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 25 

Abstract 26 

Common approaches to gene signature discovery in single cell RNA-sequencing (scRNA-seq) 27 

depend upon predefined structures like clusters or pseudo-temporal order, require prior 28 

normalization, or do not account for the sparsity of single cell data.  We present single cell 29 

Hierarchical Poisson Factorization (scHPF), a Bayesian factorization method that adapts 30 

Hierarchical Poisson Factorization [1] for de novo discovery of both continuous and discrete 31 

expression patterns from scRNA-seq. scHPF does not require prior normalization and captures 32 

statistical properties of single cell data better than other methods in benchmark datasets.  Applied 33 

to scRNA-seq of the core and margin of a high-grade glioma, scHPF uncovers marked 34 

differences in the abundance of glioma subpopulations across tumor regions and subtle, 35 

regionally-associated expression biases within glioma subpopulations. scHFP revealed an 36 

expression signature that was spatially biased towards the glioma-infiltrated margins and 37 

associated with inferior survival in glioblastoma. 38 
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Introduction 39 

Recent advances in the scalability of single cell RNA-sequencing (scRNA-seq) offer a 40 

new window into development, the cellular diversity of complex tissues, cellular response to 41 

stimuli, and human disease. Conventional methods for cell-type discovery find clusters of cells 42 

with similar expression profiles, followed by statistical analysis to identify subpopulation-43 

specific markers [2-5]. Studies of cell fate specification have benefitted from innovative methods 44 

for inferring pseudo-temporal orderings of cells, allowing identification of genes that vary along 45 

a trajectory [6-8]. By design, these approaches discover expression programs associated with 46 

either discrete subpopulations or ordered phenotypes like differentiation status.  However, in 47 

addition to cell type and developmental maturity, a cell’s transcriptional state may include 48 

physiological processes like metabolism, growth, stress, and cell cycle; widespread 49 

transcriptional alterations due to copy number variants; and other co-regulated genes not specific 50 

to a discrete subpopulation or temporal ordering. Such expression programs are of particular 51 

interest in diseased tissue, where the underlying population structure may be unknown and 52 

druggable targets might vary independently of cell type or maturity.  53 

 Matrix factorization is an appealing approach to decomposing the transcriptional 54 

programs that underlie cellular identity and state without a predefined structure across cells.  In 55 

this class of models, both cells and genes are projected into the same lower-dimensional space, 56 

and gene expression from each cell is distributed across latent factors that approximate a vector 57 

basis for its transcriptional profile.  Genes’ weights over the latent factors are discovered 58 

simultaneously and can be used to identify expression programs. For example, previous studies 59 

have defined gene expression programs from scRNA-seq data using Principal Component 60 

Analysis (PCA) or non-negative matrix factorization (NMF) [9-13].  However, a combination of 61 

biological regulation, stochastic gene expression, and incomplete experimental sampling leads to 62 

sparsity in scRNA-seq data. This creates challenges in downstream analysis. Conventional 63 

methods like PCA and NMF are sensitive to false-negative dropout events in which a transcript 64 

is experimentally undetected despite its presence in a cell [14, 15]. Further, sparsity may vary 65 

across both cells and genes, complicating the normalization that most computational methods 66 

require [15, 16].   67 

 Here, we describe single-cell Hierarchical Poisson Factorization (scHPF), a Bayesian 68 

factorization method that uses Hierarchical Poisson Factorization [1] to avoid prior 69 
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normalization and explicitly model variable sparsity across both cells and genes. We compare 70 

scHPF to popular normalization and dimensionality reduction methods as well as an algorithm 71 

explicitly designed for scRNA-seq.  scHPF has better predictive performance than these methods 72 

and more closely captures expression variability in datasets generated by multiple experimental 73 

technologies.  Finally, we apply scHPF to single-cell expression profiles obtained from the core 74 

and invasive edge of a high-grade glioma.  scHPF identifies both expected and novel features of 75 

tumor cells at single-cell resolution and uncovers a prognostic expression signature associated 76 

with poor survival in glioblastoma. 77 

 78 

Results 79 

Single-cell Hierarchical Poisson Factorization 80 

 scHPF uses Hierarchical Poisson Factorization [1] for de novo identification of gene 81 

expression programs.  In scHPF, each cell or gene has a limited “budget” which it distributes 82 

across the latent factors (Fig. 1).  In cells, this budget is constrained by transcriptional output and 83 

experimental sampling. Symmetrically, a gene’s budget reflects its sparsity due to overall 84 

expression level, sampling, and variable detection. The interaction of a given cell and gene’s 85 

budgeted loadings over factors determines the number of molecules of the gene detected in the 86 

cell.   87 

More formally, scHPF is a hierarchical Bayesian model of the generative process for an 88 

M x N discrete expression matrix, where M is the number of genes and N is the number of cells 89 

(Fig. S1a).  scHPF assumes that each gene � and cell � is associated with an inverse-budget �� 90 

and �� that probabilistically determines the observed transcriptional output for that cell or gene.  91 

Since both �� and �� are positive-valued, scHPF places Gamma distributions over those latent 92 

variables. The hyperparameters of these Gamma distributions are set empirically (Methods, Fig. 93 

S1b).  For each factor �, gene and cell loadings over factors ��,� and ��,� are drawn from a 94 

second layer of Gamma distributions whose parameters depend on the inverse budgets �� and �� 95 

for each gene and cell.  Finally, scHPF posits that the observed expression of a gene in a given 96 

cell is drawn from a Poisson distribution whose rate is the inner product of the gene’s and cell’s 97 

weights over factors. Importantly, scHPF accommodates the over-dispersion commonly 98 

associated with RNA-seq [17] because a Gamma-Poisson mixture distribution results in a 99 
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negative binomial distribution; therefore, scHPF implicitly contains a negative binomial 100 

distribution in its generative process.  Given a gene expression matrix, scHPF approximates the 101 

posterior distribution over the inverse budgets and latent factors given the data using Coordinate 102 

Ascent Variational Inference  [18, 19] (Methods).  After fitting the model’s variational posterior, 103 

we define each gene and cell’s score for a factor � as the expected values of its factor loading 104 

��,� or ��,� times its inverse budget �� or ��, respectively.  We select the number of factors 105 

based on the convergence of the negative log likelihood and representation of major cell types 106 

(Methods). 107 

 108 

Benchmarking against alternative methods 109 

 We compared scHPF’s predictive performance to that of PCA, NMF, Factor Analysis 110 

(FA), and Zero Inflated Factor Analysis (ZIFA) [14], a method developed specifically for 111 

scRNA-seq. These methods have been used for de novo expression program discovery without a 112 

pre-defined structure across cells [9-12, 14].  We assessed each method across three datasets in 113 

different biological systems and obtained with different experimental platforms (Table S1). The 114 

peripheral blood mononuclear cell (PBMC) data from 10x Genomics is a mixture of discrete cell 115 

types [20], whereas the Matcovitch et al. microglial dataset samples from multiple timepoints 116 

along a developmental process [21]. Additionally, we profiled 9,924 cells from a patient-derived 117 

glioma neurosphere line (TS543), in which physiological processes like cell cycle, rather than 118 

discrete cell-types or differentiation status, drive expression variability. The datasets originate 119 

from different biological systems and experimental technologies including: droplet-based 10x 120 

Chromium [20], MARS-seq [22], and an automated microwell platform [23]. 121 

For each dataset, we tested conventional methods with three different normalizations: 122 

log-transformed molecular counts, counts per median (rate-normalization), and log-transformed 123 

counts per median (log-rate-normalization).  ZIFA was only evaluated using log-transformed 124 

normalizations as recommended by its authors.  Across all datasets and normalizations, scHPF 125 

had the best predictive performance on a held-out test set (Fig. 2a). scHPF’s superior 126 

performance was robust across a range of values for 	, the number of factors (Fig. S2). 127 

In bulk RNA-seq, modeling over-dispersed gene expression data has proven essential to 128 

downstream analysis [17]. In scRNA-seq, expression data are over-dispersed both across genes 129 

in individual cells and for individual genes across cells. We evaluated how well different 130 
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factorization methods captured single cell expression variability using a posterior predictive 131 

check (PPC). PPCs provide insight into a generative model’s goodness-of-fit by comparing the 132 

observed dataset to simulated data generated from the model. More formally, PPCs sample 133 

simulated replicate datasets Xrep from a generative model’s posterior predictive distribution and 134 

use a modeler-defined test statistic to evaluate discrepancies between Xrep and the true data, Xobs 135 

[24].  For each dataset, normalization, and generative factorization method (scHPF, PCA, FA 136 

and ZIFA), we sampled ten replicate expression vectors per cell.  After converting samples from 137 

models on normalized data back to molecular counts (Methods), we computed the coefficient of 138 

variation (CV) for all genes in each cell and each gene across all cells. Finally, we averaged each 139 

cell and gene’s CVs across the ten replicate simulations. In all three datasets, scHPF more 140 

closely matched the observed data’s variability than other methods (Fig. 2b, Fig. S3). We 141 

noticed that many samples from PCA and FA had physically impossible negative values. When 142 

we corrected these values by clipping them to zero, PCA and FA’s estimates of variability across 143 

cells collapsed toward zero (Fig. 2c). This collapse suggests that PCA and FA’s ability to model 144 

over-dispersion in scRNA-seq data depends on placing probability mass on negative gene 145 

expression levels. 146 

 147 

Application to Spatially Sampled scRNA-seq from High-Grade Glioma 148 

 As a demonstration, we applied scHPF to 6,109 single cell expression profiles from the 149 

core and invasive edge of a high-grade glioma. High-grade gliomas (HGGs), the most common 150 

and lethal brain malignancies in adults [25], are highly heterogeneous tumors with complex 151 

microenvironments. In HGG, malignant cells invade the surrounding brain tissue, forming 152 

diffusely infiltrated margins that are impossible to fully remove surgically [26]. Although 153 

malignant cells in margins seed tumor recurrence and are the targets of post-operative therapy, 154 

most molecular characterization has focused on HGG cores. To investigate the transcriptional 155 

differences between cells in glioma’s core and margins, we used an MRI-guided procurement 156 

technique [26] and scRNA-seq to profile 3,109 cells from an HGG core and 3,000 cells from its 157 

margin. While recent efforts are beginning to shed light on the differential expression between 158 

glioma’s core and margins [26, 27], few studies involve this kind of spatial sampling.  159 

Glioma cells typically resemble glia at the level of gene expression, and our prior work 160 

characterizing HGGs with scRNA-seq revealed co-occurring malignant subpopulations 161 
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resembling astrocytes, oligodendrocyte progenitors (OPCs), and neuroblasts [28]. Consistent 162 

with these findings, clustering and aneuploidy analysis (Methods, Fig. S4-5) revealed malignant 163 

subpopulations that expressed markers of astrocytes, OPCs, neuroblasts, and dividing cells as 164 

well as nonmalignant populations of myeloid cells, oligodendrocytes, endothelial cells, and 165 

pericytes (Fig. 3a-b, S4-5).  In the spatially resolved samples, malignant subpopulations had 166 

dramatically different abundances across regions (Figure S5h).  Astrocyte-like glioma cells were 167 

over two-fold more abundant in the margin biopsy, while OPC-like and cycling populations were 168 

nearly three and four-fold better represented in the core biopsy. All seventeen neuroblast-like 169 

glioma cells localized to the tumor core.  170 

 Applied to the same dataset, scHPF identified at least one factor associated with every 171 

cell type, as well as physiological processes like translation, cell cycle and stress response (Fig. 172 

3c-d, S6b-d). Hierarchical clustering of cells’ scores across factors recapitulated both Louvain 173 

clustering and malignant status (Fig. 3e), and factors associated with malignant subpopulations 174 

had regional biases across glioma cells that were consistent with glioma subpopulations’ 175 

differential abundance across regions (Fig. S7a). Therefore, scHPF captures major features 176 

identified by standard analyses for this dataset.  177 

 Some scHPF factors’ scores varied within the subpopulations identified by clustering. For 178 

example, two myeloid-associated factors that ranked pro-inflammatory cytokines and S100-179 

familly genes highly (Fig. S6a), respectively, were correlated across all cells (r=0.66, p<10-100) 180 

but anticorrelated within the myeloid cluster (r=-0.59, p<10-71). Together, they appeared to 181 

represent a continuum of immune activation (Fig. 4a-c). This phenotypic gradient within an 182 

individual tumor is reminiscent of the variable myeloid states observed across different patients 183 

in previous studies of glioma [28-31].  184 

 While scHPF factors had regional biases that reflect overall compositional differences 185 

between the core and margin biopsies, glioma cells’ scHPF factor scores also exhibited regional 186 

biases within the malignant subpopulations defined by clustering (Fig. 4d-f, S7a). For example, 187 

OPC-like glioma cells in the tumor core had significantly higher scores for the neuroblast-like, 188 

OPC-like, and cell cycle factors than their counterparts in the margin (Bonferroni corrected 189 

p<10-84, p<10-6 and p<10-6 respectively by the Mann-Whitney U test), whereas OPC-like glioma 190 

cells in the margin had higher scores for the two astrocyte-like factors (p<10-49 and p<10-69 for 191 

astrocyte-like factors 2 and 1, respectively). These differences are driven by the highest scoring 192 
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genes in each factor (Fig. S7b), and astrocyte-like glioma cells followed a similar pattern.  An 193 

alternative method of determining cellular subpopulations, where cells were assigned to the 194 

subpopulation with which their highest scoring factor was associated, also preserved the regional 195 

biases (Fig. S7c).  This analysis suggests that, in this case, cells in the same malignant 196 

subpopulations but different tumor regions may have subtly different lineage resemblances.   197 

 As cells from the HGG margin remain after surgery and seed aggressive recurrent 198 

tumors, we investigated whether regionally-biased transcriptional signatures derived from scHPF 199 

factors were associated with survival in The Cancer Genome Atlas (TCGA) [32].  Restricting the 200 

analysis to glioblastoma (GBM), we identified patients enriched and depleted for the top genes in 201 

each factor (Methods).  Survival analysis revealed significantly shorter overall survival (1 year 202 

median difference) for patients enriched for a margin-biased scHPF astrocyte-like signature (Fig. 203 

4g,h), which included astrocytic markers ALDOC, CLU and SPARCL1 [33-35], as well as 204 

cystatin super-family members CST1 though CST5 (Fig. 3c, S6a).  Cystatin C (CST3) is highly 205 

expressed in mature human astrocytes [33, 35] and is induced in Alzheimer’s disease and 206 

epilepsy [36-38], raising the possibility that astrocyte-like glioma cells may be responding to the 207 

same cues or stresses that reactive astrocytes encounter in these disorders.  Although it is 208 

difficult to determine which cells are responsible for an expression signature in bulk RNA-seq 209 

data, top scHPF astrocyte-like factor 1 genes were better correlated with molecular markers of 210 

tumor cells than other cells in the tumor microenvironment (Fig. S8), suggesting that glioma 211 

cells express those genes. 212 

 213 

Discussion 214 

Conventional approaches to analyzing scRNA-seq data use predefined structures like clusters or 215 

pseudo-temporal orderings to identify discrete transcriptional programs associated with 216 

particular subpopulations and pseudo-temporally coupled gene signatures.  However, gene 217 

expression programs may vary independently of these structures across complex populations. 218 

scHPF complements conventional approaches, allowing for de novo identification of 219 

transcriptional programs directly from a matrix of molecular counts in a single pass. By 220 

explicitly modeling variable sparsity in scRNA-seq data and avoiding prior normalization, 221 

scHPF achieves better predictive performance than other de novo matrix factorization methods 222 

while also better capturing scRNA-seq data’s characteristic variability.  223 
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 In scRNA-seq of biopsies from the core and margin of a high-grade glioma, scHPF 224 

recapitulated and expanded upon molecular features identified by standard analyses, including 225 

expression signatures associated with all of the major subpopulations and cell types identified by 226 

clustering.  Importantly, some lineage-associated factors identified by scHPF varied within or 227 

across clustering-defined populations, revealing features that were not apparent from cluster-228 

based analysis alone.  Clustering analysis showed that astrocyte-like glioma cells were more 229 

numerous in the tumor margin while OPC-like, neuroblast-like, and cycling glioma cells were 230 

more abundant in the tumor core.  scHPF not only recapitulated this finding, but also illuminated 231 

regional differences in lineage-resemblance within glioma subpopulations. In particular, both 232 

OPC-like and astrocyte-like glioma cells in the tumor core had a slightly more neuroblast-like 233 

phenotype than their more astrocyte-like counterparts in the margin. Finally, we discovered a 234 

margin-biased gene signature enriched among astrocyte-like glioma cells that is highly 235 

deleterious to survival in GBM.  236 

Massively parallel scRNA-seq of complex tissues in normal, developmental, and disease 237 

contexts has challenged our notion of “cell type” [39], particularly as highly scalable methods 238 

provide ever-increasing resolution. Further, gene expression programs essential to tissue function 239 

may be highly cell type-specific or might vary continuously within or across multiple cell types. 240 

Conventional graph- and clustering-based methods provide invaluable insight into the structure 241 

of complex cellular populations, and much can be learned from projecting single-cell expression 242 

profiles onto these structures. scHFP effectively models the nuanced features of scRNA-seq data 243 

while identifying highly variable gene signatures, unconstrained by predefined structures such as 244 

clusters or trajectories. We anticipate that scHFP will be a complementary tool for dissecting the 245 

transcriptional underpinnings of cellular identity and state. 246 

 247 

Methods  248 

 249 

Single-cell Hierarchical Poisson Factorization 250 

The generative process for single-cell Hierarchical Poisson Factorization, illustrated in Figure 251 

S1a, is: 252 

1. For each cell �: 253 

a. Sample capacity ��  ~ ��

����, ���  254 
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b. For each factor �: 255 

i. Sample weight ��,�  ~ ��

���,  ��� 256 

2. For each gene �: 257 

a. Sample capacity �� ~ ��

����, ��� 258 

b. For each factor �: 259 

i. Sample weight ��,� ~ ��

���, ��� 260 

3. For each cell � and gene �, sample observed expression level  261 

��,� ~ �������������). 262 

Where � is a discrete scRNA-seq expression matrix.  263 

For de novo gene signature identification, we define each cell �’s score for each factor � as 264 

 ����_������,�    �  �� ��  | �!  "  �� ��,�  | �! 265 

and each gene �’s score for each factor � as 266 

 ����_������,� �  �# �� $ �!  "  �� ��,� | �! . 267 

This adjusts factor loadings for the learned transcriptional output of their corresponding cell or 268 

gene. Finally, we rank the genes in each factor by their scores to identify de novo patterns of 269 

coordinated gene expression (e.g. Fig S6a).  Cell’s scores, for example those plotted Figures 3c-270 

d and S6b-d, indicate a cell’s association with the factor. 271 

 272 

Inference  273 

We use Coordinate Ascent Variational Inference to approximate %��, �, �, � | ��, the posterior 274 

probability of the model parameters given the data [1]. Hyperparameters �’, �’, �’ and �’ are set to 275 

preserve the empirical variance to mean ratio of the total molecules per cell or gene in the 276 

Gamma distributions from which � and � are drawn.  Specifically, we set  277 

�’ �  �’ "  ��
����'��� %�� ����!  /  )���
����'��� %�� ����!  278 

and 279 

�’ �  �’ "  ��
����'��� %�� ����!  /  )���
����'��� %�� ����! . 280 

To preserve sparsity, we fix � and � to 0.3 and �’ and �’ to 1.  In this scheme, we find the 281 

algorithm largely insensitive to small changes in the hyperparameters. We initialize the 282 

variational distributions for �, �, �, � to their priors times a random multiplier between 0.5 and 283 

1.5.  284 
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Selection of number of factors 285 

In actually usage, such as the for the high-grade glioma demonstration in this paper, we select the 286 

number of factors 	 such that (1) the model’s log likelihood has converged (Fig. S9a) and (2) 287 

each well-defined cell-type in the dataset is most strongly associated with at least one factor with 288 

which no other cell-type is most strongly associated (Fig. S9b-d). For benchmarking 289 

experiments, to avoid biasing results toward any one method, we set the number for factors to the 290 

smallest multiple of five greater than the number of clusters for the PBMC and Matcovitch et al.  291 

datasets, and to five for TS543 (Table S1).  However, predictive performance was robust to a 292 

range of values for 	 (Fig. S2). 293 

 294 

Benchmarking 295 

Log-normalization was applied by adding 1 to molecular counts and then taking the logarithm.  296 

Counts per median (rate-normalization) were calculated by normalizing the molecular counts in 297 

each cell to sum to 1 and then multiplying all values by the median number of molecules per cell. 298 

For log-rate-normalization, we performed the log-normalization procedure described above on 299 

rate-normalized data. PCA, NMF, and FA were applied using the scikit-learn python package, 300 

with default parameters [40].  To test ZIFA, we used its authors’ block_ZIFA implementation 301 

with parameter p0_thresh=1 and otherwise default settings. Prior to training, we randomly 302 

selected 4% of nonzero expression values to use as a held-out test set and 2% as a validation set. 303 

The remaining data were used as a training set.  By holding out only a small portion of data, we 304 

aimed to minimally impact datasets’ native sparsity structure.  As these test and validation sets 305 

were small compared to the training set, we evaluated methods’ predictive performance on at 306 

least three randomly chosen partitions of the data into training, validation and test sets. We ran 307 

each method-normalization pair with ten random initializations on each training set and selected 308 

the run with the lowest mean absolute error on the corresponding validation set.  Due to ZIFA’s 309 

long runtime (~23 hours per initialization on TS543), we only ran it with five initializations per 310 

training set and for only one value of 	 (Fig. S2).   311 

We generated posterior predictive samples from scHPF by sampling latent 312 

representations �� and �� from the variational posterior and taking the inner product.  For PCA, 313 

FA, and ZIFA, we sampled latent representations and expression values according to their 314 

underlying generative models [41].  For each method, normalization, and dataset, we sampled 315 
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ten M x N datasets.  Samples from models on normalized data were inverse transformed back to 316 

molecular counts before calculating column and row coefficients of variation. For example, 317 

samples from PCA on log-normalized data were added to -1 and then exponentiated before 318 

calculating coefficients of variation. Each gene and cell’s coefficient of variation was averaged 319 

across ten replicate posterior predictive simulations. The Kolomgorov-Smirniov test statistic was 320 

calculated using the python package scipy. 321 

 322 

Published scRNA-seq datasets 323 

The filtered PBMC dataset, using Chromium v2 chemistry, was downloaded from 10x Genomics 324 

( https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k ).  325 

Molecular counts for Matcovitch et al. were retrieved from GEO ascension GSE7918.   326 

 327 

Preparation of TS543 glioma neurospheres 328 

TS543 cells were plated at density 1 x 104 viable cells/cm2 and grown as neurospheres with 329 

NeuroCult™ NS-A Basal Medium supplemented with NeuroCult™ NS-A Proliferation 330 

Supplement, 20ng/ml EGF, 10ng/ml bFGF, and 0.0002% Heparin (Stem Cell Technologies). 331 

When diameters of neurospheres reached to approximately 100μm, neurospheres were 332 

dissociated to single cells with mechanical force by pipetting 30-50 times. 333 

 334 

Radiographically-guided biopsies of high-grade glioma 335 

Human glioma surgical specimens were procured from de-identified patients through a protocol 336 

approved by the Columbia Institutional Review Board (IRB). Radiographically-guided biopsies 337 

were obtained as described in [26]. Briefly, the patient studied here presented with FLAIR hyper-338 

intense, non-contrast-enhancing tissue along the surgical trajectory based on MRI between the 339 

craniotomy site and gadolinium contrast-enhancing border of the lesion. This region was 340 

biopsied and comprised the tumor margin specimen described above. A region of the contrast-341 

enhancing core of the lesion was also biopsied and comprised the tumor core specimen.  342 

 343 

Whole-genome sequencing 344 

Low-pass whole genome sequencing (WGS) was conducted as described in [28]. Briefly, we 345 

homogenized tissue with a Dounce and extracted DNA and RNA with a ZR-Duet Kit (Zymo) 346 
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according to the manufacturer’s instructions. For the normal control, DNA and RNA were 347 

extracted using the same kit from peripheral blood mononuclear cells. WGS libraries were 348 

constructed by in vitro transposition using the Illumina Nextera XT kit and sequenced on an 349 

Illumina NextSeq 500 with 2x75 base paired-end reads to a depth of ~1x. Reads were aligned to 350 

the hg19 build of the human genome using bwa-mem and the coverage for each chromosome 351 

was quantified using bedtools after collapsing PCR duplicates with samtools. To generate the 352 

bulk WGS heatmap in Fig. S5e, we took the divided the normalized coverage of each 353 

chromosome in the tumor sample by that of the normal sample, normalized the resulting ratio by 354 

the median ratio across all chromosomes, and multiplied by two to estimate average copy 355 

number of each chromosome in the tumor sample. 356 

 357 

scRNA-seq data preprocessing 358 

Reads for TS543 and HGG samples were processed into molecular count matrices as described 359 

in Yuan et al. [28].  For all benchmarking and scHPF analyses, we only considered protein-360 

coding genes that were expressed in at least 0.1% of cells in the dataset, rounded to the next 361 

largest multiple of 5 (Table S1). 362 

 363 

Identification of malignant glioma cells 364 

We identified malignantly transformed cells by two orthogonal methods.  First, we clustered 365 

cells’ scRNA-seq profiles (see Clustering and visualization) and defined putative malignant cells 366 

using the genes most specific to each cluster (Figure S4, S5a). Next, we performed PCA of 367 

cells’ whole-chromosome expression and found that the first principal component, which we call 368 

the malignancy score, separated putatively transformed cells from non-malignant cells (Fig. S5b-369 

d). For further validation, we computed putative glioma cells’ average chromosomal expression 370 

profiles relative to putative non-malignant cells and found that they were in good agreement with 371 

aneuploidies identified by low-coverage whole genome sequencing of bulk tissue from the tumor 372 

core (Fig. S5e). 373 

 374 

Clustering and visualization 375 

Clustering, visualization and identification of cluster-specific genes was performed similarly to 376 

Yuan et al. [28], with an updated method for selecting genes detected in fewer cells than 377 
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expected given their apparent expression level (likely markers of cellular subpopulations). 378 

Briefly, for variable gene selection only, we normalized the molecular counts for each cell to 379 

sum to 1. Genes were then ordered by their normalized expression values. For each gene � we 380 

calculated *�, the fraction of cells in the dataset that expressed �, and *���	, the maximum *� in 381 

a rolling window of 25 genes centered on �.  *���	 approximates the fraction of cells in which 382 

we expect to observe transcripts given �’s overall expression in the dataset. The scaled 383 

difference between *�  and *���	 defines �’s dropout score: 384 

���%�'+_������ �  |*�  ,  *���	|/-*���	  .   385 

We selected marker genes with dropout scores that are either greater than 0.15 or at least six 386 

standard deviations above the mean, inclusively.  387 

 To cluster and visualize the data, we computed a cell by cell Spearman’s correlation 388 

matrix using the marker genes identified above.  Using this matrix, we constructed a k-nearest 389 

neighbors graph (k=20), which we then used as input to Louvain clustering with Phenograph [4].  390 

After clustering, we identified genes most specific to each cluster using a binomial test [5]. The 391 

same similarity matrix, transformed into a distance matrix by subtracting its values from 1, was 392 

used as input to tSNE for visualization.   393 

 394 

Regional biases 395 

p-values for both factors and top scoring genes in each factor were calculated using the Mann-396 

Whitney U-test and Bonferroni corrected for the total number of factors.   397 

 398 

Survival analysis 399 

TCGA data for glioblastoma was downloaded from GDAC Firehose.  Normalized expression 400 

values were log2(RSEM+ 1) transformed and each factor’s expression program was defined as its 401 

25 highest scoring genes. We then calculated each program’s mean relative expression for each 402 

donor, and z-scored these values across donors.  For each program, donors with z-scores greater 403 

than 1.5 were considered enriched, and all others were defined as not enriched. Patients with z-404 

scores less than -1.5 were considered depleted.  Kaplan-Meier curves and log-rank test p-values 405 

were generated with the Lifelines v0.11.1 Python module. 406 
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 436 
Figure 1: Cartoon representation of cells and genes allocating “budgets” across latent factors.  437 
The interaction of a cell and gene’s budget-constrained loadings over factors determines the 438 
gene’s observed expression level in the cell.  439 
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 440 
Figure 2: scHPF captures statistical properties of scRNA-seq data better than alternative 441 
factorization methods. (a) Mean squared error (MSE) of different factorization methods on a 442 
withheld test set as a percent of scHPF’s. scHPF’s MSE was calculated after normalizing its 443 
predictions. (b) Posterior predictive checks of expression variability in PBMCs. Box plots show 444 
the coefficient of variation (CV) for gene expression within single cells across all genes (left) and 445 
for single genes across all cells (right) in both the true distribution (green) and posterior 446 
predictive simulations. X-axes limits are set to include all CVs from the true distribution and 447 
scHPF, and as many CVs from other methods as possible.  Accompanying bar graphs show the 448 
maximum distances between the cumulative distributions of the true and simulated CV values, 449 
(the Kolomogorov-Smirnov (KS) statistic, lower is better).  (c) Same as (b), but clipping 450 
impossible negative posterior predictive samples to zero.  451 
  452 
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Figure 3: scHPF agrees with conventional analysis for regionally identified scRNA-seq of a 454 
High-Grade Glioma (HGG). (a) t-distributed Stochastic Neighbor Embedding (tSNE) [42]plot of 455 
cells from the core (navy) and margin (light blue) of an HGG reveal both malignant and non-456 
malignant subpopulations (Methods).  Labels were determined using malignancy score, 457 
clustering, and differential expression (Figures S5-6, Methods).  (b) tSNE representation of 458 
putative glioma cells colored by cluster highlights astrocyte-like, OPC-like, neuroblast-like, and 459 
cycling subpopulations. (c) tSNE representation of all tumor cells colored by scHPF cell scores 460 
for one of two astrocyte-like factors. Nine out of the top 30 highest scoring genes are 461 
highlighted.  (d) Same as (c), but for a cell cycle factor identified by scHPF.  The five top-scoring 462 
genes in the factor are listed. (e) Main heatmap shows hierarchical clustering of cells’ scores for 463 
each factor.  Top colorbar indicates the cell’s region: core (navy) or invasive edge (light blue). 464 
Second colorbar shows putative neoplastic status.  Bottom colorbar indicates cluster. 465 

 466 
467 
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 468 
Figure 4: scHPF identifies finely resolved and novel, regionally associated features of HGG. (a) 469 
Scores for myeloid factor 1 (y-axis) vs. myeloid factor 2 (x-axis) for cells in the myeloid Louvain 470 
cluster (crimson) and all other cells (gray).  Expression of proinflammatory cytokines CCL3 (b) 471 
and CCL4 (c) for cells in the myeloid subpopulation show a gradient of activation. (d-f) Factor 472 
score bias between the core (navy) and margin (light blue) in all glioma cells (d), OPC-like 473 
glioma cells (e), and astrocyte-like glioma cells (f). Mean cells scores in each region are scaled 474 
to sum to 100. Biases are driven by the top genes in each factor (Fig. S7d-f).  (g & h) Kaplan-475 
Meir curves show survival differences in TCGA for donors enriched (red), not enriched (purple), 476 
and depleted (blue) for the 25 top scoring genes in astrocyte-like factor 1 (Methods). 477 
  478 
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