically collected 197 

from cell line donors; hence, there is no established gold standard to compare the sensitivity/specificity of the 198 

conventional and interaction models in real data. However, we can assess whether the interaction model eliminates 199 

associations for likely immune and stromal cell-specific eQTLs. To do this, we used GTEx data to define a set of 200 

eQTLs that were likely to be misattributed; i.e. they were more likely to have arisen in immune and stromal cells, 201 

rather than from breast cancer cells. We defined this set as cis-eQTLs identified in lymphoblastoid cell lines (LCLs) 202 

or transformed fibroblasts in GTEx (FDR < 0.05), which were not even nominally significant (P > 0.05) in GTEx 203 

breast tissue. We reasoned that LCLs and fibroblasts provide a good proxy for tumor-associated immune and 204 

stromal cells, while the regulatory landscape of breast cancer cells is likely to maintain a similarity to breast, the 205 

tissue from which they developed. These criteria yielded a set of 47,196 eQTLs shared between GTEx and TCGA 206 

that had a higher likelihood of being misattributed if identified as cancer eQTLs. Of the 57,189 significant 207 
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associations from the conventional model, 5,440 were among this set defined as likely arising in associated-normal 208 

cells. For 8,833 associations from the interaction model, this number was reduced to 572. This is a significant 209 

reduction in the proportion of these likely misattributed eQTLs (Fig. 4(a & b), P = 8.1 × 10-22 from Fisher’s exact 210 

test, odds ratio 1.51). Thus, consistent with our simulations, there is convincing evidence in real data that the use of 211 

the interaction model reduces the misattribution of eQTLs from tumor-associated normal cells. Furthermore, we 212 

also mapped breast cancer eQTLs using only 10% of the TCGA breast cancer samples that had the highest 213 

estimated cancer cell content (all > 88.6% purity; median = 91.2%, n = 89). As expected, the eQTL effects 214 

estimated from this high purity subset were (globally) much more similar to those estimated by the interaction 215 

model compared to the conventional model (r = 0.447, 95% CI = 0.446-0.448 for the interaction model; r = 0.299, 216 

95% CI = 0.299-0.3 for the conventional model; Supplementary Figure 4). 217 

 218 

eQTLs that are disrupted following tumorigenesis tend to affect genes involved in cancer-relevant 219 

processes 220 

We also expect that genes whose regulation is disrupted following tumorigenesis would be more likely to be 221 

involved in cancer hallmark processes[20,21]. Thus, for all cis-eQTLs represented in GTEx breast tissue and TCGA 222 

breast cancer, we compared the magnitude of the effect of each eQTL between the two datasets (see Methods). For 223 

3,885 of 3,270,829 eQTLs, there was evidence (FDR < 0.05; Supplementary Figure 5; Supplementary Table 6) of a 224 

difference between breast cancer and normal breast tissue. Of these, 3,068 had a larger effect (comparing absolute 225 

values) in normal breast tissue and 797 in cancer. We compiled a list of eQTL-associated genes for which there was 226 

evidence of a difference in this germline mediated regulation of gene expression between cancer and normal cells. 227 

Then, to determine whether these changes were biologically meaningful we assessed these genes for enrichment of 228 

Gene Ontology (GO) biological process (see Methods). Indeed, the most strongly enriched processes included 229 

cancer relevant terms (Fig. 4(c); Supplementary Table 7; Supplementary Figures 6 & 7). The top associations 230 

included DNA repair and cell cycle, key process influencing breast cancer susceptibility and progression. Some of 231 

this dysregulation may be attributable to increased expression heterogeneity or different expression levels among 232 
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these genes in cancer and understanding the mechanisms by which normal regulation of these genes is disrupted 233 

will represent a starting point for future mechanistic studies.  234 

 235 

Validation of TCGA breast cancer findings in the METABRIC dataset 236 

Next, we sought to replicate our results using an additional 997 breast tumor expression profiles and genotypes 237 

generated by the METABRIC consortium[22]. Although this is the most suitable validation cohort available, there 238 

are some limitations to this dataset; for example, the genotypes were generated from (less reliable) tumor tissue (see 239 

Methods), and expression was estimated using a microarray platform, which is likely less sensitive than the RNA-seq 240 

platform used by TCGA. Despite this, the results were similar to TCGA. Using a conventional model 47,354 241 

eQTLs were identified (FDR < 0.05) in METABRIC and this number dropped to 9,235 when the interaction model 242 

was applied, with an overlap of 8,142. Thus, similarly to the TCGA cohort, most tumor eQTLs identified in 243 

METABRIC could not be confidently attributed to cancer cells. Despite the differences between these datasets, the 244 

overlap of eQTLs identified in TCGA and METABRIC was much higher than expected by chance for both the 245 

conventional and interaction models: 39.4% of tumor eQTLs identified (FDR < 0.05) by the conventional model in 246 

TCGA were also significant (FDR < 0.05) when the conventional model was applied to METABRIC (57.4% 247 

reached P < 0.05). 31.5% of cancer eQTLs identified (FDR < 0.05) by the interaction model in TCGA were also 248 

significant (FDR < 0.05) when the interaction model was applied to METABRIC (52.4% reached P < 0.05). A 249 

slight drop in this replication rate for the interaction model was expected given the additional challenge of assigning 250 

eQTLs to a specific cell type, rather than just identifying bulk tissue eQTLs.  251 

 252 

Correctly assigning bulk tumor eQTLs can inform the biological consequences of breast cancer risk 253 

variants identified by GWAS 254 

GWAS have revealed many common genetic variants associated with cancer, including high-profile studies of breast 255 

cancer risk[6,23]. eQTL mapping represents an important early step in characterizing the function of cancer risk 256 

variants, most of which lie outside protein-coding regions[3,24,25]. Thus, we re-analyzed the eQTL profiles of the 257 

variants identified by a recent meta-analysis of GWAS data for breast cancer risk, which identified over 90 loci[6]. 258 
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24 of 565 possible SNP-gene cis-eQTL pairs were significant (FDR < 0.05) when a conventional model was applied 259 

to the TCGA breast tumor expression data (arising from 16 of the 81 risk SNPs that could be mapped to one-or-260 

more genes; see Methods). However, 9 of these eQTLs were not even nominally significant (P > 0.05) when 261 

extrapolated to cancer cells using the interaction model, suggesting these are strong candidates for eQTLs arising 262 

from normal cells. Indeed, all of these 9 associations were significant in at least one of fibroblast, breast or LCLs in 263 

GTEx, in all cases with the same directionality as the eQTL effect estimated from bulk tumor expression using the 264 

conventional model (Fig. 5(a & b); Supplementary Table 8).  265 

 266 

Using the interaction model, another 9 of these 24 SNPs could be confidently assigned to cancer cells (FDR < 0.05; 267 

Supplementary Figure 8).  Five of these were strong cross-tissue eQTLs in GTEx (for ATG10, ATP6AP1L and 268 

RPS23, all associated with rs7707921, and C5orf35 (a.k.a. SETD9) & rs889312; P < 1 × 10-5 in at least 19 tissues 269 

with concordant directionality) and maintain their regulatory capacity in breast cancer cells.  Interestingly, 8 of the 9 270 

eQTLs for these GWAS variants, which could be confidently attributed to breast cancer cells, were also at least 271 

borderline significant in normal breast tissue in GTEx (1.3 × 10-20 < P < 7.4 × 10-2; Supplementary Figure 8; 272 

Supplementary Table 8), suggesting that the effect of genetic variation on gene expression in the baseline normal 273 

tissue state is generally maintained following tumorigenesis. However, there is an exception for the SNP rs204247, 274 

which affected the expression of RANBP9 in breast cancer cells only. RANBP9 is ubiquitously and highly 275 

expressed in human tissues (Supplementary Figure 9) and breast cancer cell lines[26] (Supplementary Figure 10), but 276 

this eQTL is only evident in esophagus mucosa[27] (P = 2 × 10-8) and aorta (P = 3.9 × 10-5) in GTEx 277 

(Supplementary Figure 11). rs204247 tags the promotor of RANBP9, as well as upstream putative enhancers (in 278 

MCF7 breast cancer cells; Supplementary Figure 12). The interaction model indicates that the risk allele (G; per-279 

allele odds ratio = 1.06 (95% CI = 1.03 - 1.1)) increases the expression of RANBP9 in breast cancer cells 280 

(Supplementary Figure 13). Consistent with an oncogenic effect, RANBP9 is overexpressed in a similar proportion 281 

of breast cancer patients as ERBB2—an important driver of breast cancer (13.04% and 14.13% respectively[28]). 282 

Amplifications of RANBP9 occur in breast cancer in vivo (Supplementary Figure 14) and are associated with 283 

increased gene expression (Supplementary Figure 15); although amplifications are less common than for ERBB2, 284 
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suggesting other mechanisms more typically driving its overexpression. Given that RANBP9 is ubiquitously 285 

expressed, this eQTL in cancer cells cannot be explained by the activation of the gene and must reflect some change 286 

in gene regulation. Thus, the cancer cell eQTL analysis suggests RANBP9 may be an important driver of breast 287 

cancer risk and progression and the possible oncogenic effects of this gene could represent an interesting starting 288 

point for functional studies.  289 
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Discussion 290 

We have demonstrated an improved eQTL mapping strategy for cancer, which uses tumor purity estimates and bulk 291 

tumor gene expression data to identify eQTLs that can be confidently attributed to cancer cells. In breast cancer, 292 

the result is that most bulk tumor eQTLs cannot be confidently attributed to cancer cells, once the possibility of 293 

these eQTLs arising from tumor-associated normal cells is appropriately modeled.  294 

 295 

We demonstrated the implications for the interpretation of genetic variants associated with cancer risk. The 296 

mechanism-of-action of most cancer GWAS variants remains unknown. However, if these variants affect gene 297 

expression in tumor-associated normal cells, but not cancer or baseline normal cells, their disease relevance could lie 298 

in modulating how the host—and in particular the cells of the tumor microenvironment—responds to the disease 299 

rather than reflecting functions intrinsic to cancer (or pre-cancer) cells themselves.  Furthermore, we also showed 300 

that one breast cancer risk variant, rs204247, is an eQTL for RANBP9 in breast cancer cells, but not tumor-301 

associated normal cells. If rs204247 affects RANBP9 expression only in breast cancer cells, and this is indeed the 302 

mechanism by which this SNP pre-disposes individuals to cancer, then some earlier aberration, for example, the 303 

activation of a transcription factor, must be a pre-requisite for rs204247’s pathogenic effect. Such an aberration 304 

might occur in pre-cancer cells, with individuals carrying the risk allele of rs204247 then manifesting the oncogenic 305 

effects of increased RANBP9 expression. Interestingly, RANBP9 has been shown to interact with oncogene c-306 

MET, a key regulator in development and cancer stem cells. This interaction has been shown to stimulate RAS 307 

signaling, which is crucial to cancer-relevant processes such as cell differentiation, apoptosis, and motility[29], thus 308 

offering a possible oncogenic mechanism of this GWAS risk allele. Notably, if this hypothesis is correct, rs204247 is 309 

likely affecting druggable pathways. However, this association would not have been apparent by only interrogating 310 

baseline normal tissue(s). 311 

 312 

 313 

In the future, one approach to cancer eQTL mapping will likely be to apply single-cell gene expression methods to 314 

tumors—directly measuring gene expression in cancer and tumor-associated normal cells. For many cancer types 315 
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this should be possible, but currently, single-cell expression datasets are not on a scale required to map eQTL 316 

profiles. For the foreseeable future, sample sizes available for gene expression in bulk tumors will remain orders-of-317 

magnitude larger than single-cell datasets. Furthermore, single-cell methods bring additional biases, for example 318 

isolating single cells can cause marked changes in expression and low starting amounts of RNA leads to high levels 319 

of technical variability[30]. These studies have also encountered difficulty in isolating some cell types from 320 

tumors[18]. Hence, mapping the genetic determinants of gene expression in cancer cells, using expression data from 321 

bulk tumors, will complement any single-cell studies conducted should the technology become sufficiently well 322 

developed and low-cost that it becomes feasible on a suitably large scale. Notably, one immediate benefit of single-323 

cell datasets may be improved signatures to estimate cell type proportions from bulk tumor data. 324 

 325 

Here, we have treated breast tumors as composed of two broad cell types, cancer and normal. Of course, these cell 326 

types can be further subdivided. The normal component is composed of endothelial, epithelial, stromal and immune 327 

cells, which can themselves be subdivided. Cancer cells are also heterogeneous—for example, the presence of stem-328 

like cells. However, differentiating between the eQTL profiles of every cell type would require an interaction term 329 

for each cell type. One would also need to be sufficiently confident that the cell type proportions were being 330 

accurately estimated, which becomes more difficult given more similar expression profiles in less distinct subtypes. 331 

Single-cell gene expression analyses of breast cancer have already shown that cancer and normal cells strongly 332 

cluster in principal component analysis[18], meaning breast cancer cells are transcriptionally much more similar to 333 

each other than they are to tumor-associated normal cells. Thus, our approach provides a mechanism to identify 334 

eQTLs that can be confidently attributed (wholly or in part) to cancer cells from tumor expression data. However, 335 

future research in the development of statistical methods for analysis of tumor expression, or single cell-based 336 

analyses, could benefit from further interrogating these complexities.  337 

 338 

Another assumption that our model makes, is that the presence/absence of normal cells does not itself affect 339 

eQTLs in cancer cells, which could result in normal cells influencing tumor eQTL effect-sizes in a non-linear 340 

fashion. While previous studies have shown that this linearity assumption is reasonable for expression data[19], for 341 
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genes where this is not true, it may be difficult or impossible to separate the eQTL profiles of tumor-resident cancer 342 

and normal cells using any method, including single-cell RNA-seq.  343 

 344 

Additionally, our model, or any such model, cannot prove a non-association. It is incorrect to conclude that tumor 345 

eQTLs that cannot be attributed to cancer cells are definitely not eQTLs in cancer cells, or are certainly eQTLs in 346 

tumor-associated normal cells. The correct interpretation is that there is no statistical evidence for this eQTL in 347 

cancer cells at the current sample size and given factors such as the accuracy with which the data were measured. 348 

Notably, cancer eQTLs identified by the interaction model may still be eQTLs in other tumor-associated normal 349 

cell types and these should not be interpreted as exclusively-cancer eQTLs. 350 

Conclusion 351 

We have elucidated a major shortcoming of current eQTL mapping strategies in cancer, in that eQTLs identified 352 

from tumor expression data could arise from either cancer or tumor-associated normal cells. We have also proposed 353 

a solution, which allows us to recover eQTL profiles for constituent cell types using expression data collected in a 354 

mixture of cell types. We have applied this solution to breast cancer, where we showed that most eQTLs discovered 355 

in tumors cannot be confidently attributed to cancer cells, once the possibility of these signals arising in tumor-356 

associated normal cells is appropriately modeled. Overall, this work will improve the understanding of gene 357 

regulation in cancer, including studying inherited cancer risk variants, disease development, and drug response. This 358 

study also provides improved theoretical groundwork for deconvolution of eQTLs effects in other mixtures of cell 359 

types, including normal human tissues.  360 
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Methods 361 

Simulating bulk tumor expression data as a product of underlying “cancer” and “normal” expression data 362 

 363 

We simulated cancer and normal gene expression datasets for 600 genes in 1000 samples—the approximate number 364 

of patients in the TCGA breast cancer dataset. Cancer and normal expression datasets were then combined to 365 

create a bulk tumor expression dataset, with each gene combined using a weighted mean based on purity estimates 366 

for the sample. Combining expression datasets in this way assumes a linear relationship between expression levels in 367 

the pure and mixed samples, which has previously been shown to be reasonable[19]. For all simulated SNPs, the 368 

two alleles were simulated as occurring at an equal frequency (i.e. 500 homozygotes and 250 of each heterozygous 369 

group, one of which was arbitrarily designated the minor allele). Simulated eQTL effect sizes (the fold-change in 370 

gene expression with each copy of the minor allele) were drawn from a uniform distribution, which ranged from -.5 371 

to .5, in steps of 0.01; this range was chosen as it covers the approximate range of the effect sizes observed in the 372 

TCGA breast cancer data. Before adding eQTL effects, the expression level of each allele was randomly sampled 373 

from a normal distribution of mean 1 and standard deviation 1 (TCGA expression data were also mapped to a 374 

normal distribution of standard deviation 1 (see below)). The 600 simulated genes were split into 6 groups of 100, 375 

each of which was treated differently, to represent the likely different types of scenarios that may arise in vivo: In 376 

Group 1, eQTL effects were introduced in both cancer and normal expression datasets, but the effects were 377 

randomly shuffled across genes, representing a scenario where there is an independent eQTL effect on each gene in 378 

both cancer and normal tissue. In Group 2, eQTL effects were only introduced in the cancer expression data. In 379 

Group 3 eQTL effects were only introduced in the normal expression data. In Group 4 eQTL effects were not 380 

introduced in either. For genes in Group 5, the same eQTL effect was introduced in both expression datasets. In 381 

Group 6, eQTL effects were simulated to be similar in cancer and normal tissues, by simulating identical eQTLs 382 

then adding randomly generated noise in the normal expression data.  383 

 384 

Simulated purity estimates were derived from 1,000 randomly chosen consensus purity estimates[15] in real TCGA 385 

breast cancer samples. When recovering the cancer eQTLs using the interaction model, noise was added to the 386 
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purity estimates, to simulate the fact that in real data these estimates will be imprecise: For each sample, noise was 387 

added by randomly sampling a normal distribution with mean 0 and standard deviation 0.1; the resulting values were 388 

then quantile normalized to the original purity estimates, thus preserving the distribution of the data precisely 389 

(Supplementary Figure 16). For Fig. 1(e), the standard deviation of the noise generating normal distribution was 390 

varied from 0.01 to 1.5 in steps of 0.025, thus simulating the effects of varying levels of error in the tumor purity 391 

estimates; the resulting vector was quantile normalized to the original vector and the Pearson’s correlation shown 392 

on the x-axis of Fig. 1(e) were calculated between this noise-added vector and the original vector. All simulations 393 

were performed in R and code to reproduce them is available in our supplementary materials. 394 

 395 

Data processing and eQTL mapping in TCGA breast cancer samples 396 

 397 

RNA-Seq data for TCGA breast cancer samples were obtained from FireBrowse and filtered to only include 398 

primary tumor expression data. These data had been summarized to gene level transcript per million (TPM) 399 

estimates using the RSEM[31] software. Corresponding genotype calls, which had been generated using Affymetrix 400 

Genome-Wide Human SNP Array 6.0 on blood samples, were obtained from the Genomics Data Commons 401 

(GDC)[32]— permission was obtained to download these data. Processed methylation data and copy number data 402 

were also obtained from FireBrowse; gene level copy number was estimated as previously described [33]. PAM50 403 

subtypes were obtained from the supplementary materials of Netanely et al.[34]. Gene expression and genotype data 404 

were pre-processed and filtered primarily using the guidelines of GTEx: Expression data were quantile normalized. 405 

The expression of each gene was then mapped to a standard normal distribution, with mean 0 and standard 406 

deviation of 1. Genes not expressed in at least 75% of samples were removed. SNPs with a minor allele frequency 407 

(MAF) of less than 5% were removed. Males, as well as Y chromosome SNPs and genes, were removed. We 408 

estimated ancestry using the first 3 principal component of the genotype matrix. To account for expression 409 

heterogeneity and unmeasured confounders, we also estimated 35 PEER factors[35]. The filtering steps yielded 410 

15,574 genes and 701,700 SNPs in 894 breast cancer patients. For cis-eQTL mapping, SNPs were mapped to all 411 

genes within 500 kilobases. 3,602,220 possible cis-eQTL associations were tested using the conventional approach of 412 
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regressing gene expression level against genotype, using the following linear regression model (fit for each SNP-413 

gene pair): 414 

   415 

[EQ1] 416 

Where y is the gene expression value; x is the genotype encoded as 0, 1 or 2; a is the 3 genotype principal 417 

components used to estimate ancestry; b is the 35 PEER factors and ɛ is the residual error term. For each model, a 418 

P-value for the eQTL was calculated by a t-test on the β1 term.  419 

 420 

Identifying cancer eQTLs using a linear model with an interaction term (the interaction model) 421 

 422 

The model to identify cancer eQTLs is similar to the model described above but also includes tumor purity, 423 

calculated by the CPE[15] method, as a covariate and a term for the interaction of tumor purity and genotype. The 424 

model is derived in “Supplementary Information – Model Derivation”. The model is as follows: 425 

 426 
 427 

[EQ2] 428 

 429 

The terms are as in EQ1, but with the addition of c, which represents the CPE estimate of tumor purity (0 < c < 1) 430 

and c × x the interaction of tumor purity and genotype. Critically, tumor purity is encoded such that 0 represents 431 

100% cancer cells and 1 represents 100% normal cells, meaning that the β1 term will have extrapolated an effect size 432 

at 100% cancer cells. As above, the P-value for each eQTL was calculated by a t-test on the β1 term. A similar model 433 

to EQ2 was proposed by Westra et al.[17], who successfully used it to test for eQTLs mediated by cell type 434 

proportions by testing an interaction term (β5 in EQ2). Our application to cancer relies on the following 435 

methodological innovations: In Westra et al. PC1 of their gene expression data was used a proxy for cell type 436 

proportion (term c in EQ2, but not bounded by 0 and 1); here, we use actual estimates of the cell type proportion, 437 

bounded by 0 and 1—in this case the proportion of tumor-associated normal cells. The consequence of this is that 438 

the main effect β1 now represents an extrapolated estimate of the eQTL effect size at 0% tumor-associated normal 439 

cells, equivalent to 100% cancer cells. Thus, we recover cancer eQTLs by testing this main effect, rather than the 440 
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interaction term, which is actually a measure of how the magnitude of an eQTL differs between the two cell types 441 

(as previously described in Westra et al.). Note 1: We also fit these models with gene copy number and methylation 442 

status included as a covariate (for Supplementary Figure 3 and Supplementary Tables 4 & 5). Note 2: in EQ2 bold 443 

typeface represents vectors and the 35 PEER factors were re-estimated accounting for the tumor purity covariate 444 

not included in EQ1. 445 

 446 

Comparing eQTL profiles between breast cancer cells (TCGA) and normal breast tissue (GTEx) 447 

 448 

GTEx V6 summary data, including effect sizes and associated standard errors for each SNP-gene pair, were 449 

obtained from the GTEx Portal. Cancer eQTL effects (β1 in EQ2) were compared for a given SNP-gene pair 450 

between TCGA and GTEx using the effect size and associated standard error in each dataset. A Z-score for the 451 

difference between these effects was calculated as follows[36,37]: 452 

 453 
[EQ3] 454 

 455 

The SE terms refer to the standard error estimates associated with the eQTL effect (βTCGA and βGTEx) in TCGA and 456 

GTEx respectively. P-values were calculated from these Z-scores using the probability density function for a normal 457 

distribution. 458 

 459 

Gene set analysis of differential eQTLs between TCGA and GTEx using GOseq 460 

 461 

Gene set analysis, which was used to identify differentially enriched biological processes between GTEx and TCGA 462 

eQTLs, was performed using the GOseq[38] package in R. We considered a gene differentially regulated if it had at 463 

least one associated eQTL that was significantly different (calculated using EQ3, FDR < 0.05) between TCGA 464 

breast cancer and GTEx breast tissue. All genes expressed in both TCGA breast cancer and GTEx normal breast 465 

tissue were used as the background list. The GOseq approach allowed us to use a six-knot monotonic spline 466 

function to control for the increased probability of a gene appearing in the foreground list (i.e. differentially 467 

regulated), given an increased number of associated SNPs. GOseq has previously been applied to control for similar 468 

confounders in RNA-seq[38] and methylation[39] analysis. 469 
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Imputation of TCGA SNP data 470 

 471 

We used the Michigan Imputation Sever v1.0.0[40] to impute genotypes for TCGA patients for the breast cancer 472 

GWAS risk variants that were not directly genotyped on the Affymetrix SNP 6.0 array used by TCGA. We used the 473 

Haplotype Reference Consortium (HRC version r1.1 2016)[41] reference panel. In addition to initial genotype 474 

calling and quality control (QC) done by TCGA, we QC’ed germline genotypes further by removing SNPs with 475 

MAF < 0.05, SNPs with missing genotype call rate >0.02, patients with missing call rate >0.02 and Hardy-Weinberg 476 

Equilibrium (HWE) P < 1 × 10-6 using Plink[42]. The input data were further validated and QC’ed by the server, 477 

followed by pre-phasing with Eagle v2.3[41] and imputation with Minimac3[43]. 478 

 479 

METABRIC breast cancer data 480 

 481 

The METABRIC data were obtained with permission from the European Genotype Archive. Raw Affymetrix 482 

Genome-Wide Human SNP Array 6.0 CEL files were obtained from archive EGAD00010000164. We called 483 

genotypes from these files using the Birdseed v2 algorithm under the default configuration implemented in 484 

Affymetrix Genotyping Console. Notably, these data were measured from tumor tissue and are thus less reliable 485 

than genotypes called from blood (as in TCGA); however, the METABRIC authors have previously used these 486 

genotypes for eQTL mapping, and demonstrated that the results were reasonably consistent with those obtained 487 

from genotypes generated from matched normal tissue[22]. We filtered SNPs with >.05 missing genotypes, MAF 488 

<0.05 and only retained SNPs also included in the final TCGA analysis. The METABRIC “discovery” (n = 997) 489 

normalized gene expression data were obtained from archive EGAD00010000210. We retained genes also included 490 

in the TCGA analysis and mapped each gene to a normal distribution with mean 0 and standard deviation 1. 491 

Covariates for expression heterogeneity and population structure were estimated and SNPs were mapped to genes 492 

as in the TCGA analysis above. Note that the PEER algorithm did not converge on our METABRIC expression 493 

dataset, thus we estimated expression heterogeneity using principal component analysis, applied to an expression 494 

dataset where other model covariates (population structure, purity) had been regressed out. CPE tumor purity 495 

estimates cannot be created in METABRIC as the required data types are not all available in this cohort; thus, we 496 

approximated CPE tumor purity in METABRIC by fitting a lasso regression model to CPE tumor purity estimates 497 
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and gene expression in the TCGA cohort, then applied this model to METABRIC expression data; for consistency 498 

we also mapped these estimates to the same quantiles of the TCGA CPE data. Similarly to TCGA, eQTLs were 499 

then mapped using the “conventional” and “interaction” models in EQ1 & EQ2. 500 

 501 

Figures and data analysis  502 

 503 

All data analysis was performed using R. Figures were created using the base plotting functions or the ggplot2 504 

package. Because of the non-standard eQTL mapping pipeline, conventional eQTL mapping tools were not used, 505 

thus the models were fit using the lm() function in R. All false discovery rates were estimated using the Benjamini 506 

and Hochberg method. Most of the data analysis was performed using the Bionimbus Protected Data Cloud[44].   507 
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Figure Legends 508 

Figure 1: The interaction model can accurately attribute eQTLs to cancer using bulk tumor gene expression in 509 

simulated data. 510 
  511 

(a) Scatterplot of the eQTL effect size recovered from a conventional analysis of bulk tumor expression data (y-axis) 512 

against the known normal eQTL effect size created by simulation (x-axis) for the 100 eQTLs that were simulated to 513 

have an effect in normal cells, but not cancer. Points are colored red if the conventional model identified these as 514 

significant at FDR < 0.05. The eQTL effects recovered by the conventional model (y-axis) are heavily influenced by 515 

the eQTL effects in tumor-associated normal cells. 516 

(b) Scatterplot of the estimated cancer eQTL effect size recovered by the interaction model (y-axis) plotted against the 517 

known normal eQTL effect size created by simulation (x-axis) for the same 100 eQTLs as Fig. 1(a) that were 518 

simulated to have an effect in normal cells, but not cancer. Points are colored red if the interaction model identified 519 

these as significant at FDR < 0.05. The recovered eQTL effects (y-axis values) are no longer affected by eQTLs in 520 

associated normal cells and in general, have not been misattributed to cancer. 521 

(c) Strip chart of a simulated eQTL in tumor expression data, where the effect size in cancer cells was simulated to be 0 522 

(i.e. no eQTL) and the effect size in tumor-associated normal cells was simulated to be 0.48. The conventional model 523 

misattributed this eQTL to cancer. 524 

(d) The same eQTL as Fig. 1(c), with the effect size calculated in five bins (black points), grouped by the proportion of 525 

tumor-associated normal cells. The effect size decreases with increasing proportions of cancer cells. The extrapolated 526 

effect size in cancer cells, estimated by the interaction model, is shown in red. The effect size recovered from the bulk 527 

tumor, obtained by the conventional model, is shown in green. Whiskers represent 95% confidence intervals. The 528 

interaction model has not misattributed this eQTL to cancer cells. 529 

(e) The change in the sensitivity, specificity, and FDR achieved by the interaction model as the level of noise with which 530 

the proportion of cancer cells is measured changes. The “Pearson correlation” on the x-axis is the correlation between 531 

the known simulated proportions and those “measured” as more noise is added (see Methods). The dashed red line is 532 

at 0.05, the rate at which the FDR was controlled for these tests using the Benjamini and Hochberg method. The 533 

FDR is well controlled by the interaction model, even when the correlation between the real and measured (noise 534 

added) proportions approaches 0.5. Note: if the cancer cell proportions are completely randomized, the true FDR is 535 

22% (at the 5% threshold). Again, when calculating these true FDRs, the known simulated set of cancer eQTLs were 536 

treated as the ground truth. 537 

 538 

Figure 2:  Estimates of tumor purity in TCGA samples vary substantially with an between cancer types. 539 
 540 

(a) Boxplot of tumor purity estimates from Consensus Purity Estimation (CPE)[15] method for 21 solid tumor types in 541 

TCGA. Breast cancer is highlighted in red. 542 

(b) Histogram (blue) and density plot (red) of variability in tumor purity for the TCGA breast cancer samples (n = 1,063), 543 

estimated using CPE.  544 

(c) Histogram of P-values for the association of expression and tumor purity; 76.5% of genes’ expression were 545 

significantly correlated with tumor purity (FDR < 0.05). Corresponding Pearson’s correlation values of gene 546 

expression and CPE estimates of tumor purity in TCGA breast tumors are shown in the inset. The area outside the 547 

red dashed lines represents significant correlations (FDR < 0.05). 548 

 549 

Figure 3: Using the interaction model to identify cancer eQTL profiles from TCGA breast bulk tumor gene 550 

expression data 551 

a) QQ-plot of P-values for cis-eQTL associations in TCGA breast cancer samples, recovered using a conventional 552 

eQTL analysis of bulk tumor gene expression data (green) when eQTLs are attributed to cancer using the 553 

interaction model (blue), and when tumor purity estimates in the interaction model are randomly permuted 554 

(orange). Observed P-values (y-axis) are plotted against the uniform distribution of P-values (x-axis). 555 
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b) A strip chart showing the association of rs6458012 and the expression MDGA1 in TCGA breast cancer tumors, 556 

with the association identified by the conventional model shown as a red line. 557 

c) Plot deconstructing the association between rs6458012 and MDGA1. Points are effect sizes and whiskers 558 

represent 95% confidence intervals. The association from the conventional model applied to TCGA breast cancer 559 

bulk tumors is shown in green (corresponding to Fig. 3(b)). Shown in black are the effect sizes and confidence 560 

intervals for the association of rs6458012 and MDGA1 when TCGA breast samples are divided into five equally 561 

sized bins, based on each sample’s estimated proportion of cancer cells. The estimated effect size decreases as the 562 

proportion of cancer cells decreases. The extrapolated effect size in cancer cells, estimated by the interaction 563 

model, is shown in red; this association is not statistically significant, illustrated by the 95% confidence interval 564 

overlapping the grey dashed line, which represents an effect size of 0. This suggests the association recovered by 565 

the conventional model did not arise in cancer cells. 566 

d) A strip chart showing the association of rs6458012 and the expression MDGA1 in fibroblasts from GTEx. These 567 

are associated (P = 6.3 × 10-13) with the same directionality as identified in TCGA breast tumors (Fig. 3(b)). 568 

e) A strip chart showing the association of rs6458012 and the expression MDGA1 in LCLs from GTEx. These are 569 

associated (P = 1.4 × 10-10) with the same directionality as identified in TCGA breast tumors (Fig. 3(b)). 570 

 571 

Figure 4: Classification and annotations for eQTLs identified using a conventional or an interaction model. 572 

 573 

(a) 2 × 2 contingency table showing the number of total eQTLs identified using either the conventional (tumor) 574 

model, or the interaction (cancer) model, which were also significant (FDR < 0.05) in GTEx LCL or fibroblast data, 575 

but not GTEx breast data (P > 0.05). 576 

(b) The proportions of eQTLs identified by the conventional (bulk tumor) or interaction (cancer) model that are likely 577 

to be derived from normal cells, based on Fig. 4(a). 578 

(c) Bar graph of the lowest 8 P-values of 3,679 GO biological processes tested; P-values are for the enrichment of 579 

genes whose eQTL profile changes between TCGA breast cancer (identified by the interaction model) and normal 580 

breast tissue in GTEx. 581 

 582 

Figure 5: Conventional model eQTLs for breast cancer risk GWAS significant genetic variants, which cannot be 583 

attributed to cancer cells by the interaction model, are all statistically significant with concordant directionality in 584 

GTEx LCLs, breast or fibroblasts. 585 
 586 

(a) Scatterplot of eQTLs identified for breast cancer risk variants from a meta-analysis of GWAS data[6]. -log10 P-values 587 

for significant eQTLs (FDR < 0.05) using a conventional model in TCGA breast cancer tumors are shown on the x-588 

axis. -log10 P-values from the interaction model for these same eQTLs are shown on the y-axis. Significance 589 

thresholds of 0.05 are shown for the interaction model (green and purple dashed lines). 15 of these 24 eQTLs were no 590 

longer significant (FDR > 0.05) when the possibility of these eQTLs arising from tumor-associated normal cells is 591 

modeled. 592 

(b) P-values and effect sizes for the nine eQTLs in Fig.5(a) that were no longer even nominally significant (P > 0.05) 593 

when the interaction model was used. For each eQTL, the effect size is represented by the red-blue divergent color 594 

scale and the P-value by the size of the point; these are shown for TCGA bulk breast tumor (i.e. the conventional 595 

model) and transformed fibroblast, breast tissue and LCLs from GTEx. All of these eQTLs are evident in at least one 596 

of these GTEx tissues, with 100% concordant direction of effect as identified from TCGA breast bulk tumor 597 

expression using the conventional model. Points are shown for associations with P < 0.05. 598 

 599 

 600 

  601 
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