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ABSTRACT  

The patient-specific biomechanical analysis of the aorta demands the in vivo mechanical 

properties of individual patients. Current inverse approaches have shown the feasibility of 

estimating the nonlinear, anisotropic material parameters from in vivo image data using certain 

optimization schemes. However, since such inverse methods are dependent on iterative nonlinear 

optimization, these methods are highly computation-intensive, which may take weeks to complete 

for only a single patient, inhibiting rapid feedback for clinical use. Recently, machine learning 

(ML) techniques have led to revolutionary breakthroughs in many applications. A potential 

paradigm-changing solution to the bottleneck associated with patient-specific computational 

modeling is to incorporate ML algorithms to expedite the procedure of in vivo material parameter 

identification. In this paper, we developed a ML-based approach to identify the material 

parameters from three-dimensional aorta geometries obtained at two different blood pressure 

levels, namely systolic and diastolic geometries. The nonlinear relationship between the two 

loaded shapes and the constitutive parameters are established by a ML-model, which was trained 

and tested using finite element (FE) simulation datasets. Cross-validation was used to adjust the 

ML-model structure on a training/validation dataset. The accuracy of the ML-model was examined 

using a testing dataset. 
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1. INTRODUCTION 

With advances in medical imaging modalities and computation power, numerical 

simulations of the cardiovascular structure such as the aorta, which utilizes the patient-specific 

three-dimensional (3D) geometry, have been increasingly popular (Taylor and Figueroa, 2009). 

Yet, the difficulty in obtaining patient-specific elastic properties of the aortic wall from in vivo 

images has been one of the biggest obstacles in front of patient-specific biomechanical analysis. 

This has motivated recent efforts to develop inverse methods for estimating the in vivo material 

properties of the aortic wall on a patient-specific basis. In these methods, deformations and 

boundary conditions are used to inversely estimate the material parameters of a particular 

constitutive model. However, the complex 3D shapes and nonlinear and anisotropic constitutive 

behavior make this task challenging. 

To avoid computational complexity, some studies suggested the use of simplifications in 

material models and/or geometries. For example, (Liu and Shi, 2009), (Zhang et al., 2017) and 

(Franquet et al., 2013) identified linear elastic material parameters. By assuming a perfect 

cylindrical shape of the arteries, (Schulze-Bauer and Holzapfel, 2003) identified Fung-type 

material parameters, (Masson et al., 2011; Masson et al., 2008; Olsson and Klarbring, 2006; 

Stålhand, 2009) estimated material parameters using the constitutive model proposed in (Holzapfel 

et al., 2000), and (Smoljkić et al., 2015) estimated the Gasser–Ogden-Holzapfel (GOH) model 

(Gasser et al., 2006) parameters. (Liu et al., 2012) also determined the modified Moony-Rivlin 

parameters of the carotid artery from 2D slices reconstructed from MRI. 

 To fully exploit the 3D geometries reconstructed from medical image data, the current in 

vivo material parameter estimation methods largely rely on optimization schemes. In these 
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optimization-based inverse methods, an objective/error function is built upon the difference 

between predicted and image-measured physical fields (e.g. stress/strain/displacement), and then 

the constitutive parameters are iteratively adjusted to ensure the objective function is minimized. 

Specifically, with an initial guess of the constitutive parameters, (1) the unloaded configuration is 

recovered, (2) the physical field in the loaded state is computed by applying in vivo loading and 

boundary conditions, and (3) the constitutive parameters are iteratively fine-tuned by a nonlinear 

optimization algorithm until the predicted physical field matches with the image-measured 

physical field. This optimization process yields the optimal constitutive parameters. Using finite 

element (FE) updating schemes, (Wittek et al., 2016; Wittek et al., 2013) developed two methods 

to determine GOH material parameters of the human abdominal aorta from in vivo 4D ultrasound 

data. However, numerous iterations were needed to reach the optimal solution, resulting in long 

computing time of 1~2 weeks. Such high computational cost could inhibit the practical use of these 

methods, particularly in a clinical setting requiring rapid feedback to clinicians. To this end, our 

group has recently proposed two optimization-based methods to expedite the estimation process. 

The multi-resolution direct search (MRDS) approach (Liu et al., 2018) was designed to improve 

the searching algorithm, and the computation time was reduced to 1~2 days with similar CPU and 

memory. In the stress-based inverse approach (Liu et al., 2017), the computationally-expensive FE 

simulations were avoided by building the objective function upon stresses, and the optimization 

was completed in approximately 2 hours. However, the optimization-based methods are inherently 

limited by their iterative nature, and any further improvement of speed becomes difficult. 

Recently, machine learning (ML) techniques, particularly deep learning (DL) (LeCun et 

al., 2015; Litjens et al., 2017; Shen et al., 2017), have garnered enormous attention in the field of 

artificial intelligence, leading to revolutionary breakthroughs in many applications (Hannun et al., 
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2014; He et al., 2015, 2016; Kokkinos, 2016; Krizhevsky et al., 2012; LeCun et al., 2015; Taigman 

et al., 2014; Wu et al., 2016). ML-models are capable of establishing complex and nonlinear 

relationship between inputs and outputs. A potential paradigm-changing solution to the bottleneck 

associated with patient-specific computational modeling is to incorporate ML algorithms to 

expedite the procedure of in vivo material parameter identification. By designing and training a 

ML-model on a large dataset, it can automatically produce the required outputs (constitutive 

parameters) directly from necessary inputs (multi-phase aorta shapes), without the need for costly 

iterative schemes. Once trained, the ML-model can instantaneously predict the material 

parameters. 

  

Figure 1. The proposed machine learning (ML) approach. 

In this paper, we developed a ML-based approach to identify the material parameters of 

the GOH constitutive model. As depicted in Figure 1, the inputs to this ML-model are aorta 

geometries at two distinct blood pressure levels, namely systolic and diastolic geometries, which 

were also used by our previous optimization-based inverse approaches. The nonlinear relationship 

between the two loaded shapes and the constitutive parameters are established by a ML-model, 

consisting of an unsupervised shape encoding module (principal component analysis) and a 
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supervised nonlinear mapping module (neural network). The datasets for training, validation and 

testing were generated from FE simulations. Cross-validation was used to adjust the neural 

network structure. The accuracy of the ML-model was examined using a testing dataset. 

2. METHODS 

2.1 Constitutive model 

A strain invariant-based fiber reinforced hyperelastic formulation based on the work of 

(Gasser et al., 2006) was used to model the constitutive relations of the aortic wall. The 

deformation gradient 𝐅𝐅 can be multiplicatively decomposed into  

𝐅𝐅 = (J1/3𝐈𝐈)𝐅𝐅�                                                             (1) 

where J is the determinant of 𝐅𝐅, and 𝐈𝐈 is the identity tensor. 𝐅𝐅� represents the volume-preserving 

(isochoric) part of the deformation gradient, while (J1/3𝐈𝐈) represents the volumetric part. The right 

Cauchy-Green tensor 𝑪𝑪 and its isochoric counterpart 𝐂𝐂� is defined as  

𝑪𝑪 = 𝐅𝐅𝑇𝑇𝐅𝐅,             𝐂𝐂� = 𝐅𝐅�𝑇𝑇𝐅𝐅�                                                     (2) 

The isochoric strain invariants 𝑰𝑰�1 and 𝑰𝑰�4𝑖𝑖 (𝑖𝑖 = 1,2) are defined using 

𝐼𝐼1̅ = 𝑡𝑡𝑡𝑡(𝐂𝐂�),          𝐼𝐼4̅𝑖𝑖 = 𝐚𝐚0𝑖𝑖 ∙ (𝐂𝐂�𝐚𝐚0𝑖𝑖)                                          (3)  

where vectors 𝐚𝐚01 = (cos 𝜃𝜃 , sin 𝜃𝜃 , 0) and 𝐚𝐚02 = (cos 𝜃𝜃 ,− sin 𝜃𝜃 , 0) characterize the two mean 

fiber directions in the reference configuration, they are defined in the circumferential direction. 

Thus, 𝑰𝑰�4𝑖𝑖 (𝑖𝑖 = 1,2) are equal to squares of the stretches in these directions. The total strain energy 

function Ψ can be additively split into isochoric isotropic Ψ���𝑖𝑖𝑖𝑖𝑖𝑖, isochoric anisotropic Ψ���𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 

volumetric Ψ𝑣𝑣𝑣𝑣𝑣𝑣 parts, according to 
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Ψ(𝐂𝐂, 𝐚𝐚0𝑖𝑖)  = Ψ���𝑖𝑖𝑖𝑖𝑖𝑖(𝐂𝐂�) + Ψ���𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐂𝐂�, 𝐚𝐚0𝑖𝑖)  + Ψ𝑣𝑣𝑣𝑣𝑣𝑣(J)                                 (4) 

The isotropic matrix material is characterized by the Neo-Hookean strain energy 

Ψ���𝑖𝑖𝑖𝑖𝑖𝑖(𝐂𝐂�) = 𝐶𝐶10(𝐼𝐼1̅ − 3)                                                (5) 

where 𝐶𝐶10 is a material parameter to describe the matrix material. The isochoric anisotropic term 

is given by 

Ψ���𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐂𝐂�, 𝐚𝐚0𝑖𝑖) = 𝑘𝑘1
2𝑘𝑘2

∑ [𝑒𝑒𝑒𝑒𝑒𝑒{𝑘𝑘2[𝜅𝜅𝐼𝐼1̅ + (1 − 3𝜅𝜅)𝐼𝐼4̅𝑖𝑖 − 1]2} − 1]2
𝑖𝑖=1                   (6) 

Where 𝑘𝑘1 is a positive material parameter that has the same unit of stress, while 𝑘𝑘2 is a unitless 

material parameter. 𝜅𝜅 ∈ (0, 1/3) describes the dispersion of fibers. Finally, the volumetric term 

is defined by 

Ψ𝑣𝑣𝑣𝑣𝑣𝑣(J) = 1
𝐷𝐷

[𝐽𝐽
2−1
2

− ln 𝐽𝐽]                                                (7) 

Where 𝐷𝐷 is a constant that enforces material incompressibility and it is fixed to 5 × 10−4. Thus, 

the aortic wall tissue is characterized by five constitute parameters {𝐶𝐶10, 𝑘𝑘1, 𝑘𝑘2, 𝜅𝜅, 𝜃𝜃}. The task for 

the ML-model is to identify the five constitute parameters given the two-phase aorta shapes. 

2.2 Generating the training/validation dataset and the testing dataset 

 The proposed ML model will establish a mapping between the inputs (geometries) to the 

outputs (material parameters) based on example input-output pairs. Each input-output pair consists 

of two geometries and the corresponding material parameters. To fine-tune the ML-model for 

optimal performance, cross-validation is used in the training phase, where the input-output pairs 

are partitioned into two subsets, called training set and validation set. The ML-model is trained on 
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the training set, and its performance is assessed using the validation set. After the training phase, 

the accuracy of the ML-model is evaluated on a new set of input-output pairs, i.e., the testing set. 

 In this approach, the datasets are gathered from FE simulations. Using statistical modeling 

methods, representative material parameters are generated from 65 sets of experimentally-derived 

material parameters, and representative virtual aorta geometries at one physiological phase (systole) 

are generated from 3D CT images of 25 real patients. The diastolic aorta geometries are determined 

from FE simulations using the virtual systolic geometries and the representative material 

parameters. Finally, the training/validation dataset and the testing dataset consist of 15366 and 225 

input-output pairs, respectively. The detailed procedures to generate the datasets are presented in 

the following subsections. 

2.2.1 Sampling the material parameter space 

 In previous studies (Martin et al., 2013; Pham et al., 2013), seven-protocol biaxial tension 

experiments were carried out on a total of 65 aneurysmal patients, and five material parameters of 

the GOH model were determined by fitting the experimentally-obtained stress-strain curves. The 

material of a patient was represented by a vector, 𝒚𝒚(𝑖𝑖) (𝑖𝑖 = 1, 2, … , 65), with its five components 

corresponding to five GOH parameters, and the set 𝒀𝒀 contained all the 65 vectors. These vectors 

are visualized in the material parameter space in Figure 2, which shows that these experimentally-

derived parameters are highly clustered in certain regions. To uniformly sample the material 

parameter space, a convex hull of the experimentally-derived parameters was built. The convex 

hull is essentially a set comprised of convex combinations of all vectors of 𝒀𝒀, 

   𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝒀𝒀) = �𝒚𝒚 = ∑ 𝑎𝑎𝑖𝑖𝒚𝒚(𝑖𝑖)65
𝑖𝑖=1 : 𝒚𝒚(𝑖𝑖) ∈ 𝒀𝒀, 𝑖𝑖 = 1, 2, … , 65, 𝑎𝑎𝑖𝑖 ≥ 0∀𝑖𝑖, ∑ 𝑎𝑎𝑖𝑖65

𝑖𝑖=1 = 1�            (8) 

where 𝒚𝒚 is a vector in the convex hull, and 𝑎𝑎𝑖𝑖 (𝑖𝑖 = 1, 2, … , 65)  are nonnegative coefficients that 

sum up to 1. Next, samples were draw from a uniform distribution inside the convex hull using the 
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Gibbs sampler (Geman and Geman, 1984). 125 and 15 samples were generated for the training/ 

validation set and the testing set, respectively, as shown in Figure 2.  

 

Figure 2. Datasets projected in 3D material parameter subspaces. The convex hull is plotted in the 

3D subspaces for illustrative purpose. 

2.2.2 Obtaining the virtual aorta geometries at the systolic phase 

 From a previous study (Martin et al., 2015), 3D CT images of 25 real patients who 

underwent elective repair were collected from Yale-New Haven Hospital. A statistical shape model 

(SSM) was built from the 25 real aorta shapes at the systolic phase in a subsequent study (Liang 

et al., 2017). The systolic geometries can be represented by a set of SSM parameters {𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3}. 

Please refer to our previous paper (Liang et al., 2017) for further details.  

 For the training and validation dataset, a total number of 125 virtual aorta shapes at systolic 

phase were obtained by sampling the SSM parameter space with equally spaced points in the range 

of -2 to 2 , i.e., within 2 standard deviations of the mean shape, as shown in Figure 3. Similarly, 

(a)

(d)

(b)

(e)

(c)

(f)
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for the testing dataset, the SSM parameter space was sampled within 1.5 standard deviations of 

the mean shape. Hence, 15 systolic shapes were obtained for the testing dataset. The resulting 

samples are plotted in the SSM parameter space in Figure 3. 

 

Figure 3. Sampling the SSM parameter spaces.  

2.2.3 Generating the virtual aorta geometries at the diastolic phase using FE 

simulations 

The virtual aorta geometries obtained from the SSM parameter space were at the systolic 

phase, which should be in equilibrium with the systolic physiological load. Therefore, the 

generalized pre-stressing algorithm (GPA) (Weisbecker et al., 2014) was utilized to incorporate 

the pre-stress induced by the systolic pressure (16 kPa). In the GPA algorithm, the total 

deformation gradient 𝑭𝑭𝑡𝑡 is stored as a history variable for each integration point. The 𝑭𝑭𝑡𝑡 is updated 

based on the incremental deformation gradient ∆𝑭𝑭 resulting from the prescribed loading and 

boundary conditions.  
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                                                                       𝑭𝑭𝑡𝑡+1 = ∆𝑭𝑭𝑭𝑭𝑡𝑡                                                        (9) 

The incremental deformation gradient ∆𝑭𝑭 resulting from the systolic pressure is iteratively 

applied to the virtual systolic geometries and stored in 𝑭𝑭𝑡𝑡. However, as illustrated in the original 

paper (Weisbecker et al., 2014), the resulted equilibrium configuration slightly deviate from the 

original configuration, depending on the step size. The systolic geometries at the equilibrium 

configurations were used by the ML-model in the subsequent sections. Next, using a set of material 

parameters, the virtual aorta geometries at the diastolic phase were determined by depressurizing 

the systolic geometries to the diastolic phase (10 kPa).  

For the training and validation set, given one of the 125 shapes at the systolic phase and 

one of the 125 sets of material parameters, the virtual aorta geometry at the diastolic phase was 

determined through FE simulation with GPA. As shown in Figure 4, if the FE simulation 

converges, the input-output pair (systolic and diastolic geometries and a set of material parameters) 

is collected for training/validation. As a result, 15366 sets of geometries with known material 

parameters were obtained. Similarly for the testing set, 225 input-output pairs were generated from 

15 systolic geometries and 15 sets of material parameters.  

The GPA algorithm was implemented in ABAQUS user subroutine UMAT. In the FE 

simulations, C3D8H solid elements were used, and pressure was applied uniformly to the inner 

surface of the aorta models. The boundary nodes of the aorta models, i.e. the proximal and distal 

ends of the model, were only allowed to move in the radial direction defined by the local coordinate 

system.  
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Figure 4. The procedure to generate aorta geometries at systole and diastole. The number in the 

parenthesis indicates the testing dataset. 

2.3 The machine learning model 

The machine learning model consists of an unsupervised shape encoding module and a 

nonlinear mapping module. The systolic and diastolic shapes are encoded by shape codes. The 

nonlinear mapping between the shape codes and the material parameters is established by a neural 

network.  

2.3.1 Shape encoding 

 3D geometries are usually represented by polygon meshes. A shape corresponds to a long 

vector 𝑿𝑿 of nodal coordinates. However, directly linking the shape 𝑿𝑿 to the material parameters 

by a neural network, although possible, can lead to a large number of undetermined parameters 

which needs a very large training dataset. A compact representation (i.e. shape code) of a shape 

can be obtained in a shape encoding procedure. The principal component analysis (PCA) (Webb 

and Copsey, 2011) is widely adopted as a shape encoding method and an unsupervised learning 

technique for dimensionality reduction, in which the original data can be well approximated by a 

linear combination of a few principal components. Thus, a shape 𝑋𝑋 can be represented by 

Statistical Shape 
Model (SSM)

125 (15) Systolic 
Geometries

Generalized Pre-stressing 
Algorithm (GPA)

125 (15) Sets of Material 
Parameters

Systole

Diastole

15366 (225) Sets 
of Geometries

Ignore

Yes

No

Converge?

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 10, 2018. ; https://doi.org/10.1101/366963doi: bioRxiv preprint 

https://doi.org/10.1101/366963


𝑿𝑿 ≈ 𝑿𝑿� + ∑ 𝑐𝑐𝑖𝑖�𝜇𝜇𝑖𝑖𝑽𝑽𝑖𝑖𝑚𝑚
𝑖𝑖=1                                                     (10) 

where 𝑋𝑋� is the mean shape, 𝑽𝑽𝑖𝑖 and 𝜇𝜇𝑖𝑖 are the eigenvectors (i.e. modes of shape variations) and 

eigenvalues of the covariance matrix, respectively. 𝑚𝑚  is the number of modes used for 

approximation. The shape code {𝑐𝑐𝑖𝑖, 𝑖𝑖 = 1, … ,𝑚𝑚} can be obtained by  

𝑐𝑐𝑖𝑖 = 𝑽𝑽𝑖𝑖𝑇𝑇(𝑿𝑿 − 𝑿𝑿�)/�𝜇𝜇𝑖𝑖                                                     (11)                          

where 𝑽𝑽𝑖𝑖𝑇𝑇 is the transpose of the column vector 𝑽𝑽𝑖𝑖. The first 12 modes (𝑚𝑚=12) were retained for 

both the systolic and diastolic shape encoding, with the average PCA approximation error being 

less than 0.1%. Note that as mentioned in Section 2.2.3, the systolic geometries from GPA were 

slightly different from the original configuration from the SSM, and therefore 3 modes are not 

enough to capture the shape variations for systolic geometries. We denote the systolic shape code 

as 𝛼𝛼𝑖𝑖, diastolic shape code as 𝛽𝛽𝑖𝑖, (𝑖𝑖 = 1, 2, … , 12).  

2.3.3 Nonlinear mapping 

The nonlinear mapping module will map the shape codes of the two input shapes to the 

five material parameters, which is equivalent to establishing five nonlinear functions  

𝑦𝑦𝑘𝑘 = 𝑔𝑔𝑘𝑘(𝛼𝛼1, … , 𝛼𝛼12, 𝛽𝛽1, … , 𝛽𝛽12), 𝑘𝑘 = 1, 2, … , 5                             (12) 

The inputs are the shape codes for diastolic and systolic geometries 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖, (𝑖𝑖 = 1, 2, … , 12). 

The outputs are 𝑦𝑦𝑘𝑘 (𝑘𝑘 = 1, 2, … , 5), correspond to the five material parameters {𝐶𝐶10, 𝑘𝑘1, 𝑘𝑘2, 𝜅𝜅, 𝜃𝜃}.  

As shown in Figure 5, a neural network is constructed as the nonlinear mapping module. It consists 

of feedforward fully-connected units (neurons). Each unit has multiple inputs and a single output. 

For the 𝑗𝑗th unit of the 𝑖𝑖th layer, a linear combination of the input vector 𝒛𝒛𝑖𝑖 (with weight vector 𝒘𝒘𝑗𝑗𝑖𝑖 

and offset 𝒃𝒃𝑗𝑗𝑖𝑖) is computed as 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 10, 2018. ; https://doi.org/10.1101/366963doi: bioRxiv preprint 

https://doi.org/10.1101/366963


𝑢𝑢𝑗𝑗𝑖𝑖 = 𝒘𝒘𝑗𝑗𝑖𝑖
𝑇𝑇
𝒛𝒛𝑖𝑖 + 𝒃𝒃𝑗𝑗𝑖𝑖                                                       (13) 

where the superscript 𝑖𝑖 denote the index of layer, and subscript 𝑗𝑗 denote the index of unit in the 

layer. 𝒛𝒛𝑖𝑖 is a column vector of �𝑧𝑧1𝑖𝑖 , 𝑧𝑧2𝑖𝑖 , … , 𝑧𝑧𝑛𝑛𝑖𝑖
𝑖𝑖 �

𝑇𝑇
, and 𝑛𝑛𝑖𝑖 is the number of units in the 𝑖𝑖th layer. The 

weighted sum 𝑢𝑢𝑗𝑗𝑖𝑖 is nonlinearly transformed into the output 𝑧𝑧𝑗𝑗𝑖𝑖+1 using an activation function. 

𝑧𝑧𝑗𝑗𝑖𝑖+1 = 𝑓𝑓(𝑢𝑢𝑗𝑗𝑖𝑖)                                                            (14) 

The softplus (Dugas et al., 2000) activation function was used, which is given by 

𝑓𝑓(𝑢𝑢) = log(1 + 𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢))                                                (15) 

This function is a smooth version of the rectified linear unit (ReLU) (Glorot et al., 2011; Hahnloser 

et al., 2000). As demonstrated in the discussion section, other activation functions can lead to large 

testing errors in our application. The neural network has two hidden layers with the same number 

of softplus units, and the output layer has 5 softplus units. 

The neural network was implemented using Tensorflow (Abadi et al., 2015). The inputs 

and outputs were normalized using the maximum absolute value of each dimension. Consequently, 

the normalized shape codes are within the range of -1 to 1, and the normalized material parameters 

are within the range of 0 to 1. The mean squared error (MSE) was used as the loss function 

𝑀𝑀𝑆𝑆𝐸𝐸 = ∑ 1
𝑁𝑁
∑ �𝑦𝑦�𝑘𝑘

(𝑙𝑙) − 𝑦𝑦��𝑘𝑘
(𝑙𝑙)�

2
𝑁𝑁
𝑙𝑙=1

5
𝑘𝑘=1                                          (16) 

where 𝑙𝑙 is the index for an input-output pair, 𝑁𝑁 is the total number of input-output pairs, 𝑦𝑦�𝑘𝑘
(𝑙𝑙) and 

𝑦𝑦��𝑘𝑘
(𝑙𝑙)represent the 𝑘𝑘th actual and predicted normalized material parameter, respectively. After the 

nonlinear mapping, the predicted material parameters were rescaled to its original range. The 
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parameters of the neural network were obtained through the Adamax optimization algorithm 

(Kingma and Ba, 2015). For detailed theories, please refer to (Goodfellow et al., 2016). 

 

Figure 5. The neural network for mapping the shape codes to the material parameters. The green 

dots represents the input layer, and the blue dots represent the softplus units in the hidden layers 

and the output layer of the neural network. 

2.4 Training, adjusting and testing the ML-model 

The unsupervised shape encoding module (PCA) was built only upon the training and 

validation sets. For shapes in the testing set, the shape codes were obtained from Eqn. (4) using 𝑿𝑿�, 

𝑽𝑽𝑖𝑖 and 𝜇𝜇𝑖𝑖 computed from the training and validation set. 

Using the training/validation dataset, the performance of the nonlinear mapping module 

was assessed through leave-one-out (LOO) cross-validation, and the neural network structure was 

fine-tuned.  As depicted in Figure 6, in each round of the LOO cross-validation, the data was split 

into a training set and a validation set, according to the material parameters. We pick one set of 

material parameters (and its corresponding geometries) from the 125 sets from Section 2.2.1 as the 
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validation set, and train the neural network on the remaining 124 sets (and its corresponding 

geometries). An averaged error was obtained after repeating this procedure for all of the 125 sets 

of material parameters. Hence, the training set never contains the material information used in the 

validation. Next, the number of units in each layer was adjusted to minimize the average error in 

the LOO cross-validation. The final network contains 256 units for each of the two hidden layers.  

 

Figure 6. Adjusting the network structure using the leave-one-out (LOO) cross-validation. 

To evaluate the ML-model, that is, to examine how accurate the prediction is compared to 

FE simulation data, the ML-model was trained on the training/validations set and then the material 

parameters were predicted using shapes in the testing set. The predicted material parameters were 

compared to the actual parameters in the testing set.  
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Figure 7. Evaluating the accuracy using the testing dataset. 

3. RESULTS 

Given a pair of geometries as the inputs, the trained ML-model can output the material 

parameter within one second on a PC with 3.6GHz quad core CPU and 32GB RAM. The actual 

versus predicted material parameters are shown in Figure 8. The discrepancy between the actual 

and predicted material parameters in the testing set was quantified by normalized mean absolute 

error (NMAE) and the normalized standard deviation of absolute error (NSTAE). The absolute 

error (AE) for the 𝑘𝑘th material parameter is defined by 

𝐴𝐴𝐴𝐴𝑘𝑘
(𝑙𝑙) = �𝑦𝑦𝑘𝑘

(𝑙𝑙) − 𝑦𝑦�𝑘𝑘
(𝑙𝑙)�                                                            (17) 

where index 𝑙𝑙 and 𝑘𝑘 are the same as Eqn.(17), 𝑦𝑦𝑘𝑘
(𝑙𝑙) and 𝑦𝑦�𝑘𝑘

(𝑙𝑙) represent the 𝑘𝑘th actual and predicted 

material parameter, respectively. The NMAE of the 𝑘𝑘th material parameter is defined by 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘 =
∑ 𝐴𝐴𝐴𝐴𝑘𝑘
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𝑙𝑙=1
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�𝑦𝑦𝑘𝑘

(𝑙𝑙)�−min
𝑙𝑙
�𝑦𝑦𝑘𝑘

(𝑙𝑙)��
× 100%                                                (18) 

where 𝑁𝑁 is defined in Eqn.(16). And the NSTAE of the 𝑘𝑘th material parameter is 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘 = 1

�max
𝑙𝑙
�𝑦𝑦𝑘𝑘

(𝑙𝑙)�−min
𝑙𝑙
�𝑦𝑦𝑘𝑘

(𝑙𝑙)��
�∑ �𝐴𝐴𝐴𝐴𝑘𝑘

(𝑙𝑙)−𝐴𝐴𝐴𝐴����𝑘𝑘�
2𝑁𝑁

𝑙𝑙=1

𝑁𝑁−1
× 100%                                 (19) 

where 𝐴𝐴𝐴𝐴����𝑘𝑘 is the averaged absolute error for the 𝑘𝑘th material parameter. The NMAE and NSTAE 

for each material parameter in the testing set are reported in Table 1. The errors indicate that the 

ML-predicted material parameters are in good agreement with the actual material parameters. 

 C10 k1 k2 κ 𝜃𝜃 

NMAE 3.75% 1.38% 6.01% 1.88% 3.74% 

NSTAE 3.51% 1.59% 4.38% 1.89% 4.56% 

Table 1. NMAE and NSTAE of the five material parameters in testing set. 

 

Figure 8. The actual and predicted material parameters. 

(a) (b) (c)

(d) (e)
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To further evaluate the estimation results, stress-stretch curves were plotted by simulating 

stretch-controlled biaxial tension in MATLAB by assuming the tissue is loaded in the plane stress 

state and the material is incompressible. We use 𝜎𝜎1 and 𝜆𝜆1 to denote the circumferential stress and 

stretch, 𝜎𝜎2 and 𝜆𝜆2 to denote the longitudinal stress and stretch. The simulations were based on the 

following 3 protocols: (1) in the circumferential strip biaxial tension, fixing 𝜆𝜆2 = 1  while 

increasing 𝜆𝜆1; (2) in the equi-biaxial tension, keeping the ratio 𝜆𝜆1/𝜆𝜆2 = 1; (3) in the longitudinal 

strip biaxial tension, fixing 𝜆𝜆1 = 1  while increasing 𝜆𝜆2 . In total, six stress-stretch curves are 

generated for each set of constitutive parameters. 

 Using the testing dataset, the coefficient of determination (R2) was calculated for each 

curve, and the averaged coefficient of determination of the six curves for each input-output pair 

was obtained. The predictions were sorted according to their averaged coefficient of determination. 

The best, median, worst cases are plotted in Figure 8, and the corresponding actual and predicted 

material parameters are shown in Table 2. Perfect agreement is achieved for the best cases. For the 

median case, although the discrepancies in the constative parameters seem obvious, the six curves 

still have good matches. In the worst case, the results are still acceptable in terms of material 

parameters, and the actual and predicted stress-stretch curves follow the same trends.  

  C10 (𝑘𝑘𝑘𝑘𝑘𝑘) k1(𝑘𝑘𝑘𝑘𝑘𝑘) k2 κ 𝜃𝜃(°) 

Best Actual 63.83 1086.31 28.12 0.1553 7.76 

Predicted 64.66 1091.45 28.08 0.1561 7.55 

Median Actual 48.60 4207.03 4.76 0.2958 16.46 

Predicted 50.59 4325.85 2.20 0.2963 10.16 

Worst Actual 75.15 4683.21 17.53 0.2182 22.05 

Predicted 72.49 4485.17 19.48 0.2096 18.30 

Table 2. The actual and predicted material parameters for the best, median, worst cases. 
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Figure 9. The actual and predicted stress-stretch curves for the best ((a), (b) and (c)), median ((d), 

(e) and (f)) and worst cases ((g), (h) and (i)). 

4. DISCUSSION 

Optimization-based inverse methods (Liu et al., 2017, 2018; Wittek et al., 2016; Wittek et 

al., 2013) have been extensively used for material parameter identification problems. Whether 

being dependent on FE simulations or not, these methods are computationally-expensive. Iterative 

computations limit the efficiency of these approaches, obstructing their clinical application. The 

proposed machine learning approach can fundamentally resolve the challenge on computation 
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cost. The ML-model builds a direct linkage between the geometries and the material parameters, 

bypassing the iterative procedures. Once the ML-model is trained, it can be used to make 

predictions instantaneously and repeatedly, such that in vivo material parameter estimation on a 

high volume of patients in real-time becomes feasible. Although FE simulations are used to 

generate training, validation and testing datasets, which takes approximately 10 days – note that a 

similar amount of time is required to find the optimal material parameters for a single patient using 

nonlinear optimization (Wittek et al., 2016; Wittek et al., 2013). In terms of the predictions, the 

ML-model does not lose accuracy compared with the optimization-based methods developed by 

our group. The proposed ML-model was evaluated using additional testing data, where small 

discrepancies (NMAE) were achieved between the actual and ML-predicted material parameters. 

The close resemblance between the actual and predicted stress-stretch curves further demonstrates 

the high accuracy of the ML-predicted constitutive response. 

The applications of machine learning techniques on the complex inverse mechanics 

problems can be traced back to the 1990s (Yagawa and Okuda, 1996), when neural networks were 

introduced to traditional mechanics fields for constitutive modeling (Ghaboussi and Sidarta, 1998) 

and elastic-plastic fracture mechanics (Theocaris and Panagiotopoulos, 1993). The pioneering 

work by (Huber and Tsakmakis, 1999a, b), determined some constitutive parameters from the 

spherical indentation data using neural networks. Because this classical problem can be 

characterized by the load-depth trajectory, some manually selected features (e.g. depth at a given 

load level) were sufficient. However, to determine material parameters of the aortic wall from 

medical image data, the 3D geometrical information has to be fully exploited, which cannot be 

done by using a few intuitive features. In our ML-model, the PCA effectively encodes the input 

complex geometries into the shape codes. Next, a neural network (24 inputs - 256 hidden units - 
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256 hidden units - 5 output units) with softplus activation function was utilized to establish the 

nonlinear mapping between the shape codes and the material parameters. The comparison between 

the softplus units and other units is illustrated in Figure 9. The softplus units outperformed the 

conventional sigmoid and hyperbolic tangent (tanh) units, the ReLU (Glorot et al., 2011) and its 

variant SELU (Klambauer et al., 2017). The softplus units lead to the lowest loss in the testing set 

and thus are more appropriate for this application. 

 

Figure 10. MSE loss function for training and testing using softplus and other units. 

Since this paper only aims to demonstrate the feasibility of the proposed machine learning 

framework, the following assumptions and simplifications were used in data generation to expedite 

the FE simulations: (1) the branches of the aortic arch were trimmed off; (2) because of the partial 

volume effect, it is difficult to obtain the wall thickness from CT images, therefore, a uniform wall 

thickness at the systolic phase (1.5 mm) was assumed; (3) the systolic and diastolic pressure were 

fixed to 120mmHg and 80 mmHg, respectively. These limitations can be resolved in future work. 

The branches can be re-meshed using existing mesh processing method (Botsch et al., 2010), then 

encoded by additional shape codes. Using advanced magnetic resonance imaging (Dieleman et al., 

2014), the wall thickness is measurable. The full 3D geometries at the two cardiac phases can be 
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encoded using PCA, and therefore the thickness field is incorporated. To handle pressure 

variations, FE simulation data at a wide range of systolic and diastolic pressure levels can be 

generated, and the systolic and diastolic pressure can be simply included as two additional inputs 

to the neural network. 

Although the feasibility of the ML-model is clearly shown, it is not ready for clinical 

application yet before more data become available. When a substantial amount of medical image 

data and experimental testing data are obtained, we can update the SSM space and the convex hull, 

from which a new large training dataset can be generated using the framework proposed in this 

study. The updated ML-model will be capable of accurately predicting the material parameters 

which may provide clinically relevant insights, i.e. serving as a basis for patient-specific rupture 

risk estimation (Martin et al., 2015). In case of a new patient with extreme aorta shape or material 

properties, which may cause unreliable prediction, a rejection option can be added in the ML-

model as in (Bartlett and Wegkamp, 2008). The enhanced ML-model will avoid making 

predictions on uncommon cases. 

5. CONCLUSION 

We have proposed a novel ML approach to estimate the constitutive parameters of the 

aortic wall from in vivo loaded geometries at two cardiac phases with known blood pressures. The 

ML-model is comprised of an unsupervised shape encoding module and a supervised nonlinear 

mapping module. FE simulations were used to generate datasets for training, adjusting and testing 

the ML-model. This novel ML approach can expedite the procedure of in vivo material parameter 

identification: once the ML-model is trained, the material parameters can be estimated within one 

second. 
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