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Abstract

Background
Early and appropriate empiric antibiotic treatment of patients suspected of having

sepsis is associated with reduced mortality. The increasing prevalence of antimicrobial
resistance risks eroding the benefits of such empiric therapy. This problem is
particularly severe for children in developing country settings. We hypothesized that by
applying machine learning approaches to readily collected patient data, it would be
possible to obtain actionable and patient-specific predictions for antibiotic-susceptibility.
If sufficient discriminatory power can be achieved, such predictions could lead to
substantial improvements in the chances of choosing an appropriate antibiotic for
empiric therapy, while minimizing the risk of increased selection for resistance due to
use of antibiotics usually held in reserve.

Methods and Findings
We analyzed blood culture data collected from a 100-bed children’s hospital in

North-West Cambodia between February 2013 and January 2016. Clinical, demographic
and living condition information for each child was captured with 35 independent
variables. Using these variables, we used a suite of machine learning algorithms to
predict Gram stains and whether bacterial pathogens could be treated with standard
empiric antibiotic therapies: i) ampicillin and gentamicin; ii) ceftriaxone; iii) at least
one of the above.

243 cases of bloodstream infection were available for analysis. We used 195 (80%) to
train the algorithms, and 48 (20%) for evaluation. We found that the random forest
method had the best predictive performance overall as assessed by the area under the
receiver operating characteristic curve (AUC), though support vector machine with
radial kernel had similar performance for predicting Gram stain and ceftriaxone
susceptibility. Predictive performance of logistic regression, simple and boosted decision
trees and k-nearest neighbors were poor in comparison. The random forest method gave
an AUC of 0.91 (95%CI 0.81-1.00) for predicting susceptibility to ceftriaxone, 0.75
(0.60-0.90) for susceptibility to ampicillin and gentamicin, 0.76 (0.59-0.93) for
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susceptibility to neither, and 0.69 (0.53-0.85) for Gram stain result. The most important
variables for predicting susceptibility were time from admission to blood culture, patient
age, hospital versus community-acquired infection, and age-adjusted weight score.

Conclusions
Applying machine learning algorithms to patient data that are readily available even

in resource-limited hospital settings can provide highly informative predictions on
susceptibilities of pathogens to guide appropriate empiric antibiotic therapy. Used as a
decision support tool, such approaches have the potential to lead to better targeting of
empiric therapy, improve patient outcomes and reduce the burden of antimicrobial
resistance.

Author summary

Why was this study done?

• Early and appropriate antibiotic treatment of patients with life-threatening
bacterial infections is thought to reduce the risk of mortality.

• In hospitals that have a microbiology laboratory, it takes 3-4 days to get results
which indicate which antibiotics are likely to be effective; before this information
is available antibiotics have to be prescribed empirically i.e. without knowledge of
the causative organism.

• Increasing resistance to antibiotics amongst bacteria makes finding an appropriate
antibiotic to use empirically difficult; this problem is particularly severe for
children in developing country settings.

• If we could predict which antibiotics were likely to be effective at the time of
starting antibiotic therapy, we might be able to improve patient outcomes and
reduce resistance.

What Did the Researchers Do and Find?

• We evaluated the ability of a number of different algorithms (i.e. sets of
step-by-step instructions) to predict susceptibility to commonly-used antibiotics
using routinely available patient data from a children’s hospital in Cambodia.

• We found that an algorithm called random forests enabled surprisingly accurate
predictions, particularly for predicting whether the infection was likely to be
treatable with ceftriaxone, the most commonly used empiric antibiotic at the
study hospital.

• Using this approach it would be possible to correctly predict when a different
antibiotic would be needed for empiric treatment over 80% of the time, while
recommending a different antibiotic when ceftriaxone would suffice less than 20%
of the time.

What Do These Findings Mean?

• Using readily available patient information, sophisticated algorithms can enable
good predictions of whether antibiotics are likely to be effective several days
before laboratory tests are available.
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• Algorithms would need to be trained with local hospital data, but our study
shows that even with relatively limited data from a small hospital, good
predictions can be obtained.

• Used as part of a decision support system such algorithms could help choose
appropriate antibiotics for empiric therapy; this would be expected to translate
into better patient outcomes and may help to reduce resistance.

• Such as a decision support system would have very low costs and be easy to
implement in low- and middle-income countries.

Introduction 1

There is consistent evidence that early and appropriate treatment of sepsis can reduce 2

mortality [1]. Since definitive identification of a bacterial pathogen and its antibiotic 3

susceptibility typically takes three to four days using conventional culture methods, 4

empiric antibiotic therapy (i.e. therapy that starts before the causative organism and its 5

antibiotic susceptibility is known) is recommended. Choice of empirical antibiotic aims 6

to balance two objectives: first, to cast a wide spectrum of coverage effective against the 7

most likely causative organisms; second, to minimize the selection of resistance to 8

reserve antibiotics in the wider population [2]. Balancing the consequences associated 9

with these two concerns - immediate patient outcomes and long-term resistance patterns 10

impacting on future patients - represents a major challenge. 11

Empiric antibiotic choice for invasive bacterial infections in hospitalized children in 12

low-to-middle income countries (LMICs) constitutes a particularly stark example of this 13

problem owing to the high attributable mortality [3], and the high prevalence of 14

antimicrobial resistance, particularly in neonates [4]. 15

Current World Health Organization (WHO) guidelines for suspected sepsis or serious 16

bacterial infection in newborns recommend empirical usage of gentamicin and ampicillin 17

as the first line therapy, and change to third-generation cephalosporins if there is lack of 18

improvement in 24-72 hours. [5, 6] However, a systematic review of community-acquired 19

neonatal sepsis in developing countries in 2012 found that of the causative pathogens in 20

older infants (1–12 months), only 63% and 64% showed in vitro susceptibility to 21

ampicillin and gentamicin, and third-generation cephalosporins, respectively. [6] For 22

neonates, susceptibilities were even lower, with only 57% and 56% of pathogens 23

susceptible to ampicillin and gentamicin and third-generation cephalosporins, 24

respectively. 25

The potential harms of widespread antimicrobial resistance in children were 26

illustrated in a recent study performed between 2007 and 2016 in a Cambodian 27

children’s hospital, which found those infected with third-generation 28

cephalosporin-resistant bacteria were less likely than others to receive appropriate 29

antimicrobial therapy (57% vs. 94%), and when appropriate therapy was administered, 30

it was initiated later (2 days vs. 0 days after admission for those who survived; 0.5 days 31

vs. 0 days for those who died) [7]. In multivariable logistic regression, third-generation 32

cephalosporin resistance was independently associated with death (aOR 2.65, 95% CI 33

1.05–6.96); p = 0.042) and intensive care unit (ICU) admission (aOR 3.17, 95% CI 34

1.31–8.10). 35

While anticipated clinical efficacy is the primary deciding factor in empirical 36

antibiotic choices, [8] there are other important considerations as well. These include 37

side effect profile [9], cost, ease of administration and risks of promoting resistance 38

emergence in hospital settings. [2] 39

The adoption of antimicrobial stewardship programmes in hospitals is widely 40

advocated internationally. This is true both in LMICs and high income countries where 41

July 11, 2018 3/19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 13, 2018. ; https://doi.org/10.1101/367037doi: bioRxiv preprint 

https://doi.org/10.1101/367037


they are increasingly deployed, but still have substantial potential for 42

improvement [10,11]. Locally-adapted hospital antibiotic policies are important 43

components of such programmes, and typically contain recommendations for empiric 44

antibiotic use. In most cases these recommendations are derived from expert opinion 45

and informal (non-quantitative) syntheses of available evidence [12]. In some cases 46

simple decision support systems based on logistic regression models and score systems 47

have been developed to help identify patients at high risk of being infected with 48

multidrug-resistant pathogens. These approaches have primarily been developed in high- 49

and upper middle-income countries [13–18]. The use of predictive modeling as part of 50

clinical decision support systems for antimicrobial management remains rudimentary, 51

with only one example identified in a recent systematic review [19]. It has, however, 52

been demonstrated in a randomized trial (in Israel, Germany and Italy) that a 53

computerized decision support systems making use of an underlying causal probabilistic 54

network model can lead to more appropriate empiric antibiotic prescribing [20]. 55

We hypothesized that applying modern machine learning approaches to readily 56

collected patient data can surpass the performance of those based on logistic regression 57

or simple decision trees, and derive patient-specific predictions for antibiotic 58

susceptibility. Improved predictions directing empirical antibiotic therapy may 59

contribute to better patient outcomes while avoiding the overuse of inappropriate 60

antibiotics that select for resistance. 61

In this study, we propose a locally adapted decision support system for a Cambodian 62

children’s hospital by applying an array of machine learning algorithms to patient-level 63

data. We evaluated the ability of the algorithms to predict whether the causative 64

organisms were susceptible to (i.e. treatable with): i) ampicillin and gentamicin; ii) 65

ceftriaxone ; iii) neither i) nor ii). We specifically focus on the value of using the 66

predictive models to identify patients at high risk of being infected with organisms 67

resistant to ceftriaxone, a third-generation cephalosporin and the most commonly 68

prescribed empirical antibiotic in practice at our study site. 69

Materials and methods 70

Data 71

Retrospective data were collected from the Angkor Hospital for Children, a 72

non-governmental hospital in Siem Reap, North-western Cambodia with approximately 73

100 beds, and its Satellite Clinic situated 30km away, with 20 inpatient beds. The 74

hospital provides free surgical and general medical care to children less than 16 years of 75

age and is equipped with an ICU. Admitted neonates and children come from both 76

urban and rural settings, with about two thirds residing in Siem Reap province. Over 77

90% of patients admitted come from the community, the rest being transferred from 78

another hospital or clinic. None of the children are born in the hospital as there is no 79

obstetric service. 80

Blood cultures are routinely taken from febrile inpatients (axillary temperature 81

> 37.5◦C) in accordance with clinical algorithms. Processing of these cultures including 82

in vitro antibiotic susceptibility testing has been described elsewhere [21]. Children with 83

at least one positive blood culture for a bacterial pathogen (other than coagulase 84

negative Staphylococci and other likely skin contaminants) isolated between February 85

2013 and January 2016 were included in this study. We considered routine clinical data 86

collected by the hospital and data on living conditions including household size, presence 87

of domestic animals, and factors relating to water and sanitation. The study was 88

approved by the Angkor Hospital for Children Institutional Review Board (AHC-IRB, 89

290) and the Oxford Tropical Research Ethics Committee (OxTREC, 08-12). 90
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Data Analysis 91

We evaluated a suite of machine learning algorithms based on their ability to predict the 92

invasive pathogens’ Gram stain and in vitro susceptibility to antibiotics using available 93

information prior to receiving culture results. Specifically, the antibiotics considered 94

were: i) ampicillin and gentamicin; ii) ceftriaxone; iii) either i) or ii). In the event that 95

more than one organism was grown from the same blood culture, they were categorized 96

as susceptible to the specified antibiotics only if all organisms were susceptible to at 97

least one. 98

To predict the above four dependent variables we selected 35 independent variables 99

(predictors) from patient records by coding quality and relevance. Dichotomous 100

predictors where all but 10 or fewer patients had the same value were excluded. Missing 101

data for binary predictors were treated as negative (e.g. NA for domestic animal was 102

considered no domestic animal). 103

Weight for age standard deviations (z-score), a measure of malnutrition, was 104

calculated using the LMS method [22] based on growth charts from the Centers for 105

Disease Control. All dataset files are available at 106

http://doi.org/10.5281/zenodo.1256967. 107

Training the algorithms 108

For comparison, a logistic regression with backwards step-wise AIC model selection was 109

performed [23]. Additional machine learning algorithms that were explored include 110

decision trees constructed via recursive partitioning [24], random forests [25], boosted 111

decision trees using adaptive boosting [26], linear support vector machines (SVM) [27], 112

polynomial SVMs, radial SVMs [28] and k-nearest neighbors [29]. All analysis was done 113

in R [30] using the following packages; MASS [31] (stepwise logistic regression), 114

rpart [32] (decision tress), ranger [33] (random forest), fastAdaboost [34] (boosted 115

decision trees), kknn [35] (k-nearest neighbors), kernlab [36] (polynomial and radial 116

SVM), and LiblineaR [37] (linear SVM). Parameters were fitted for highest Kappa 117

based on a grid search [38]. Machine learning models were 5-fold cross-validated 118

repeated 3 times. 119

An 80/20 split for training and testing data set was adopted. For categorical 120

variables we ensured that each category was represented by at least one record in the 121

training set. To assess algorithm performance over different training sets, each model 122

was refitted to 100 random selections of training and testing data sets. Performance was 123

ranked based on area under the receiver operating characteristic curve (AUC) from the 124

test set. 125

For each method we report both the performance ranking for different outcomes, 126

and then consider each method’s individual performance. We select the best method 127

overall, then consider its probability calibration and the most important predictors. 128

Variable importance in random forests was calculated using the method described in 129

Janitza et al. [39] 130

Identifying the optimum cut-off 131

The Receiver Operating Characteristic (ROC) curves show what sensitivity (i.e. chance 132

of correctly identifying a non-susceptible infection) each test would be expected to have 133

for a given specificity (i.e chance of correctly identifying a susceptible infection). 134

However, they do not tell us what optimal cut-off for specificity we should use in 135

practice. One possible approach would be to choose this cut-off to maximize the overall 136

test accuracy (i.e. the chance the test gives a true positive or true negative result). 137

However, this would ignore the fact that the cost (in terms of economic loss and health 138
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Fig 1. Selection of records

impact) of failing to identify a non-susceptible infection will in general differ from the 139

cost of mistakenly classifying a susceptible infection as non-susceptible. To identify the 140

optimum cut-off, we should instead seek to choose the specificity that, for a given ROC 141

curve, maximizes the utility. This can be accomplished by adopting a health economic 142

framework, taking into account direct and indirect values of both economic costs and 143

changes in health outcomes associated with different cut-offs. Costs include those of the 144

prescribed antibiotics, excess length of stay and impact on mortality when no effective 145

empiric antibiotic is prescribed, and, most challengingly, future impact on health 146

outcomes due to selection for resistance that antibiotic usage may cause (i.e. whether 147

the use is appropriate or not). Given that the cost of future resistance is difficult to 148

quantify, an alternative approach is to consider willingness to pay (WTP) for avoiding 149

unnecessary use of last-line (in this case carbapenem) antibiotics. With this economic 150

framework, and using conventional recommendations for WTP per quality adjusted life 151

year (QALY) gained [40], health impact and monetary costs can be combined on the 152

same scale and represented as net monetary value (monetary loss + QALY loss × WTP). 153

In this way we can assign different net monetary values to each of the four possible test 154

outcomes (true positive, true negative, false positive, false negative). The optimal 155

cut-off will be a value of the specificity that minimizes this net monetary loss. We 156

provide illustrative examples of these calculations (see S1 Appendix for further details) 157

and provide a user-friendly web application to enable optimal cut-offs to be determined 158

under different assumptions, available at https://mathu.shinyapps.io/rf-ceft-cost/. 159

Results 160

Fig 1 shows the selection of cases used for model training and testing. Of 245 cases, two 161

cases were excluded; one due to missing target outcome data, and the other due to a 162

biologically impossible value. 163

Comparing relative performance of the approaches based on the AUC, the random 164

forest method was most frequently ranked first, and was consistently ranked higher than 165

decision trees, boosted decision trees, k-nearest neighbors, and the widely-used stepwise 166

logistic regression. Of the four dependent variables, lack of susceptibility to ampicillin 167

and gentamicin (Fig 2A), and to ampicillin, gentamicin and ceftriaxone (Fig 2C) were 168

best predicted by the random forest approach. 169

Overall, the SVM approaches performed well, but with some variation depending on 170
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which kernel the models were based on and which outcomes were being considered. For 171

example, an SVM with radial kernel outperformed the random forest approach by a 172

small margin in predicting lack of ceftriaxone susceptibility (Fig 2B), but performed 173

quite poorly for predicting lack of susceptibility to ampicillin and gentamicin (Fig 2A). 174

None of the three SVM variants performed well for all four of the outcomes. Even the 175

algorithms that performed worst overall performed best for some of the 176

randomly-selected training/test data splits. Thus, while the k-nearest neighbors method 177

was most frequently ranked the lowest out of all the methods, for a small number of 178

random selections of training data this algorithm was the best for predicting Gram stain 179

and lack of susceptibility to all three antibiotics. 180

Ranking, although a good indicator of relative performance, does not necessarily 181

indicate prediction ability itself. Fig 3 shows Receiver Operating Characteristic (ROC) 182

curves for predicting lack of susceptibility to ceftriaxone for all methods. This figure 183

highlights the disconnect between predictive performance on the training data set (blue 184

dotted line) and that on the test set (black dashed lines), highlighting the importance of 185

separating the training and testing data. It is possible for ROC curves for different 186

methods to cross, indicating that optimal methods may vary depending on the cut-off 187

used, and that the methods with the highest AUC may not always be the best for a 188

given application. Importantly, the random forest test set ROC curve did not cross with 189

other test set ROC curves. 190

To be effective in supporting decisions, it is useful to not only rank well (predict 191

correctly), but also to be well-calibrated (i.e. the estimated probabilities that pathogens 192

lack susceptibility to an antibiotic should be similar to observed frequencies). A 193

calibration plot for the ceftriaxone outcome with random forests algorithm is shown in 194

Fig 4 after Platt scaling of predicted probabilities [41]. This indicates that the model is 195

well-calibrated. 196

Fig 5 illustrates the influence of each independent variable on the random forest 197

model in predicting antibiotic susceptibilities. The most important predictor was days 198

from hospital admission to blood sample, which would decrease the impurity of tree 199

splits 100% of the time. That is to say, when the model was retrained with values from 200

days from hospital admission permuted, it had a negative effect on the model’s ability 201

to predict on all permutations. The assumption here is that if a predictor is important 202

to our model, our model should be sensitive to changes from it. Changes were permuted 203

from existing data to add realism to its range of possible values. In terms of importance, 204

Days from hospital admission to blood sample was closely followed by the patient’s age, 205

the classification of the infection as hospital- or community-acquired, and the patient’s 206

weight (adjusted for age), which perturbations had an effect 75% of the time. For 207

ceftriaxone, changes to variables related to previous hospital exposure and living 208

conditions all only had an effect on the model less than 25% of the time. 209

The most important predictors in the random forest model for the other three 210

outcomes were broadly similar. Interestingly, the classification of infection as hospital- 211

or community-acquired had less importance for predicting lack of susceptibility to 212

ampicillin and gentamicin compared to ceftriaxone, but household size was found to 213

much more important. 214

For comparison, in the widely-used stepwise-selected logistic regression model, 215

important predictors in multivariable models for treatability by ceftriaxone were age, 216

household size, meningitis, and hospital- versus community-acquired infection (Table 1) . 217

With the exception of meningitis, all these predictors ranked high in coverage (top 218

five) on importance in the random forests model. 219

Fig 6 illustrates how, used as part of a decision support system, choice of the test 220

threshold to inform antibiotic prescribing decisions would impact on the number of 221

patients treated empirically with appropriate antibiotics. Taking a test threshold of 0.29 222
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Fig 2. Comparison of performance rankings. Histograms of performance
rankings obtained with 100 random splits of data into training (80%) and testing (20%)
sets for the eight machine learning algorithms for predicting four outcomes (A) lack of
susceptibility to ampicillin + gentamicin (B) lack of susceptibility to ceftriaxone (C)
lack of susceptibility to both (D) Gram stain. Ranking of 1 (blue) is best, 8 (red) is
worst. Rankings are based on the area under the ROC curves with the test data.
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Fig 3. Receiver Operating Characteristic (ROC) curves for predicting lack
of susceptibility to ceftriaxone. Training set (blue dotted lines), testing set i.e.
actual performance (black dashed lines with 95% intervals shown by shading). The solid
diagonal line is the line of no-discrimination, the expected performance of a random
guess.

Fig 4. Calibration for random forest predicting lack of susceptibility to
ceftriaxone. This compares predicted probabilities (grouped into 10 equally-sized bins)
to observed event frequencies in real data using the entire data set. Points close to the
gray diagonal line indicate that the predicted probability is close to the observed
frequency. Numbers above points indicate the number of records contributing to each
point.
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Fig 5. Variable importance in random forest models. Results show relative
importance of variables for predicting lack of susceptibilty to ampiciliin + gentamicin
(A) lack of susceptibilty to ceftriaxone (B) lack of susceptibility to both (C) Gram stain
(D).
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Fig 6. Effects of test cut-off (threshold) choice for decision outcomes and
utility. Impact of test threshold (horizontal red line in panels A and B) on classification
outcomes for lack of susceptibility to ceftriaxone, showing observations which, for the
illustrated cut-off, are false negatives (FN), false positives (FP), true negatives (TN)
and true positives (TP) in test (A) and training (B) data. The ROC curve (C) is shaded
according to utility loss at different cut-offs, where horizontal dashed lines correspond to
the threshold selected by minimizing the cost function (D), i.e. maximising utility.
Higher utilities i.e. lower costs (expressed as a net monetary value) are shaded in green.
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for the predicted probability that ceftriaxone would not be an effective treatment (so 223

above this value, patients would be recommended to receive a second-line antibiotic, 224

typically a carbapenem, instead of ceftriaxone), 14 out of 15 (93%) patients in the test 225

data set who have ceftriaxone-resistant infections would be correctly identified (true 226

positives). This threshold choice would also lead to eight of the 33 (24%) patients with 227

ceftriaxone-susceptible infections unnecessarily receiving the second-line antibiotic 228

(over-treatment). Adjusting the threshold corresponds to moving the red line in Fig 229

6A-B up and down, changing the numbers of patients over- and under-treated. The 230

choice of this threshold has an impact on patient outcomes and costs; their combined 231

impact can be represented as the net utility loss (expressed as a net monetary value) 232

due to infection (Fig 6D). A rational approach would be to choose the threshold to 233

minimize this utility loss. However, quantifying utility loss due to future selection for 234

resistance when using antibiotics is challenging [42], so an alternative approach is to 235

choose a prediction threshold based on clinical judgment, and work backwards to 236

determine how this implicitly values the utility loss due to over-treatment. In this 237

example, we find a threshold of 0.29 implies that we would be willing to pay $US 200 to 238

avoid one unnecessary course of a carbapenem. Details of the calculations can be found 239

in the supplementary text. 240

Discussion 241

Our results show that modern machine learning algorithms can reliably and 242

substantially outperform widely-used logistic regression models and provide accurate, 243

actionable, and well-calibrated predictions about whether commonly used empirical 244

antibiotics are likely to be effective. We found that the random forest approach 245

performed particularly well, especially for predicting whether pathogens were likely to 246

lack susceptibility to ceftriaxone, the most widely used empiric antibiotic for our study 247

patients. To our knowledge this is the first time such machine learning algorithms have 248

been applied to this problem. 249

The most important variables for predicting antibiotic susceptibility were found to 250

be time from admission to blood culture, patient age, age-adjusted weight score, and 251

hospital versus community-acquired infection. These are objective and routinely 252

collected variables available in most clinical settings. All other variables included in the 253

models are also easily collected at minimal cost through short questionnaires. The 254

computations underlying the predictions can readily be performed in a few seconds on a 255

low-cost computer, or remotely via any device connected to the Internet. This makes 256

the approach highly suitable for other LMIC settings, which typically face the highest 257

disease burden and the most urgent problems with antimicrobial resistance [43]. 258

Wider implications 259

Used as part of a decision support system, the best machine learning approaches should, 260

in theory, make it possible to substantially increase the proportion of patients who 261

receive effective empiric antibiotics, while minimizing the risks of increased resistance 262

selection that would be associated with a blanket change in the default choice of empiric 263

antibiotics for all patients. Clearly, further work is needed to evaluate such deployment 264

in practice. 265

Rapid microbiological diagnostic tests offer an alternative pathway for improving the 266

precision of early antibiotic prescribing. Affordable and accurate tests are not currently 267

available, but this situation may change in the coming years. While machine learning 268

approaches as proposed here could be considered a stopgap, we think it is more likely 269

that the two approaches will be complementary. Results from future rapid diagnostic 270
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Table 1. Distribution of variables for logistic regression for susceptibility to ceftriaxone

Characteristics Treatable Resistant OR 95% CI P-value
n = 127 n = 68
(No/Yes) (No/Yes)

Age (days) 703; 1063* 1616; 1613* 1.205 1.032-1.41 0.0183
Complication during admission

Required ICU care/ventilation 32/31 23/109 0.767 0.203-2.89 0.6952
Required surgery 7/56 10/122 0.740 0.138-3.98 0.7260
Required blood transfusion 28/35 27/105 0.579 0.190-1.77 0.3372

Transfer from another hospital 18/45 18/114 0.295 0.080-1.09 0.0670
Admission differential diagnosis

Sepsis 37/26 82/50 0.537 0.174-1.66 0.2796
Meningitis 4/59 23/109 11.884 1.577-89.57 0.0163
Lower respiratory tract infection/pneumonia 17/46 33/99 0.556 0.180-1.72 0.3081
Upper respiratory tract infection 3/60 6/126 0.601 0.068-5.33 0.6472
Gastroenteritis 9/54 18/114 1.777 0.399-7.91 0.4508
Cellulitis 4/59 11/121 0.959 0.146-6.30 0.9650
Abscess 2/61 10/122 1.779 0.243-13.04 0.5708
Urinary tract infection 2/61 12/120 0.555 0.075-4.10 0.5643

Weight for age (SD) -2.2; 1.7* -2.1; 1.7* 1.322 0.990-1.76 0.0588
Hospitalised in the last year (times) 0; 0-3‡ 0; 0-3‡ 0.425 0.168-1.08 0.0719
Out-patient visits in the last 6 months (times) 0; 0-3‡ 0; 0-3‡ 0.873 0.410-1.86 0.7257
Treatment prior to current admission

Pharmacy 8/55 43/89 1.841 0.488-6.94 0.3674
Nurse 22/41 64/68 1.301 0.422-4.01 0.6472
Traditional Healer (Khru Khmer) 8/55 15/117 1.195 0.224-6.39 0.8347
Received IV fluids 11/52 31/101 0.771 0.182-3.26 0.7234
Received medication 34/29 105/27 0.699 0.161-3.03 0.6322

Household size 6; 3-10‡ 6; 3-10‡ 1.301 1.003-1.69 0.0472
Owns domestic animals 49/14 92/40 0.551 0.152-2.00 0.3649
Owns livestock 44/19 89/43 0.329 0.096-1.12 0.0762
Normally defecate in a toilet 33/30 62/70 0.504 0.179-1.42 0.1959
Owns refridgerator 4/59 5/127 0.852 0.090-8.04 0.8890
Taken antibiotics in the last 3 weeks 4/59 22/110 8.152 0.738-90.07 0.0869
Family member hospitalized in last 3 months 5/58 9/123 0.429 0.079-2.33 0.3266
Exposure to environmental drinking water in past week 7/56 24/108 0.242 0.050-1.18 0.0793
Normally drink treated water 26/37 61/71 1.071 0.391-2.93 0.8944
Hospital acquired infecton 34/29 11/121 0.067 0.013-0.34 0.0011
Days from hospital admission to blood sample 0; 0-104‡ 0; 0-104‡ 0.991 0.914-1.07 0.8308
Gender (Male) 33/30 79/53 0.684 0.254-1.84 0.4519
Location (Angkor Hospital for Children) 54/9 94/38 0.352 0.091-1.35 0.1282
Taken antibiotics prior to admission

None 39/24 62/70 51108763.849 0.000-Inf 0.9882
Penicillin Family 4/59 17/115 68311352.311 0.000-Inf 0.9880
Unknown 17/46 53/79 87658692.420 0.000-Inf 0.9878

*Mean; SD for normal distributions, ‡Mode; Range for exponential distributions,

SD, standard deviation; CI, confidence interval; OR, odds ratio; Inf, infinity

Odds ratio from multivariate logistic regression analysis prior to step-wise backward elimination

tests could be used as inputs into machine learning algorithms along with other patient 271

variables, and would be expected to lead to more reliable predictions than those from 272
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the rapid tests alone. 273

Utility 274

A common dilemma in designing diagnostic systems is to identify the optimum cut-off 275

point for sensitivity and specificity on the ROC curve. Increasing the sensitivity 276

threshold for detecting lack of susceptibility to an antibiotic (which corresponds to 277

lowering the horizontal red line in Fig 6) will capture more true cases of antimicrobial 278

resistance where a reserve antibiotic (e.g. carbapenem) is appropriate and potentially 279

improve patient outcomes (i.e. there will be more true positives). However, this will 280

inadvertently lead to more prescriptions of reserve antibiotics when they are not needed 281

(false positives), creating increased selection for resistance to what may be an antibiotic 282

of last resort. Conversely, setting the threshold at higher specificity (raising the red line 283

in Fig 6) has the benefit of reducing false positives, but the model will miss more 284

patients with resistant bacterial infections (i.e. false negatives will increase), leading to 285

delayed prescription of appropriate antibiotics. A natural approach would be to choose 286

the cut-off to maximise utility (which includes health outcomes and opportunity costs 287

associated with economic costs). While quantifying the direct healthcare cost 288

components is relatively straightforward, the costs of resistance are far more challenging 289

to calculate. Shrestha et al estimated the costs of resistance per antibiotic consumed, 290

assigning a cost of $US 0.8 and $US 1.5 per standard unit of carbapenem in Thai and 291

US settings, respectively [42]. However, these estimates did not take into account the 292

potentially grave future consequences of losing an antibiotic of last resort. Better 293

quantification of how we should value not using antibiotics is an important area of 294

future research. 295

Strengths and limitations 296

We systematically evaluated a number of machine learning algorithms to determine the 297

algorithms with the best predictive performance for the problem. Most currently 298

available clinical scoring systems rely on logistic regression models, probably for 299

historical reasons. No method is universally better than another method [44,45], 300

however different algorithms have strengths and weaknesses, and our results suggest 301

that by focusing on a single learning algorithm much of the previous literature may have 302

missed an important opportunity. 303

A second important strength of our work is that algorithm training and evaluation 304

were performed on different data sets. As is clear from Fig 3, if this is not done inflated 305

performance estimates are likely. Though there are some notable exceptions [13,15,18], 306

this separation has not always been performed in the previous literature, and this would 307

be expected to lead to predictive power that is substantially lower than reported. 308

Thirdly, our analysis maximizes accuracy towards local usage. If we had used a large 309

dataset aggregated from multiple settings in the hope of increasing generalisability, 310

algorithm performance for all of the contributing centres would have been likely to 311

suffer. Generally, scoring systems developed in one setting have been found to have 312

substantially worse performance in different settings [14,46]. Our approach focuses on 313

generalizing towards new samples obtained within the same setting with a 314

moderately-sized dataset by comparing a large number of models [47]. Importantly, this 315

suggests that the potential benefits of machine learning, which are often assumed to 316

depend on large high-quality data-sets more commonly available in high-income 317

settings [48], may be considerable even in resource- and relatively data-poor settings. 318

There are several limitations to our study. As with most clinical predictive systems, 319

generalizability is a concern. A model developed using data from one hospital, may have 320

poor predictive value when applied in another setting [14,46]. We anticipate that wider 321
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deployment of such approaches would require models to be tailored to local data. The 322

model may also become less relevant as time passes. Identifying the most appropriate 323

temporal and spatial selection windows for training data is an important area for future 324

research. 325

Understanding the algorithms 326

One potential obstacle to the wider adoption of machine learning algorithms is that, to 327

many, they are a black box. An intuitive way to understand them is to consider a 328

geometric interpretation, visualizing a smaller problem first. Suppose we have a dataset 329

with two predictors, height and weight. We can imagine each data point inhabiting a 330

point in a 2-dimensional plane, feature space (i.e. a graph with weight on the x-axis and 331

height on the y-axis). Each point would have a label of the class we are trying to 332

predict (i.e. diseased/healthy). A classification problem can be superficially phrased as 333

a search to find a line (or lines) which best separates the points with different labels on 334

its feature space. For example, a line which splits between disease and healthy people 335

on the height-weight plane. These lines do not necessarily need to be straight. For two 336

independent variables this can be visualized as a graph. For n predictors this would 337

require n-dimensions. For n > 3 this is harder to visualize, but the geometric 338

interpretation still holds. 339

A geometric visualization allows us to appreciate the varying performances of each 340

method by considering how each method arrives at the conclusion as to which line (or 341

combination of lines) is best. A decision tree can be considered a combination of 342

decisions, each represented by a line in our feature plane (i.e. is weight > 50 kg? can be 343

considered a line at 50 on the weight axis). A combination of simple lines allows for 344

more complex decision boundaries. But because of their ability to create complex 345

boundaries, they tend to overfit. Random forests are designed to correct for the habit of 346

decision trees to overfit by building a consensus of a multitude of decision trees, and 347

averaging these trees by giving the majority vote after polling all component decision 348

trees based on classification. In contrast, k-nearest neighbor, our least effective model, 349

simply considers classification based solely on the assumption that points closer in 350

feature space should be given the same classification. SVM with a radial kernel, in 351

contrast, looks for the circle that best separates points with different outcome labels. 352

Our results (Fig 2) clearly show that chance plays an important role in determining 353

which lines best separate the points (and therefore which algorithm wins), but some 354

algorithms (random forests and SVM) tend to have a much better chance of doing well. 355

Conclusion 356

Decision support systems, informed by analysis of readily available data, when 357

calibrated to local data, have the potential to lead to evidence-based hospital antibiotic 358

policies which could improve the chances patients receive the most appropriate empiric 359

antibiotics. This would be expected to lead to better patient outcomes and could help 360

minimize the risk of increasing antibiotic resistance. While guidelines for developing a 361

hospital antibiotic policy advocate conducting literature reviews and basing 362

recommendations on local cumulative surveillance antibiograms [12], we have shown 363

that machine learning algorithms informed by relatively small amounts of patient-level 364

data can be used for deriving targeted and well-calibrated patient specific predictions 365

for what empirical antibiotic therapy is likely to be appropropriate. Such a prediction 366

system can be developed cheaply, using easily-collected data, and is well-suited to LMIC 367

settings. 368
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