- 1 TITLE: Regeneration of dopaminergic neurons in adult zebrafish depends on
- 2 immune system activation and differs for distinct populations.
- 3
- 4 AUTHORS: Lindsey J. Caldwell<sup>1§</sup>, Nick O. Davies<sup>1§#</sup>, Leonardo Cavone<sup>1</sup>,
- 5 Karolina S. Mysiak<sup>1</sup>, Svetlana A. Semenova<sup>2</sup>, Pertti Panula<sup>2</sup>, J. Douglas
- 6 Armstrong<sup>3</sup>, Catherina G. Becker<sup>1\*#</sup>, Thomas Becker<sup>1\*#</sup>.
- 7
- 8 ADDRESSES: <sup>1</sup>Centre for Discovery Brain Sciences, University of Edinburgh,
- 9 The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB,
- 10 UK; <sup>2</sup>Neuroscience Center and Department of Anatomy, University of Helsinki,
- 11 00290 Helsinki, Finland; <sup>3</sup>School of Informatics, University of Edinburgh, 10
- 12 Crichton Street, Edinburgh EH8 9AB, UK
- 13
- 14 § joint first authors; # co-corresponding; \* joint senior authors
- 15
- 16

2

# 18 ABSTRACT:

| 19 | Adult zebrafish regenerate neurons in their brain, but the extent and               |
|----|-------------------------------------------------------------------------------------|
| 20 | variability of this capacity is unclear. Here we ask whether loss of various        |
| 21 | dopaminergic neuron populations is sufficient to trigger their functional           |
| 22 | regeneration. Genetic lineage tracing shows that specific diencephalic              |
| 23 | ependymo-radial glial progenitor cells (ERGs) give rise to new dopaminergic         |
| 24 | $(Th^{+})$ neurons. Ablation elicits an immune response, increased proliferation of |
| 25 | ERGs and increased addition of new $Th^+$ neurons in populations that               |
| 26 | constitutively add new neurons, e.g. diencephalic population 5/6. Inhibiting the    |
| 27 | immune response attenuates neurogenesis to control levels. Boosting the             |
| 28 | immune response enhances ERG proliferation, but not addition of $Th^{+}$            |
| 29 | neurons. In contrast, in populations in which constitutive neurogenesis is          |
| 30 | undetectable, e.g. the posterior tuberculum and locus coeruleus, cell               |
| 31 | replacement and tissue integration are incomplete and transient. This is            |
| 32 | associated with loss of spinal $Th^+$ axons, as well as permanent deficits in       |
| 33 | shoaling and reproductive behaviour. Hence, dopaminergic neuron                     |
| 34 | populations in the adult zebrafish brain show vast differences in regenerative      |
| 35 | capacity that correlate with constitutive addition of neurons and depend on         |
| 36 | immune system activation.                                                           |
| ~- |                                                                                     |

#### 38 INTRODUCTION

39 The adult mammalian brain shows very limited neurogenesis after injury or neuronal loss, leading to permanent functional deficits <sup>1,2</sup>. By 40 41 contrast, the regenerative capacity of the CNS in adult zebrafish after injury is remarkable <sup>3-5</sup>. However, relatively little is known about the capacity for 42 43 regeneration and functional integration after loss of discrete cell populations in 44 the fully differentiated adult CNS. 45 To study regeneration of distinct populations of neurons without 46 physical damage, we ablated dopaminergic and noradrenergic neurons using 47 6-hydroxydopamine (60HDA), which selectively ablates these neurons across

48 vertebrates <sup>6-9</sup>. In adult zebrafish, the dopaminergic system is highly

49 differentiated. There are 17 distinct dopaminergic and noradrenergic brain

50 nuclei, identified by immunohistochemistry for cytoplasmic Tyrosine

51 hydroxylase (Th) and the related Th2, rate-limiting enzymes in dopamine and

52 noradrenaline synthesis <sup>10,11</sup>. Projections of Th<sup>+</sup> brain nuclei are far-reaching,

53 including long dopaminergic projections to the spinal cord from population 12

54 in the diencephalon and noradrenergic projections from the locus coeruleus

(LC) in the brainstem. These projections are the only  $Th^+$  input to the spinal cord <sup>10,12-14</sup>.

57 Functionally, dopamine, especially from the diencephalo-spinal 58 projection from population 12, has roles in maturation and initiation of motor 59 patterns in developing zebrafish <sup>15-18</sup>. In addition, dopamine has been linked 60 to anxiety-like behaviour in zebrafish <sup>19,20</sup>. Dopaminergic neurons are 61 constantly generated in the adult diencephalon <sup>21</sup>, but it is unclear which 62 populations receive new neurons and how this may change after ablation.

| 63 | For regeneration of neurons to occur, ependymo-radial glia (ERG)                              |
|----|-----------------------------------------------------------------------------------------------|
| 64 | progenitor cells need to be activated. ERGs have a soma that forms part of                    |
| 65 | the ependyma and radial processes that span the entire thickness of the                       |
| 66 | brain. After a CNS injury, these cells are either activated from quiescence or                |
| 67 | increase their activity in constitutively active adult proliferation zones to                 |
| 68 | regenerate lost neurons <sup>3,5,22</sup> . Activation could occur via damage to the highly   |
| 69 | branched ERG processes or early injury signals. Remarkably, the                               |
| 70 | microglial/macrophage reaction following a mechanical lesion has been                         |
| 71 | shown to be both necessary and sufficient for regenerative proliferation of                   |
| 72 | ERGs and neurogenesis in the adult zebrafish telencephalon <sup>23</sup> . The immune         |
| 73 | response also promotes neuronal regeneration in the spinal cord of larval                     |
| 74 | zebrafish after a lesion <sup>24</sup> . Hence, it might also play a role in the regenerative |
| 75 | response after discrete neuronal loss without injury.                                         |
| 76 | We find that locally projecting dopaminergic neurons in the                                   |
| 77 | diencephalon are regenerated from specific ERGs, whereas large $Th^{+}$                       |
| 78 | neurons with spinal projections are only transiently replaced, associated with                |
| 79 | permanent and specific functional deficits in shoaling and mating behaviour.                  |
| 80 | Inhibiting the immune response abolished ablation-induced regeneration.                       |
| 81 | Hence, we demonstrate an unexpected heterogeneity in regenerative capacity                    |
| 82 | of functionally important dopaminergic neurons in the adult zebrafish and                     |
| 83 | essential functions of the immune response.                                                   |
| 84 |                                                                                               |

### 85 MATERIAL AND METHODS

86

### 87 <u>Animals</u>

- 88 All fish were kept and bred in our laboratory fish facility according to standard
- 89 methods <sup>25</sup>, and all experiments had been approved by the British Home
- 90 Office. We used wild type (*wik*) and *Tg(olig2:DsRed2*)<sup>26</sup>, abbreviated as
- 91 olig2:DsRed; Tg(gfap:GFP)<sup>27</sup>, abbreviated as gfap:GFP; Tg(slc6a3:EGFP)<sup>28</sup>,
- 92 abbreviated as *dat*:GFP, and *Tg(her4.1:TETA-GBD-2A-mCherry)*<sup>29</sup>,
- 93 abbreviated as *her4.3*:mCherry, transgenic reporter lines. Note that zebrafish
- 94 nomenclature treats *her4.1* and *her4.3* as synonymous (https://zfin.org/ZDB-
- 95 TGCONSTRCT-110825-6). For genetic lineage tracing, we used Tg(-
- 96 *3her4.3:Cre-ERT2)* <sup>30</sup> crossed with *Tg(actb2:LOXP-mCherry-LOXP-EGFP)* <sup>31</sup>,
- 97 as previously described  $^{32}$ . Adult (> 4 months of age) male and female fish
- 98 were used for the experiments.
- 99
- 100 Bath application of substances
- 101 For dexamethasone treatment, fish were immersed in 15 mg/L
- 102 dexamethasone (Sigma-Aldrich, D1756) or vehicle (DMSO) in system water.
- 103 For lineage tracing experiments, fish were immersed in 1  $\mu$ M 4-
- 104 hydroxytamoxifen (Sigma-Aldrich, H6278) in system water with tanks
- 105 protected from light. Fish were transferred into fresh drug/vehicle every other
- 106 day.
- 107
- 108 Intraventricular injections

| 109 | Fish were anaesthetised in MS222 (Sigma-Aldrich,1:5000 $\%$ w/v in                |
|-----|-----------------------------------------------------------------------------------|
| 110 | PBS) and mounted in a wet sponge to inject the third ventricle from a dorsal      |
| 111 | approach using a glass capillary, mounted on a micromanipulator. Using            |
| 112 | sharp forceps, a hole was made into the skull covering the optic tectum and       |
| 113 | the needle was advanced at a 45° angle from the caudal edge of the tectum         |
| 114 | into the third ventricle. The capillary was filled with a 10 mM solution of       |
| 115 | 6OHDA (6-Hydroxydopamine hydrobromide, Sigma-Aldrich, product number:             |
| 116 | H116) in $H_2O$ and 0.12% of a fluorescent dextran-conjugate (Life                |
| 117 | Technologies, product number: D34682) to ablate $Th^+$ cells, or with             |
| 118 | fluorescently labelled Zymosan A (from Saccaromyces cerevisiae) bioparticles      |
| 119 | at a concentration of 10 mg/mL (Life Technologies, product number: Z23373)        |
| 120 | to stimulate the microglial response. LTC4 (Cayman Chemicals, product             |
| 121 | number: 20210) was injected at a concentration of 500 ng/ml in 0.45% ethanol      |
| 122 | in $H_2O$ . Sham-injected controls were generated by injecting vehicle solutions. |
| 123 | A pressure injector (IM-300 microinjector, Narishige International, Inc.          |
| 124 | USA) was used to inject 0.5 to 1.0 $\mu L$ of the solution. Distribution of the   |
| 125 | solution throughout the ventricular system was verified under a fluorescence-     |
| 126 | equipped stereo-microscope. This injection technique only induced a localised     |
| 127 | microglia reaction surrounding the point where the capillary penetrated the       |
| 128 | optic tectum, but not close to any of the $Th^+$ populations of interest.         |
| 129 |                                                                                   |
|     |                                                                                   |

### 130 Intraperitoneal injections

Fish were anaesthetised in MS222 and injected on a cooled surface on
their left side with a 30½ G needle. Per application, 25 µl of 16.3 mM EdU

- 133 (Invitrogen) was injected intraperitoneally. EdU was dissolved in 15% DMSO
- 134 and 30% Danieau's solution in distilled water.
- 135 Haloperidol (Sigma-Aldrich, product number: H1512) was injected at a
- 136 volume of 25 μl and a concentration of 80 μg/ml in PBS for each injection.
- 137 This roughly equates to 4 mg/kg, twice the concentration shown to be
- 138 effective in salamanders <sup>8</sup>.
- 139
- 140
- 141 <u>Quantitative RT-PCR</u>
- 142 Brains were dissected without any tissue fixation and sectioned on a
- vibrating-blade microtome. RNA was isolated from a horizontal section 200
- 144 µm thick at the level used for analysis of proliferating ERGs around the
- 145 ventricle (refer to Fig. 5A for section level) using the RNeasy Mini Kit (Qiagen,
- 146 74106). cDNA synthesis was performed using the iScript<sup>™</sup> cDNA Synthesis
- 147 Kit (Bio-Rad, 1708891). Standard RT-PCR was performed using
- 148 SsoAdvanced<sup>TM</sup> Universal SYBR® Green Supermix (Bio-Rad, 172-5271).
- 149 qRT-PCR (annealing temperature 58 °C) was performed using Roche Light
- 150 Cycler 96 and relative mRNA levels were determined using the Roche Light
- 151 Cycler 96 SW1 software. Samples were run in duplicates and expression
- 152 levels were normalized to the level of 18S ribosomal RNA. Primers were
- designed to span an exon-exon junction using Primer-BLAST. Primer
- 154 sequences:
- 155 TNF-α FW 5'-TCACGCTCCATAAGACCCAG-3', RV 5'-
- 156 GATGTGCAAAGACACCTGGC-3', il-1β FW 5'-
- 157 ATGGCGAACGTCATCCAAGA-3', RV 5'-GAGACCCGCTGATCTCCTTG-3',

#### 158 18S FW 5'- TCGCTAGTTGGCATCGTTTATG-3', RV 5'-

- 159 CGGAGGTTCGAAGACGATCA-3'.
- 160
- 161 <u>HPLC</u>
- 162 Brains were dissected without any tissue fixation and frozen. HPLC
- 163 analysis was performed as described <sup>33</sup>.
- 164

#### 165 <u>Immunohistochemistry</u>

- 166 We used mouse monoclonal antibody 4C4 (1:50; HPC Cell Cultures,
- 167 Salisbury, UK, catalogue number: 92092321) to label microglia. The antibody
- 168 labels microglia in the brain, but not peripheral macrophages <sup>34</sup>. We used a
- 169 chicken antibody to green fluorescent protein (GFP) (1:500; Abcam,
- 170 Cambridge, MA, USA, designation: ab13970); a mouse monoclonal antibody
- to the proliferating cell nuclear antigen (PCNA) (1:1000; Dako, Sigma-Aldrich,
- 172 St Louis, MO, USA, designation: M0879); a mouse monoclonal antibody to
- 173 tyrosine hydroxylase (Th) (1:1000; Merck Millipore, Billerica, MA, US,
- designation: MAB318). Suppliers for the appropriate fluorescence or biotin-
- 175 labelled antibodies were Stratech Scientific, Sydney, Australia and Vector
- 176 Laboratories, Burlingame, CA, USA, respectively. Dilutions of secondary
- 177 antibodies followed the manufacturers' recommendations.
- 178 Immunofluorescent labelling of 50 µm sections was carried out as
- 179 previously described <sup>35</sup>. Briefly, brains from perfusion-fixed (4%
- 180 paraformaldehyde) animals were dissected, sectioned on a vibrating-blade
- 181 microtome, incubated with primary antibody at 4°C overnight, washed,
- incubated in secondary antibody for 45 min at room temperature, washed and

183 mounted in glycerol. All washes were 3 times 15 minutes in PBSTx (0.1%

184 Triton X 100 in PBS).

| 185 | For colorimetric detection of Th, a biotinylated secondary antibody was                                        |
|-----|----------------------------------------------------------------------------------------------------------------|
| 186 | used, followed by the ABC reaction using the Vectastain ABC kit (Vector                                        |
| 187 | Laboratories, Burlingame, USA) according to the manufacturer's                                                 |
| 188 | recommendations. The colour was developed using diaminobenzidine                                               |
| 189 | solution (1:120 diaminobenzidine; 2 $\mu l/ml$ of 1% stock NiCl_2 and 2 $\mu l/ml$ of 1%                       |
| 190 | stock CoSO <sub>4</sub> in PBS) pre-incubation (30 min at $4^{\circ}$ C), followed by addition of              |
| 191 | 30% hydrogen peroxide. Sections were mounted, dried and counterstained in                                      |
| 192 | neutral red staining solution (4% acetate buffer (pH 4.8) and 1% neutral red in                                |
| 193 | $dH_2O$ ) for 6 min, followed by differentiation in 70% and 95% ethanol.                                       |
| 194 |                                                                                                                |
| 195 | EdU detection                                                                                                  |
| 196 | To detect EdU, we used Click-iT $\ensuremath{\mathbb{R}}$ EdU Alexa Fluor $\ensuremath{\mathbb{R}}$ 488 or 647 |
| 197 | Imaging Kits (Molecular Probes) according to the manufacturer's                                                |
| 198 | recommendations. Briefly, 50 $\mu$ m sections from perfusion-fixed brains were                                 |
| 199 | incubated in Click-iT reaction buffer for three hours in the dark at room                                      |
| 200 | temperature, washed 3 x 10 min in 0.3% PBSTx and once in PBS. After that,                                      |
| 201 | sections were mounted in 70% glycerol or underwent immunofluorescent                                           |
| 202 | labelling as above.                                                                                            |
| 203 |                                                                                                                |
| 204 | TUNEL labelling                                                                                                |
| 205 | TUNEL labelling was carried out as described <sup>36</sup> using the <i>in situ</i> TMR                        |
| 206 | cell death detection kit (Roche) according to the manufacturer's                                               |
| 207 | recommendations. In brief, sections were incubated with reaction mix in the                                    |

208 dark at 37°C for 60 min. This was followed by immunolabelling as described

above.

210

211 Quantification of cells and axons

All counts were carried out with the observer blinded to the

213 experimental condition. For colorimetric immunohistochemistry of Th, cell

214 profiles were counted for individual brain nuclei, identified by neutral red

215 counterstain. Innervation density of labelled axons was semi-quantitatively

216 determined by determining the average pixel brightness for a region of

217 interest using Image J.

In fluorescently labelled sections, cells were stereologically counted in confocal image stacks, as described <sup>35</sup>. Double-labelling of cells was always assessed in single optical sections (<2  $\mu$ m thickness). Fluorescently labelled axons in the spinal cord were quantified using automatic functions in Image J as described <sup>14</sup>.

223

### 224 <u>Behavioural tests</u>

All behaviour tests, comparing between 6OHDA-injected and shaminjected animals, were performed when at least seven days had passed after
injection. All recordings were made with a Sony ExwaveHAD B&W video
camera and videos were analysed using Ethovision XT7 tracking software
(Noldus, Leesberg, USA), except for shoaling analysis (see below).
For the open field test, fish swimming was recoded in a round tank
(16.3 cm diameter, 8 cm water depth) for 6 min after 2 minutes acclimatization

time. The software calculated the total distance moved and the average

velocity of fish.

234 For the light/dark test, a tank (10 cm x 20 cm, 8 cm water depth) was 235 illuminated from below with half of the area blocked from the light. The time 236 spent in the illuminated area was recorded in the 6 minutes immediately 237 following placement of the fish. 238 For the novel tank, test fish were placed in a tank 23 cm x 6 cm, 12 cm 239 water depth, divided into three 4 cm zones) and their time spent in the 240 different depth zones recorded for 6 minutes immediately after the fish were 241 placed. 242 For the shoaling test, groups of four fish of either sex were placed into 243 a large tank (45.5 cm x 25 cm, water depth 8 cm) and their swimming 244 recorded for 6 min after 2 min of acclimatization time. Fish were 245 simultaneously tracked and the pairwise Euclidean distance between each 246 pair of fish determined and averaged per frame using commercially available 247 Actual Track software (Actual Analytics, Edinburgh). 248 To test mating success, pairs of fish were placed into mating tanks 249 (17.5 cm x 10 cm, water depth 6 cm) with a transparent divider in the evening. 250 The next morning the divider was pulled at lights-on and the fish were allowed 251 to breed for 1 hour. Each pair was bred 4 times every other day. Numbers of 252 fertilized eggs in the clutch and the percentage of successful matings were 253 recorded. A mating attempt was sored as successful, when fertilised eggs 254 were produced. 255

256 <u>Statistical analyses</u>

| 257 | Quantitative data were tested for normality (Shapiro-Wilk test, $*p < 0.05$ ) |
|-----|-------------------------------------------------------------------------------|
| 258 | and heteroscedasticity (Levene's test, $*p < 0.05$ ) to determine types of    |
| 259 | statistical comparisons. Variability of values is always given as SEM.        |
| 260 | Statistical significance was determined using Student's t-test for parametric |
| 261 | data (with Welch's correction for heteroscedastic data) or Mann-Whitney U-    |
| 262 | test for nonparametric data. For multiple comparisons, we used one-way        |
| 263 | ANOVA with Bonferroni's post-hoc test for parametric homoscedastic data,      |
| 264 | one-way ANOVA with Welch's correction and Games-Howell post-hoc test for      |
| 265 | heteroscedastic data, and Kruskall-Wallis test with Dunn's post-test for      |
| 266 | nonparametric data. The shape of distributions was assessed using a           |
| 267 | Kolmogorov-Smirnov test (Fig.10). Randomisation was performed by              |
| 268 | alternating allocation of fish between control and treatment groups. No       |
| 269 | experimental animals were excluded from analysis. All relevant data are       |
| 270 | available from the authors.                                                   |
| 271 |                                                                               |

13

#### 273 RESULTS

274

| 275 | بالمعادية برمانية بالمرجب ومتلقيا |                     | an a sifia manufations of |
|-----|-----------------------------------|---------------------|---------------------------|
| 275 | Intraventricular injection        | on of 60HDA adlates | specific populations of   |

276 dopaminergic neurons and locally activates microglia.

277 To ablate dopaminergic and noradrenergic (Th<sup>+</sup>) neurons in the

absence of damage to tissue and ERG processes, we established an ablation

279 paradigm that relies on intraventricular injections of 6OHDA. Of the

280 quantifiable Th<sup>+</sup> cell populations in the brain <sup>33</sup>, we found no effect of 6OHDA

injection on cell numbers in populations 2, 7, 9, 10, 13 and 15/16 (data not

shown). However, there was a 51% loss in population 5/6 (control:  $484 \pm 24$ 

283 cell profiles; 6OHDA: 235  $\pm$  14 cell profiles), 19% loss of TH<sup>+</sup> cells in

population 11 (288 ± 12 in controls vs. 234 ±16 in treated), 96% in population

12 (28  $\pm$  1 in controls vs. 1  $\pm$  0 in treated) and complete loss of noradrenergic

neurons in the locus coeruleus (LC;  $18 \pm 1$  in controls vs. zero in treated; Fig.

1A,B). Higher doses of 6OHDA did not increase loss of Th<sup>+</sup> cells (data not

shown). Consistent with Th<sup>+</sup> cell loss, we found a 45% reduction in dopamine

levels, but no effect on serotonin or its metabolites after 6OHDA injection in

the whole brain by HPLC (Fig. 1E). There were no obvious correlations

between the distance of neurons from the injection site or morphology of the

292 neurons and rates of ablation (see Fig 1A). Hence, we devised an ablation

293 paradigm in which neurons in populations 5/6, 11, 12 and the LC were

selectively vulnerable to 6OHDA.

To determine whether 6OHDA injections led to specific death of Th<sup>+</sup>
neurons and activation of an immune response, we combined TUNEL
labelling and immunohistochemistry for microglia using the 4C4 antibody,

| 298                                                                                                                | which selectively labels microglial cells <sup>34,37</sup> in a reporter fish for dopaminergic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 299                                                                                                                | neurons ( <i>dat</i> :GFP) <sup>28</sup> at 12 h post-injection. This indicated selective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 300                                                                                                                | appearance of TUNEL <sup>+</sup> /dat:GFP <sup>+</sup> profiles in the vulnerable populations, but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 301                                                                                                                | not in the non-ablated populations or in areas not labelled by the transgene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 302                                                                                                                | Moreover, the density of microglial cells was selectively increased in these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 303                                                                                                                | areas and some microglial cells engulfed TUNEL <sup>+</sup> /dat:GFP <sup>+</sup> profiles,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 304                                                                                                                | indicating activation of microglia (Fig. 1C,D; see also Fig. 8A for localised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 305                                                                                                                | microglia reaction after 6OHDA treatment). Hence, 6OHDA only leads to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 306                                                                                                                | death of circumscribed dopaminergic cell populations and elicits a localised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 307                                                                                                                | microglial response.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 308                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 309                                                                                                                | Cell replacement and reinnervation patterns differ between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 310                                                                                                                | dopaminergic cell populations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 310<br>311                                                                                                         | <u>dopaminergic cell populations.</u><br>To analyse whether lost Th <sup>+</sup> neurons were replaced, we assessed Th <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 311                                                                                                                | To analyse whether lost Th <sup>+</sup> neurons were replaced, we assessed Th <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 311<br>312                                                                                                         | To analyse whether lost Th <sup>+</sup> neurons were replaced, we assessed Th <sup>+</sup> cell numbers relative to controls without ablation for up to 540 days (1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 311<br>312<br>313                                                                                                  | To analyse whether lost Th <sup>+</sup> neurons were replaced, we assessed Th <sup>+</sup> cell numbers relative to controls without ablation for up to 540 days (1.5 years) post-injection of the toxin (dpi). The relatively small loss of cells in                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul><li>311</li><li>312</li><li>313</li><li>314</li></ul>                                                          | To analyse whether lost Th <sup>+</sup> neurons were replaced, we assessed Th <sup>+</sup> cell numbers relative to controls without ablation for up to 540 days (1.5 years) post-injection of the toxin (dpi). The relatively small loss of cells in population 11 was compensated for at 42 dpi (not shown). In population 5/6,                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>311</li> <li>312</li> <li>313</li> <li>314</li> <li>315</li> </ul>                                        | To analyse whether lost Th <sup>+</sup> neurons were replaced, we assessed Th <sup>+</sup> cell numbers relative to controls without ablation for up to 540 days (1.5 years) post-injection of the toxin (dpi). The relatively small loss of cells in population 11 was compensated for at 42 dpi (not shown). In population 5/6, numbers were increased compared to 2 dpi, but were still lower than in                                                                                                                                                                                                                                                        |
| <ul> <li>311</li> <li>312</li> <li>313</li> <li>314</li> <li>315</li> <li>316</li> </ul>                           | To analyse whether lost Th <sup>+</sup> neurons were replaced, we assessed Th <sup>+</sup> cell numbers relative to controls without ablation for up to 540 days (1.5 years) post-injection of the toxin (dpi). The relatively small loss of cells in population 11 was compensated for at 42 dpi (not shown). In population 5/6, numbers were increased compared to 2 dpi, but were still lower than in controls by 42 dpi. However, at 180 dpi Th <sup>+</sup> cell numbers were even slightly                                                                                                                                                                |
| <ul> <li>311</li> <li>312</li> <li>313</li> <li>314</li> <li>315</li> <li>316</li> <li>317</li> </ul>              | To analyse whether lost Th <sup>+</sup> neurons were replaced, we assessed Th <sup>+</sup> cell numbers relative to controls without ablation for up to 540 days (1.5 years) post-injection of the toxin (dpi). The relatively small loss of cells in population 11 was compensated for at 42 dpi (not shown). In population 5/6, numbers were increased compared to 2 dpi, but were still lower than in controls by 42 dpi. However, at 180 dpi Th <sup>+</sup> cell numbers were even slightly increased over controls. At 540 dpi numbers were similar to age-matched                                                                                        |
| <ul> <li>311</li> <li>312</li> <li>313</li> <li>314</li> <li>315</li> <li>316</li> <li>317</li> <li>318</li> </ul> | To analyse whether lost Th <sup>+</sup> neurons were replaced, we assessed Th <sup>+</sup> cell numbers relative to controls without ablation for up to 540 days (1.5 years) post-injection of the toxin (dpi). The relatively small loss of cells in population 11 was compensated for at 42 dpi (not shown). In population 5/6, numbers were increased compared to 2 dpi, but were still lower than in controls by 42 dpi. However, at 180 dpi Th <sup>+</sup> cell numbers were even slightly increased over controls. At 540 dpi numbers were similar to age-matched controls (Fig. 2A-E). In contrast, in population 12 and the LC, Th <sup>+</sup> neuron |

322 This indicates differential potential for cell replacement for different

323 populations of dopaminergic neurons.

| 324        | To determine whether restored dopaminergic neurons re-innervated                                |
|------------|-------------------------------------------------------------------------------------------------|
| 325        | their former target areas, we analysed a terminal field ventral to the                          |
| 326        | predominantly locally projecting population $5/6$ <sup>10</sup> , which showed regeneration     |
| 327        | of cell bodies. After ablation, the density of $Th^+$ innervation of this terminal              |
| 328        | field, measured semi-quantitatively by relative labelling intensity, was                        |
| 329        | significantly reduced, compared to controls. This was still the case at 180 dpi,                |
| 330        | even though cell replacement had been almost completed by 42 days dpi.                          |
| 331        | However, at 540 dpi, the axon density in 6OHDA-injected fish appeared not                       |
| 332        | different from that in vehicle-injected controls anymore. This suggests slow                    |
| 333        | restoration of local projections (Fig. 3A-E).                                                   |
| 334        | Since population 12 and the LC, which show little cell replacement,                             |
| 335        | provide all $Th^+$ innervation to the spinal cord <sup>12-14</sup> , we assessed innervation of |
| 336        | $Th^{+}$ axons of the spinal cord. In animals without ablation, we always observed              |
| 337        | Th <sup>+</sup> axons in the spinal cord at a midthoracic level (n = 26). Between 2 and         |
| 338        | 540 dpi, these axons were extremely rare in the spinal cord in 6OHDA                            |
| 339        | injected animals (Fig. 3F-H). Hence the $Th^+$ projection to the spinal cord was                |
|            |                                                                                                 |
| 340        | ablated by 6OHDA treatment and not regenerated.                                                 |
| 340<br>341 | ablated by 6OHDA treatment and not regenerated.                                                 |

342 Capacity for enhanced addition of new dopaminergic neurons after

343 ablation correlates with presence of constitutive neurogenesis for different

344 populations

To determine how dopaminergic neurons were replaced after ablation,

346 we assessed whether neurogenesis of dopaminergic neurons could be

| 347 | observed and whether ablation of dopaminergic neurons changed generation                        |
|-----|-------------------------------------------------------------------------------------------------|
| 348 | rates. To that aim, we injected EdU daily for 7 days after 6OHDA injection, to                  |
| 349 | maximise progenitor labelling. We analysed the number of $Th^+/EdU^+$ neurons                   |
| 350 | at 6 weeks post-injection, allowing sufficient time for differentiation of $Th^+$               |
| 351 | neurons (Fig. 4A). Even in the non-ablated situation, a low number of double-                   |
| 352 | labelled neurons was observed in populations that were capable of neuron                        |
| 353 | replacement, that is in populations 5/6, 8, and 11 (Fig. 4B,E-G). This indicates                |
| 354 | that dopaminergic neurons are constantly added to specific populations at a                     |
| 355 | low rate.                                                                                       |
| 356 | After ablation, the number of double-labelled cells was increased                               |
| 357 | 4.9fold in population 5/6 (Fig. 4C,D,E), compared to sham-injected animals.                     |
| 358 | This was statistically significant. A similar non-significant trend was present in              |
| 359 | populations 8 and 11 (Fig. 4F,G). Hence, ablation of $Th^+$ cells increases the                 |
| 360 | rate of addition of new neurons to regenerating populations.                                    |
| 361 | In contrast, in population 12 and the LC, which did not show strong                             |
| 362 | replacement of $Th^+$ neurons after 6OHDA injection in our histological analysis                |
| 363 | above, we did also not observe $EdU^{+}/Th^{+}$ neurons without or with ablation                |
| 364 | (Fig. 4H,I). Hence, differences in $Th^+$ neuron replacement capacity correlate                 |
| 365 | with differences in constitutive neurogenesis for distinct populations.                         |
| 366 |                                                                                                 |
| 367 | New dopaminergic neurons are derived from ERGs                                                  |
| 368 | New Th <sup>+</sup> cells are likely derived from local ERGs. The ventricle close to            |
| 369 | the 5/6 population is lined by cells with radial processes spanning the entire                  |
| 370 | thickness of the brain. Most of these cells are labelled by gfap:GFP, indicating                |
| 371 | their ERG identity $^{23}$ , and Th <sup>+</sup> cells are located close to ERG processes (Fig. |
|     |                                                                                                 |

5A,B). Using PCNA labelling, we find that some of ERGs proliferate in the
untreated brain, consistent with a function in maintaining dopaminergic and
other cell populations (Fig. S3E,F).
To determine whether new Th<sup>+</sup> cells are derived from ERGs, we used

376 genetic lineage tracing with a Tg(-3her4.3:Cre-ERT2) x Tg(actb2:LOXP*mCherry-LOXP-EGFP*) double-transgenic fish <sup>30</sup>. In this fish, tamoxifen-377 378 inducible Cre is driven by the regulatory sequences of the her4.3 gene. her4.3 is specifically expressed in zebrafish ERGs <sup>38</sup>. The second transgene leads to 379 380 expression of GFP in ERGs and their progeny after Cre-recombination. We 381 found a strong overlap between *gfap*:GFP and *her4.3*:mCherry labelling, 382 indicating that the driver targets the appropriate cell population (Fig. 5F). 383 We incubated animals in tamoxifen for 6 days to induce recombination 384 in ERGs, injected 60HDA and waited for another 42 days for histological 385 analysis. In animals without previous tamoxifen application, we did not 386 observe any GFP<sup>+</sup> cells. In tamoxifen-incubated animals, mostly ERGs were 387 labelled at different densities, indicating variable recombination rates. In 388 animals in which high recombination rates were achieved, we found GFP<sup>+</sup>/Th<sup>+</sup> 389 cells after the chase period, indicating that ERGs gave rise to dopaminergic 390 neurons (Fig. 5C-E). However, we cannot exclude additional sources for new 391 Th<sup>+</sup> neurons that might be active during physiological or ablation-induced 392 addition of these neurons.

393

394 <u>ERG proliferation is increased following ablation of dopaminergic</u>
 395 <u>neurons</u>

| 396 | To investigate whether ablation of dopaminergic neurons would lead to                   |
|-----|-----------------------------------------------------------------------------------------|
| 397 | increased proliferation of ERGs, we determined EdU incorporation rates for              |
| 398 | different ERG populations (injected at 11 dpi and detected at 13 dpi; Fig.              |
| 399 | 6A,B). In the vicinity of the 5/6 population, most ERGs express gfap. Some of           |
| 400 | these co-express olig2 and some express only olig2, as indicated by reporter            |
| 401 | fish double-transgenic for gfap:GFP and olig2:DsRed (Fig. 6D,E). ERGs that              |
| 402 | were only gfap:GFP <sup>+</sup> showed increased rates of EdU incorporation after       |
| 403 | 6OHDA injection (Fig. 6F). Whereas ERGs that were only <i>olig2</i> :DsRed <sup>+</sup> |
| 404 | showed a similar trend (Fig. 6G), double-labelled ERGs did not show any                 |
| 405 | 6OHDA-induced effect on proliferation (Fig. 6H). This indicates heterogeneity           |
| 406 | in the sensitivity of different ERG populations to dopaminergic cell ablation.          |
| 407 | To test whether reduced levels of dopamine after cell ablation (cf. Fig                 |
| 408 | 1D) might trigger the increase in ERG proliferation, as in the salamander               |
| 409 | midbrain <sup>8</sup> , we used extensive (see Material and Methods) injections of the  |
| 410 | dopamine D2-like receptor antagonist Haloperidol, which is effective in                 |
| 411 | zebrafish <sup>18</sup> , to mimic reduced dopamine levels in animals without ablation. |
| 412 | However, this did not increase ventricular proliferation compared to sham-              |
| 413 | injected control animals (Fig. S2A-C), suggesting the possibility that reduced          |
| 414 | dopamine levels may not be sufficient to trigger progenitor cell proliferation.         |
| 415 | Taken together, the above observations support a scenario in which ablation             |
| 416 | of $Th^+$ cells leads to enhanced generation of $Th^+$ neurons mainly from              |
| 417 | <i>gfap</i> :GFP⁺ ERGs.                                                                 |
| 418 |                                                                                         |

| 419 | Regeneration of | Th <sup>+</sup> cells | depends on | immune sv | ystem activation |
|-----|-----------------|-----------------------|------------|-----------|------------------|
|     |                 |                       |            |           |                  |

19

| 420 | To test whether the observed activation of microglial cells (cf. Fig. 1C)                     |
|-----|-----------------------------------------------------------------------------------------------|
| 421 | was necessary for $Th^+$ cell regeneration, we inhibited the immune reaction                  |
| 422 | using dexamethasone bath application <sup>23</sup> . qRT-PCR for principal pro-               |
| 423 | inflammatory cytokines il-1beta and tnf-alpha on horizontal brain sections                    |
| 424 | comprising population 5/6, showed an ablation-induced increase in the                         |
| 425 | expression of these cytokines in control fish that was consistent with the                    |
| 426 | morphological activation of microglia. This increase was completely inhibited                 |
| 427 | in the presence of dexamethasone, indicating that treatment was efficient                     |
| 428 | (Fig. 6C).                                                                                    |
| 429 | Next, we determined if ERG proliferation was affected by                                      |
| 430 | dexamethasone incubation (for 14 days post-injection of 6OHDA, directly                       |
| 431 | followed by analysis). Dexamethasone had no effect on proliferation rates of                  |
| 432 | any ERG subtype in sham-injected controls, indicating that it did not influence               |
| 433 | ERG proliferation directly. In contrast, increased proliferation rates in only                |
| 434 | gfap:GFP <sup>+</sup> ERGs of animals injected with 6OHDA were reduced to those seen          |
| 435 | in constitutive proliferation. This was statistically significant (Fig. 6F). ERGs             |
| 436 | that were only <i>olig</i> 2:DsRed <sup>+</sup> showed a similar trend (Fig. 6G). This showed |
| 437 | that only ablation-induced proliferation of <i>gfap</i> :GFP <sup>+</sup> ERGs depended on    |
| 438 | immune system activation.                                                                     |
| 439 | To determine whether this early suppression of the immune response                            |
| 440 | had concequences for the addition of newly generated Th <sup>+</sup> calls to perculation     |

had consequences for the addition of newly generated Th<sup>+</sup> cells to population
5/6, we incubated animals with dexamethasone for 14 days after ablation and
analysed Th<sup>+</sup> neuron addition at 42 days after ablation. This showed lower
numbers of Th<sup>+</sup>/EdU<sup>+</sup> neurons and lower overall numbers of Th<sup>+</sup> neurons

444 compared to 6OHDA treated animals without dexamethasone treatment (Fig.

445 **7A-E**).

446 Next we asked whether dexamethasone treatment would reduce

addition of new Th<sup>+</sup> neurons that are constitutively added to the 5/6 population

in the absence of ablation. Incubating fish with dexamethasone without

449 6OHDA injection did not alter the number of new Th<sup>+</sup> neurons (Fig. S1A-E).

450 The effect of dexamethasone on Th<sup>+</sup> neuron addition only after 6OHDA

451 treatment matched the effects of dexamethasone on ERG progenitor

452 proliferation.

453 Hence, dexamethasone treatment early after ablation led to reduced

rates of ERG proliferation and later Th<sup>+</sup> neuron addition to population 5/6. This

shows that most of regenerative neurogenesis depends on immune system

456 activation.

457

458 Augmenting the immune response enhances ERG proliferation, but not

459 dopaminergic neuron regeneration

460 To determine whether the immune response was sufficient to induce 461 dopaminergic cell generation and could be augmented to boost regeneration 462 we used Zymosan A injections into the ventricle, compared to sham-injected controls and 60HDA injection <sup>23</sup>. 60HDA injection only led to local increase of 463 464 4C4 immunoreactivity, e.g. in the 5/6 population (Fig. 8A). In contrast, 465 Zymosan injection led to a strong general increase in immunoreactivity for the 466 microglia marker 4C4 that lasted for at least 3 days (Fig. 8A). Hence Zymosan 467 injections can be used to boost the inflammatory reaction.

| 468 | Without prior ablation of $Th^+$ neurons, Zymosan injections led to                                               |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 469 | increased proliferation of only <i>gfap</i> :GFP <sup>+</sup> and only <i>olig</i> 2:DsRed <sup>+</sup> ERGs, but |
| 470 | not of double-labelled ERGs, compared to untreated controls (Zymosan A                                            |
| 471 | injections at day 5 and 10 after 6OHDA injection, EdU application at 11 days                                      |
| 472 | post-injection, analysis at 13 days post-injection; Fig. 8B-G). After 6OHDA-                                      |
| 473 | mediated cell ablation, Zymosan treatment showed a trend to further enhance                                       |
| 474 | proliferation of only gfap:GFP <sup>+</sup> ERGs compared to fish only treated with                               |
| 475 | 6OHDA (Fig. 8E). However, this relatively weak additive effect was not                                            |
| 476 | statistically significant. Hence, Zymosan increased proliferation of mainly                                       |
| 477 | gfap:GFP <sup>+</sup> ERGs independently of an ablation, and potentially slightly                                 |
| 478 | increased proliferation beyond levels induced by 6OHDA treatment alone.                                           |
| 479 | To dissect whether the effect of immune system stimulation on ERG                                                 |
| 480 | proliferation may have been mediated by the leukotriene LTC4, as in the                                           |
| 481 | mechanically injured telencephalon <sup>23</sup> , we injected animals with the                                   |
| 482 | compound. This elicited a weak microglia response after 3 daily injections, as                                    |
| 483 | shown by 4C4 immunohistochemistry, but proliferation of ERGs was not                                              |
| 484 | altered (Fig. S3A,B). This suggests possible brain region-specific mechanisms                                     |
| 485 | of ERG proliferation.                                                                                             |
| 486 | To determine whether the increased ERG proliferation observed after                                               |
| 487 | Zymosan treatment alone would lead to generation of supernumerary $Th^{+}$                                        |
| 488 | neurons, we determined numbers of $EdU^+/Th^+$ and overall numbers of $Th^+$                                      |
| 489 | neurons at 42 days after a sham injection followed by two injections of                                           |
| 490 | Zymosan at 5 and 10 dpi. We did not observe any changes in these                                                  |
| 491 | parameters (Fig. S1A-E), indicating that additional mechanisms may control                                        |
| 492 | dopaminergic differentiation of new cells.                                                                        |

| 493 | To investigate whether Zymosan treatment was able to improve                                  |
|-----|-----------------------------------------------------------------------------------------------|
| 494 | regeneration of $Th^+$ neurons after ablation, we analysed the number of                      |
| 495 | $EdU^{+}/Th^{+}$ and the total number of $Th^{+}$ neurons after 6OHDA induced ablation,       |
| 496 | followed by Zymosan treatment, in the same experimental timeline as above.                    |
| 497 | We did not observe any changes in $EdU^{+}/Th^{+}$ and overall numbers of $Th^{+}$            |
| 498 | cells compared to animals that only received 6OHDA injections (Fig. 9A-E).                    |
| 499 | Hence, Zymosan treatment was sufficient to increase ERG proliferation but                     |
| 500 | insufficient to boost regeneration of Th <sup>+</sup> neurons.                                |
| 501 |                                                                                               |
| 502 | Ablation of dopaminergic neurons leads to specific functional deficits                        |
| 503 | To determine whether loss of $Th^+$ neurons had consequences for the                          |
| 504 | behaviours of the fish, and whether these would be recovered after                            |
| 505 | regeneration, we first recorded individual swimming activity in a round arena                 |
| 506 | of fish that received 6OHDA injections and sham injections at 7 days after                    |
| 507 | ablation. No differences were observed in the distance moved and velocity                     |
| 508 | (average and frequency distribution) or the preference of fish for the periphery              |
| 509 | or inner zone of the arena (Fig. 10A-C and not shown) during the 6 minute                     |
| 510 | observation period. This indicated that swimming capacity and patterns were                   |
| 511 | not overtly affected by the ablation.                                                         |
| 512 | We used tests of anxiety-like behaviours, namely the novel tank test, in                      |
| 513 | which fish initially prefer to stay at the bottom of the unfamiliar new tank, and             |
| 514 | the light/dark choice test <sup>39-41</sup> , in which fish stay most of the time in the dark |

515 compartment. Indeed, fish in all groups showed strong preferences for the

516 bottom of the tank or the dark compartment, respectively, indicating the

517 expected behaviours. However, fish did not show any differences in behaviour

after 6OHDA induced ablation of  $Th^+$  neurons (Fig. 10D-G). Hence, we could not detect effects of  $Th^+$  cell ablation on anxiety-like behaviours.

520 To test movement coordination, we analysed shoaling behaviour of the 521 fish. Putting 4 fish together into a tank lets them exhibit shoaling, a natural behaviour to swim close to their conspecifics <sup>42</sup>. This behaviour requires 522 523 complex sensory-motor integration to keep the same average distance from 524 each other. We found that shoals made up of fish treated with 6OHDA swam 525 at an average inter-individual distance that was twice as large as that in 526 control shoals at 7, 42 and 180 days post-injection (Fig. 11A,B). Hence 527 ablation of Th<sup>+</sup> neurons impaired shoaling behaviour and this behaviour was 528 not recovered within 180 days dpi.

529 We reasoned that if manoeuvring of fish was impaired by ablation of 530 specific Th<sup>+</sup> cells, mating behaviour, which requires coordinated swimming of 531 a male and female, might also be affected. Alternatively, reproductive functions could directly be influenced by dopamine <sup>43</sup>. Indeed, ablation of Th<sup>+</sup> 532 533 cells in both male and females led to a reduced rate of successful matings 534 and 84% fewer fertilised eggs laid than in control pairs over four mating 535 events. Combining the same control females with the 60HDA treated males 536 and vice versa allowed intermediate egg production and mating success in 537 both groups, indicating that male or female reproductive functions were not 538 selectively affected (Fig. 11C-E). Hence, mating success was only strongly 539 impaired when both males and females lacked specific  $Th^{+}$  neurons. This 540 supports the notion that swimming coordination was permanently affected by 541 the lack of regeneration in population 12 and the LC.

24

## 543 DISCUSSION

| 544        | Our results show that after ablation, $Th^+$ neurons in some populations                                        |
|------------|-----------------------------------------------------------------------------------------------------------------|
| 545        | are replaced by newly formed neurons. Th $^{\star}$ neurons are derived from specific                           |
| 546        | ERGs, which increase proliferation after ablation in the adult zebrafish brain.                                 |
| 547        | This regeneration depends on immune system activation. In contrast, $Th^{+}$                                    |
| 548        | neuron populations with long spinal projections only show sparse and                                            |
| 549        | transient replacement of neurons and never recover their spinal projections.                                    |
| 550        | Consequently, deficits in shoaling and mating behaviours associated with                                        |
| 551        | these anatomical defects never recover (schematically summarized in Fig.                                        |
| 552        | 12).                                                                                                            |
| 553        |                                                                                                                 |
| 554        | $Th^{+}$ neurons are regenerated from specific ERG progenitors after                                            |
| 555        | ablation                                                                                                        |
| 556        | We observed a regenerative response after ablation of a subset of $Th^+$                                        |
| 557        | neurons, defined by an increased number of $Th^+$ cells and ERGs labelled with                                  |
| 558        | a proliferation marker. Genetic lineage tracing showed that ERGs gave rise to                                   |
| 559        | at least some new $Th^+$ neurons. However, we cannot exclude contributions                                      |
| 560        | from unknown progenitors or trans-differentiation of other neurons as a source                                  |
| 561        | for new dopaminergic neurons. Hence, ablation of $Th^+$ neurons is sufficient to                                |
| 562        |                                                                                                                 |
|            | elicit a regenerative reaction in ERG progenitor cells and protracted                                           |
| 563        | elicit a regenerative reaction in ERG progenitor cells and protracted replacement of Th <sup>+</sup> neurons.   |
| 563<br>564 |                                                                                                                 |
|            | replacement of Th <sup>+</sup> neurons.                                                                         |
| 564        | replacement of Th <sup>+</sup> neurons.<br>Not all diencephalic ERGs may take part in regenerative neurogenesis |

| 568 | showed changes in proliferation in response to ablation or immune signal           |
|-----|------------------------------------------------------------------------------------|
| 569 | manipulation, those that expressed both transgenes were not altered in their       |
| 570 | proliferation rates by any of these manipulations, indicating that only specific   |
| 571 | ERGs may act as progenitor cells in a regeneration context.                        |
| 572 | In previous ablation experiments in larvae, different observations were            |
| 573 | made depending on the ablated cell populations. Either enhanced proliferation      |
| 574 | and replacement of neurons <sup>44</sup> or no reaction and long-term reduction in |
| 575 | neuron number <sup>45</sup> has been reported. This underscores our findings that  |
| 576 | different populations of dopaminergic neurons are not regenerated to the           |
| 577 | same extent, even in larvae that show higher general proliferative activity than   |
| 578 | adults. Our observation supports that loss of $Th^+$ cells leads to increased      |
| 579 | proliferation of progenitor cells and replacement of specific dopaminergic         |
| 580 | neuron populations.                                                                |
| 581 |                                                                                    |

581

The immune response is necessary for regeneration of Th<sup>+</sup> cells 582 583 We find that inhibiting the immune response after ablation leads to 584 reduced proliferation in the ventricular zone and fewer new Th<sup>+</sup> neurons. 585 Interestingly, only ablation-induced ERG proliferation was affected by this treatment, consistent with findings for the zebrafish telencephalon<sup>23</sup>. It has 586 587 been proposed that different molecular mechanisms are involved in constitutive and regenerative neurogenesis <sup>46</sup>. However, the immune-mediator 588 589 LTC4, reported to promote the immune-dependent progenitor proliferation in the zebrafish telencephalon <sup>23</sup>, did not elicit proliferation of ERGs in our 590 591 experiments in the diencephalon, suggesting regional differences of immune 592 to ERG signalling.

| 593 | Alternatively, ERGs could be de-repressed in their activity by the                    |
|-----|---------------------------------------------------------------------------------------|
| 594 | observed reduction of dopamine levels in the brain. This has been                     |
| 595 | demonstrated to be the case in the midbrain of salamanders <sup>8</sup> . However,    |
| 596 | injecting haloperidol into untreated fish to mimic reduced levels of dopamine         |
| 597 | after ablation did not lead to increased ERG proliferation in the brain of            |
| 598 | zebrafish. This points to potential species-specific differences in the control of    |
| 599 | progenitor cell proliferation between zebrafish and salamanders.                      |
| 600 | Remarkably boosting the immune reaction with Zymosan was sufficient                   |
| 601 | to enhance ERG proliferation, but was insufficient to increase number of new          |
| 602 | $Th^{+}$ neurons in animals with and without prior ablation of $Th^{+}$ neurons. This |
| 603 | suggests that additional factors, not derived from the immune system, may be          |
| 604 | necessary for $Th^+$ neuron differentiation and replacement.                          |
| 605 |                                                                                       |
| 606 | What are the reasons for differential regeneration of dopaminergic                    |
| 607 | neuron populations?                                                                   |
| 608 | Constitutive neurogenesis we observe in specific brain nuclei                         |
| 609 | correlates with regenerative success. For example, there is ongoing addition          |
| 610 | of $Th^+$ cells in the regeneration-competent 5/6 population without any ablation,    |
| 611 | but this is not detectable in the non-regenerated populations 12 and LC. We           |
| 612 | speculate that in brain nuclei that constitutively integrate new neurons, factors     |
| 613 | that support integration of new neurons, such as neurotrophic factors and             |
| 614 | axon guidance molecules might be present, whereas these could have been               |
| 615 | developmentally down-regulated in populations that do not add new neurons             |
| 616 | in adulta. Integration promoting factors may be rate limiting for regonaration        |

616 in adults. Integration promoting factors may be rate-limiting for regeneration.

| 617 | Alternatively, new neurons may fail to integrate into the network and                          |
|-----|------------------------------------------------------------------------------------------------|
| 618 | perish. This may be pronounced for population 12 and the LC, which show                        |
| 619 | complex axon projections <sup>10</sup> . Some dopaminergic cells managed to repopulate         |
| 620 | population 12 and LC, but they did not persist. These populations have                         |
| 621 | neurons with particularly long axons that are led by complex guidance                          |
| 622 | molecule patterns, e.g. to the spinal cord during development <sup>47</sup> . These            |
| 623 | patterns may have disappeared in adults and thus explain failure of these                      |
| 624 | neurons to re-innervate the spinal cord. Some long-range axons can                             |
| 625 | successfully navigate the adult zebrafish brain, such as regenerating optic                    |
| 626 | axons <sup>48</sup> , but particular populations of axons descending to the spinal cord do     |
| 627 | not readily regenerate <sup>49,50</sup> . This correlates with constitutive neurogenesis in    |
| 628 | the optic system, but not in the descending brainstem projection.                              |
| 629 |                                                                                                |
| 630 | Specific ablation of circumscribed $Th^+$ populations offers clues to their                    |
| 631 | function                                                                                       |
| 632 | The long-lasting loss of about 28 dopaminergic neurons in population                           |
| 633 | 12 and of 18 noradrenergic neurons in the LC is associated with highly                         |
| 634 | specific functional deficits in shoaling and mating, but not overall locomotion                |
| 635 | or anxiety-like behaviours. Previous studies showed reduced overall                            |
| 636 | locomotion after application of 6OHDA in adult zebrafish. However, in these                    |
| 637 | studies, application routes were different, creating larger ablation in the brain <sup>7</sup> |
| 638 | or peripheral rather than central lesions <sup>51</sup> .                                      |
| 639 | Among the lost neurons, population 12 contains the neurons that give                           |
| 640 | rise to the evolutionarily conserved diencephalo-spinal tract, providing the                   |
| 641 | entire dopaminergic innervation of the spinal cord in most vertebrates <sup>10</sup> . Loss    |
|     |                                                                                                |

| 642 | of this tract in larval zebrafish leads to hypo-locomotion, due to a reduction in          |
|-----|--------------------------------------------------------------------------------------------|
| 643 | the number of swimming bouts <sup>16,17</sup> . Large scale ablation of diencephalic       |
| 644 | dopaminergic neurons in larvae also led to motor impairments <sup>52</sup> . We            |
| 645 | speculate that in adults, dopamine in the spinal cord, which is almost                     |
| 646 | completely missing after ablation, may modulate initiation of movement                     |
| 647 | changes necessary for efficient shoaling and mating behaviour. However,                    |
| 648 | descending dopaminergic projections also innervate the sensory lateral line                |
| 649 | <sup>17,53</sup> . Altered sensation of water movements could thus also contribute to      |
| 650 | impaired ability to manoeuvre. Moreover, population 12 neurons have                        |
| 651 | ascending projections <sup>10</sup> that could also be functionally important. We can also |
| 652 | not exclude that some ablated dopaminergic neurons escaped our analysis                    |
| 653 | but contributed to functional deficits.                                                    |
| 654 | Altered shoaling behaviour <sup>54</sup> and anxiety-like behaviour <sup>19,20</sup> has   |
| 655 | previously been correlated with alterations of the dopaminergic system, but                |
| 656 | not pinpointed to specific neuronal populations. Our results support that the              |
| 657 | fewer than 50 neurons that form the descending dopaminergic and                            |
| 658 | noradrenergic projections are involved in shoaling behaviour, but not anxiety-             |
| 659 | like behaviour, as has been found for global manipulations of dopamine $^{55}$ .           |
| 660 | Dopamine-dependent behaviours can be recovered following                                   |
| 661 | regeneration of dopaminergic neurons. For example, in larval zebrafish,                    |
| 662 | swimming frequency is normalised again after ablation and regeneration of                  |
| 663 | hypothalamic dopaminergic neurons <sup>44</sup> . In salamanders, amphetamine-             |
| 664 | inducible locomotion is recovered, correlated with regeneration of $Th^+$ neurons          |
| 665 | after 6OHDA-mediated ablation <sup>56</sup> . Here we show that regeneration of specific   |
| 666 | Th $^{\star}$ neurons that project to the spinal cord is surprisingly limited in adult     |
|     |                                                                                            |

| 667 | zebrafish ar | nd not functionally | compensated, | which | leads to permanent |  |
|-----|--------------|---------------------|--------------|-------|--------------------|--|
|-----|--------------|---------------------|--------------|-------|--------------------|--|

668 functional deficits in a generally regeneration-competent vertebrate.

669

#### 670 Conclusion

- 671 Specific Th<sup>+</sup> neuronal populations in adult zebrafish show an
- unexpected heterogeneity in their capacity to be regenerated from specific
- 673 progenitor populations. This system is useful to dissect mechanisms of
- 674 successful and unsuccessful functional neuronal regeneration in the same
- 675 model, and we show here that the immune response is critical for
- 676 regeneration. Ultimately, manipulations of immune mechanisms in conjunction
- 677 with pro-differentiation factors may be used to activate pro-regenerative
- 678 mechanisms also in mammals to lead to generation and functional integration
- 679 of new dopaminergic neurons.
- 680

### 681 ACKNOWLEDGEMENTS

- 682 We thank Drs Bruce Appel, Marc Ekker, Daniel Goldman, and Pamela
- Raymond for transgenic fish, Joe Finney for data analysis and Stephen West
- 684 for discussions. Supported by BBSRC (BB/M003892/1 to CGB and TB), an
- 685 MRC DTG PhD studentship (to NOD), a BBSRC Eastbio PhD studentship (to
- LJC), and a grant from Sigrid Juselius Foundation to SS and PP.
- 687
- 688 AUTHOR CONTRIBUTION
- 689 Conceptualization, NOD, LJC, CGB, and TB; Investigation, NOD, LJC, LC,
- 690 SAS, KSM, PP and JDA; Writing: CGB, and TB.
- 691
- 692 CONFLICT OF INTEREST STATEMENT
- 593 JDA is the founding director of Actual Analytics Ltd.
- 694

### 695 REFERENCES

- Jessberger, S. Neural repair in the adult brain. *F1000Research* 5,
  (2016).
- Peron, S. & Berninger, B. Reawakening the sleeping beauty in the
  adult brain: neurogenesis from parenchymal glia. *Curr Opin Genet Dev*
- 700 **34**, 46-53, (2015).
- 7013Becker, C. G. & Becker, T. Neuronal regeneration from ependymo-
- radial glial cells: cook, little pot, cook! *Dev Cell* **32**, 516-527, (2015).
- 703 4 Ghosh, S. & Hui, S. P. Regeneration of Zebrafish CNS: Adult
- 704 Neurogenesis. *Neural plasticity* **2016**, 5815439, (2016).
- 705 5 Alunni, A. & Bally-Cuif, L. A comparative view of regenerative
- neurogenesis in vertebrates. *Development* **143**, 741-753, (2016).
- Matsui, H. & Sugie, A. An optimized method for counting dopaminergic
  neurons in zebrafish. *PLoS One* **12**, e0184363, (2017).
- 709 7 Vijayanathan, Y., Lim, F. T., Lim, S. M., Long, C. M., Tan, M. P.,
- 710 Majeed, A. B. A. & Ramasamy, K. 6-OHDA-Lesioned Adult Zebrafish
- as a Useful Parkinson's Disease Model for Dopaminergic
- 712 Neuroregeneration. *Neurotoxicity research* **32**, 496-508, (2017).
- 8 Berg, D. A., Kirkham, M., Wang, H., Frisen, J. & Simon, A. Dopamine
- controls neurogenesis in the adult salamander midbrain in homeostasis
- and during regeneration of dopamine neurons. Cell Stem Cell 8, 426-
- 716 433, (2011).
- 717 9 Tieu, K. A guide to neurotoxic animal models of Parkinson's disease.
- 718 Cold Spring Harbor perspectives in medicine **1**, a009316, (2011).

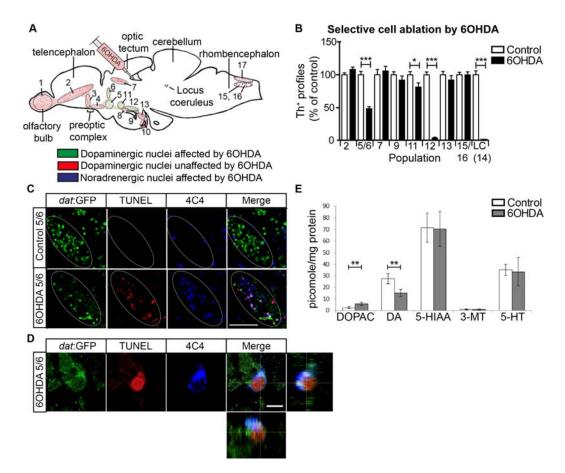
- 10 Tay, T. L., Ronneberger, O., Ryu, S., Nitschke, R. & Driever, W.
- 720 Comprehensive catecholaminergic projectome analysis reveals single-
- 721 neuron integration of zebrafish ascending and descending
- dopaminergic systems. *Nat Commun* **2**, 171, (2011).
- 11 Chen, Y. C., Priyadarshini, M. & Panula, P. Complementary
- developmental expression of the two tyrosine hydroxylase transcripts in
- zebrafish. *Histochemistry and cell biology* **132**, 375-381, (2009).
- 12 McLean, D. L. & Fetcho, J. R. Relationship of tyrosine hydroxylase and
- serotonin immunoreactivity to sensorimotor circuitry in larval zebrafish.
- 728 J Comp Neurol **480**, 57-71, (2004).
- 13 McLean, D. L. & Fetcho, J. R. Ontogeny and innervation patterns of
- 730 dopaminergic, noradrenergic, and serotonergic neurons in larval
- 731 zebrafish. *J Comp Neurol* **480**, 38-56, (2004).
- 73214Kuscha, V., Barreiro-Iglesias, A., Becker, C. G. & Becker, T. Plasticity
- of tyrosine hydroxylase and serotonergic systems in the regenerating
- spinal cord of adult zebrafish. *J Comp Neurol* **520**, 933-951, (2012).
- 15 Lambert, A. M., Bonkowsky, J. L. & Masino, M. A. The conserved
- 736 dopaminergic diencephalospinal tract mediates vertebrate locomotor
- 737 development in zebrafish larvae. J. Neurosci. **32**, 13488-13500, (2012).
- 73816Thirumalai, V. & Cline, H. T. Endogenous dopamine suppresses
- initiation of swimming in pre-feeding zebrafish larvae. *J Neurophysiol*,(2008).
- 17 Jay, M., De Faveri, F. & McDearmid, J. R. Firing dynamics and
- modulatory actions of supraspinal dopaminergic neurons during
- 743 zebrafish locomotor behavior. *Curr Biol* **25**, 435-444, (2015).

| 744 | 18 | Reimer, M. M. et al. Dopamine from the Brain Promotes Spinal Motor          |
|-----|----|-----------------------------------------------------------------------------|
| 745 |    | Neuron Generation during Development and Adult Regeneration. Dev            |
| 746 |    | <i>Cell</i> <b>25</b> , 478-491, (2013).                                    |
| 747 | 19 | Wang, Y., Li, S., Liu, W., Wang, F., Hu, L. F., Zhong, Z. M., Wang, H. &    |
| 748 |    | Liu, C. F. Vesicular monoamine transporter 2 (Vmat2) knockdown              |
| 749 |    | elicits anxiety-like behavior in zebrafish. Biochem Biophys Res             |
| 750 |    | Commun <b>470</b> , 792-797, (2016).                                        |
| 751 | 20 | Tran, S., Nowicki, M., Muraleetharan, A., Chatterjee, D. & Gerlai, R.       |
| 752 |    | Neurochemical factors underlying individual differences in locomotor        |
| 753 |    | activity and anxiety-like behavioral responses in zebrafish. Prog           |
| 754 |    | Neuropsychopharmacol Biol Psychiatry 65, 25-33, (2016).                     |
| 755 | 21 | Grandel, H., Kaslin, J., Ganz, J., Wenzel, I. & Brand, M. Neural stem       |
| 756 |    | cells and neurogenesis in the adult zebrafish brain: origin, proliferation  |
| 757 |    | dynamics, migration and cell fate. Dev Biol 295, 263-277, (2006).           |
| 758 | 22 | Grandel, H. & Brand, M. Comparative aspects of adult neural stem cell       |
| 759 |    | activity in vertebrates. Dev. Genes Evol. 223, 131-147, (2013).             |
| 760 | 23 | Kyritsis, N., Kizil, C., Zocher, S., Kroehne, V., Kaslin, J., Freudenreich, |
| 761 |    | D., Iltzsche, A. & Brand, M. Acute inflammation initiates the               |
| 762 |    | regenerative response in the adult zebrafish brain. Science 338, 1353-      |
| 763 |    | 1356, (2012).                                                               |
| 764 | 24 | Ohnmacht, J., Yang, Y. J., Maurer, G. W., Barreiro-Iglesias, A.,            |
| 765 |    | Tsarouchas, T. M., Wehner, D., Sieger, D., Becker, C. G. & Becker, T.       |
| 766 |    | Spinal motor neurons are regenerated after mechanical lesion and            |
| 767 |    | genetic ablation in larval zebrafish. Development, (2016).                  |

| 768 | 25 | Westerfield, M. The zebrafish book: a guide for the laboratory use of       |
|-----|----|-----------------------------------------------------------------------------|
| 769 |    | zebrafish (Danio rerio). 4th edn, (University of Oregon Press, 2000).       |
| 770 | 26 | Kucenas, S., Takada, N., Park, H. C., Woodruff, E., Broadie, K. &           |
| 771 |    | Appel, B. CNS-derived glia ensheath peripheral nerves and mediate           |
| 772 |    | motor root development. Nat Neurosci 11, 143-151, (2008).                   |
| 773 | 27 | Bernardos, R. L. & Raymond, P. A. GFAP transgenic zebrafish. Gene           |
| 774 |    | <i>Expr Patterns</i> <b>6</b> , 1007-1013, (2006).                          |
| 775 | 28 | Xi, Y., Yu, M., Godoy, R., Hatch, G., Poitras, L. & Ekker, M. Transgenic    |
| 776 |    | zebrafish expressing green fluorescent protein in dopaminergic              |
| 777 |    | neurons of the ventral diencephalon. Dev Dyn 240, 2539-2547, (2011).        |
| 778 | 29 | Knopf, F., Schnabel, K., Haase, C., Pfeifer, K., Anastassiadis, K. &        |
| 779 |    | Weidinger, G. Dually inducible TetON systems for tissue-specific            |
| 780 |    | conditional gene expression in zebrafish. Proc. Natl. Acad. Sci. USA        |
| 781 |    | <b>107</b> , 19933-19938, (2010).                                           |
| 782 | 30 | Boniface, E. J., Lu, J., Victoroff, T., Zhu, M. & Chen, W. FIEx-based       |
| 783 |    | transgenic reporter lines for visualization of Cre and Flp activity in live |
| 784 |    | zebrafish. <i>Genesis</i> <b>47</b> , 484-491, (2009).                      |
| 785 | 31 | Ramachandran, R., Reifler, A., Parent, J. M. & Goldman, D.                  |
| 786 |    | Conditional gene expression and lineage tracing of tuba1a expressing        |
| 787 |    | cells during zebrafish development and retina regeneration. J Comp          |
| 788 |    | Neurol <b>518</b> , 4196-4212, (2010).                                      |
| 789 | 32 | Skaggs, K., Goldman, D. & Parent, J. M. Excitotoxic brain injury in         |
| 790 |    | adult zebrafish stimulates neurogenesis and long-distance neuronal          |
| 791 |    | integration. Glia 62, 2061-2079, (2014).                                    |

| 792 | 33 | Sallinen, V., Torkko, V., Sundvik, M., Reenila, I., Khrustalyov, D.,     |
|-----|----|--------------------------------------------------------------------------|
| 793 |    | Kaslin, J. & Panula, P. MPTP and MPP+ target specific aminergic cell     |
| 794 |    | populations in larval zebrafish. J Neurochem 108, 719-731, (2009).       |
| 795 | 34 | Ohnmacht, J., Yang, Y., Maurer, G. W., Barreiro-Iglesias, A.,            |
| 796 |    | Tsarouchas, T. M., Wehner, D., Sieger, D., Becker, C. G. & Becker, T.    |
| 797 |    | Spinal motor neurons are regenerated after mechanical lesion and         |
| 798 |    | genetic ablation in larval zebrafish. Development 143, 1464-1474,        |
| 799 |    | (2016).                                                                  |
| 800 | 35 | Barreiro-Iglesias, A., Mysiak, K. S., Scott, A. L., Reimer, M. M., Yang, |
| 801 |    | Y., Becker, C. G. & Becker, T. Serotonin Promotes Development and        |
| 802 |    | Regeneration of Spinal Motor Neurons in Zebrafish. Cell Rep 13, 924-     |
| 803 |    | 932, (2015).                                                             |
| 804 | 36 | Reimer, M. M., Sorensen, I., Kuscha, V., Frank, R. E., Liu, C., Becker,  |
| 805 |    | C. G. & Becker, T. Motor neuron regeneration in adult zebrafish. J       |
| 806 |    | <i>Neurosci</i> <b>28</b> , 8510-8516, (2008).                           |
| 807 | 37 | Becker, T. & Becker, C. G. Regenerating descending axons                 |
| 808 |    | preferentially reroute to the gray matter in the presence of a general   |
| 809 |    | macrophage/microglial reaction caudal to a spinal transection in adult   |
| 810 |    | zebrafish. J. Comp. Neurol. 433, 131-147, (2001).                        |
| 811 | 38 | Kroehne, V., Freudenreich, D., Hans, S., Kaslin, J. & Brand, M.          |
| 812 |    | Regeneration of the adult zebrafish brain from neurogenic radial glia-   |
| 813 |    | type progenitors. Development 138, 4831-4841, (2011).                    |
| 814 | 39 | Blaser, R. & Gerlai, R. Behavioral phenotyping in zebrafish:             |
| 815 |    | comparison of three behavioral quantification methods. Behav Res         |
| 816 |    | Methods <b>38</b> , 456-469, (2006).                                     |
|     |    |                                                                          |

- 817 40 Blaser, R. E. & Rosemberg, D. B. Measures of anxiety in zebrafish
- 818 (Danio rerio): dissociation of black/white preference and novel tank
- 819 test. *PLoS One* **7**, e36931, (2012).
- 820 41 Stewart, A., Gaikwad, S., Kyzar, E., Green, J., Roth, A. & Kalueff, A. V.
- 821 Modeling anxiety using adult zebrafish: a conceptual review.
- 822 *Neuropharmacology* **62**, 135-143, (2012).
- 823 42 Engeszer, R. E., Ryan, M. J. & Parichy, D. M. Learned social


824 preference in zebrafish. *Curr Biol* **14**, 881-884, (2004).

- 43 Pappas, S. S., Tiernan, C. T., Behrouz, B., Jordan, C. L., Breedlove, S.
- 826 M., Goudreau, J. L. & Lookingland, K. J. Neonatal androgen-dependent
- sex differences in lumbar spinal cord dopamine concentrations and the
- 828 number of A11 diencephalospinal dopamine neurons. *J Comp Neurol*
- **518**, 2423-2436, (2010).
- 44 McPherson, A. D., Barrios, J. P., Luks-Morgan, S. J., Manfredi, J. P.,
- 831 Bonkowsky, J. L., Douglass, A. D. & Dorsky, R. I. Motor Behavior
- 832 Mediated by Continuously Generated Dopaminergic Neurons in the
- 833 Zebrafish Hypothalamus Recovers after Cell Ablation. *Curr Biol* **26**,
- 834 263-269, (2016).
- 45 Godoy, R., Noble, S., Yoon, K., Anisman, H. & Ekker, M.
- 836 Chemogenetic ablation of dopaminergic neurons leads to transient
- locomotor impairments in zebrafish larvae. *J Neurochem* **135**, 249-260,
- 838 (2015).
- 839 46 Kizil, C., Kyritsis, N., Dudczig, S., Kroehne, V., Freudenreich, D.,
- 840 Kaslin, J. & Brand, M. Regenerative neurogenesis from neural

| 841 |    | progenitor cells requires injury-induced expression of Gata3. Dev Cell   |
|-----|----|--------------------------------------------------------------------------|
| 842 |    | <b>23</b> , 1230-1237, (2012).                                           |
| 843 | 47 | Kastenhuber, E., Kern, U., Bonkowsky, J. L., Chien, C. B., Driever, W.   |
| 844 |    | & Schweitzer, J. Netrin-DCC, Robo-Slit, and heparan sulfate              |
| 845 |    | proteoglycans coordinate lateral positioning of longitudinal             |
| 846 |    | dopaminergic diencephalospinal axons. J Neurosci 29, 8914-8926,          |
| 847 |    | (2009).                                                                  |
| 848 | 48 | Wyatt, C., Ebert, A., Reimer, M. M., Rasband, K., Hardy, M., Chien, C.   |
| 849 |    | B., Becker, T. & Becker, C. G. Analysis of the astray/robo2 zebrafish    |
| 850 |    | mutant reveals that degenerating tracts do not provide strong guidance   |
| 851 |    | cues for regenerating optic axons. J. Neurosci. 30, 13838-13849,         |
| 852 |    | (2010).                                                                  |
| 853 | 49 | Bhatt, D. H., Otto, S. J., Depoister, B. & Fetcho, J. R. Cyclic AMP-     |
| 854 |    | induced repair of zebrafish spinal circuits. Science 305, 254-258,       |
| 855 |    | (2004).                                                                  |
| 856 | 50 | Becker, T., Bernhardt, R. R., Reinhard, E., Wullimann, M. F., Tongiorgi, |
| 857 |    | E. & Schachner, M. Readiness of zebrafish brain neurons to               |
| 858 |    | regenerate a spinal axon correlates with differential expression of      |
| 859 |    | specific cell recognition molecules. J Neurosci 18, 5789-5803, (1998).   |
| 860 | 51 | Anichtchik, O. V., Kaslin, J., Peitsaro, N., Scheinin, M. & Panula, P.   |
| 861 |    | Neurochemical and behavioural changes in zebrafish Danio rerio after     |
| 862 |    | systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-      |
| 863 |    | 1,2,3,6-tetrahydropyridine. J Neurochem 88, 443-453, (2004).             |

| 864 | 52 | Lam, C. S., | Korzh, V. & Strahle, | U. Zebrafish embr | yos are susceptible |
|-----|----|-------------|----------------------|-------------------|---------------------|
|-----|----|-------------|----------------------|-------------------|---------------------|

- 865 to the dopaminergic neurotoxin MPTP. *Eur J Neurosci* 21, 1758-1762,
  866 (2005).
- 867 53 Bricaud, O., Chaar, V., Dambly-Chaudiere, C. & Ghysen, A. Early
- 868 efferent innervation of the zebrafish lateral line. *J Comp Neurol* **434**,
- 869 253-261., (2001).
- 870 54 Scerbina, T., Chatterjee, D. & Gerlai, R. Dopamine receptor
- 871 antagonism disrupts social preference in zebrafish: a strain comparison
- study. Amino Acids 43, 2059-2072, (2012).
- 873 55 Kacprzak, V., Patel, N. A., Riley, E., Yu, L., Yeh, J. J. & Zhdanova, I. V.
- Dopaminergic control of anxiety in young and aged zebrafish.
- 875 Pharmacology, biochemistry, and behavior **157**, 1-8, (2017).
- 876 56 Parish, C. L., Beljajeva, A., Arenas, E. & Simon, A. Midbrain
- 877 dopaminergic neurogenesis and behavioural recovery in a salamander
- lesion-induced regeneration model. *Development* **134**, 2881-2887,
- 879 (2007).
- 880



883

884

Fig. 1 Specific populations of Th<sup>+</sup> neurons are ablated by 6OHDA. A: A

schematic sagittal section of the adult brain is shown with the 6OHDA

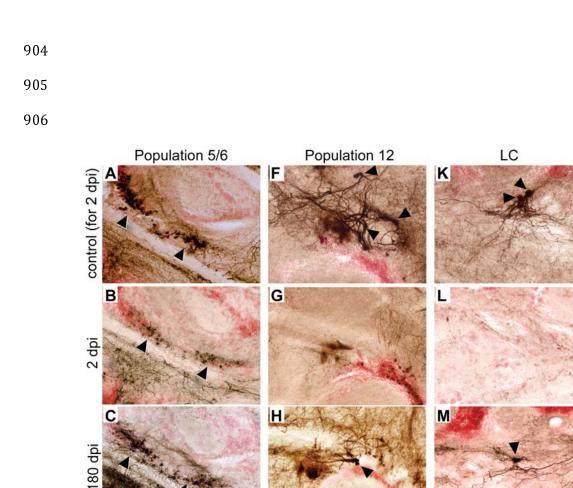
resistant dopaminergic cell populations (red) and the vulnerable dopaminergic

888 (green) and noradrenergic populations (purple) in relation to the injection site

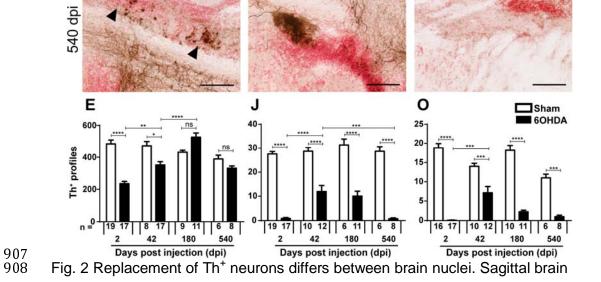
in the third ventricle indicated. B: Quantification of cell loss after toxin injection

at 2 dpi is shown. C: Sagittal sections of population 5/6 are shown in a

891 *dat*:GFP transgenic fish. This shows elevated TUNEL and microglia labelling


- in population 5/6 after ablation. Note that areas of elevated TUNEL and
- microglial labelling follow the outlines of the *dat*:GFP+ cell population (ellipse)
- in the 6OHDA treated animals, but not controls, indicating localised labelling.

| 895 | <b>D:</b> A high magnification is shown of a TUNEL <sup>+</sup> /dat:GFP <sup>-</sup> | <sup>+</sup> dopaminergic neuron |
|-----|---------------------------------------------------------------------------------------|----------------------------------|
|     | 5 5                                                                                   | 1 5                              |


that is engulfed by a 4C4<sup>+</sup> microglial process (lateral and orthogonal views).

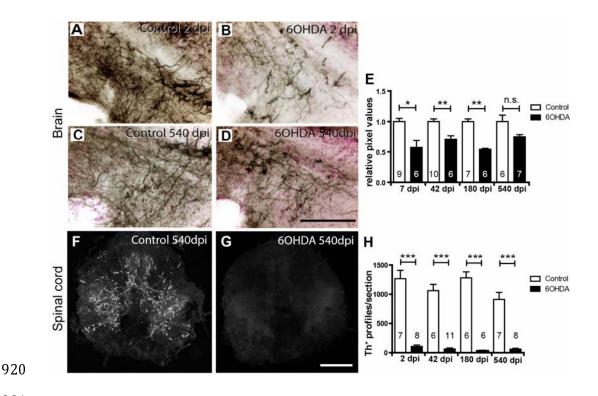
- 897 **E:** Injection of the toxin decreases levels of dopamine (DA), increases levels
- 898 of the metabolite DOPAC, but leaves serotonin (5-HT) and metabolites (5-
- HIAA, 3-MT) unaffected, as shown by HPLC. Student's T-test (with Welch's
- 900 correction for heteroscedastic data) and Mann Whitney-U tests were used for
- 901 pairwise comparisons in B and D (\*p < 0.05; \*\* p < 0.01; \*\*\* p < 0.001). Bar in
- 902  $C = 50 \mu m$ , in  $D = 5 \mu m$ .

41



D




Ν

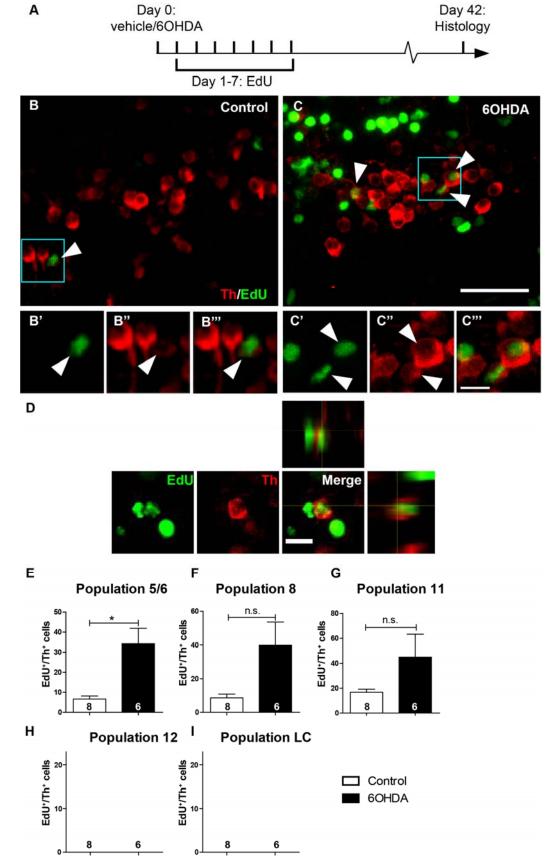
sections are shown; dorsal is up, rostral is left. Some Th<sup>+</sup> cell bodies are

910 indicated by arrowheads. **A-E:** In population 5/6 the number of Th<sup>+</sup> cells is

| 911 reduced after toxin-induced ablation and back to levels seen in controls | 911 | reduced after | toxin-induced | ablation | and back to | levels seen | in controls |
|------------------------------------------------------------------------------|-----|---------------|---------------|----------|-------------|-------------|-------------|
|------------------------------------------------------------------------------|-----|---------------|---------------|----------|-------------|-------------|-------------|

- 912 without ablation by 180 dpi. **F-J:** In population 12, a partial and transient
- 913 recovery in the number of Th<sup>+</sup> cells was observed at 42 dpl. K-O: In the LC
- 914 there was also a partial and transient recovery of Th<sup>+</sup> cell number. Note that
- 915 example photomicrographs of controls are only shown for 2 dpi for clarity
- 916 reasons, but all statistics were done with age-matched controls. Two-way
- 917 ANOVA (p < 0.0001) with Bonferroni post-hoc test (\*p < 0.05, \*\*p < 0.01, \*\*\*p
- 918 < 0.001, \*\*\*\*p < 0.0001) for E, J, and O. Bars = 50  $\mu$ m.




- 921
- 922

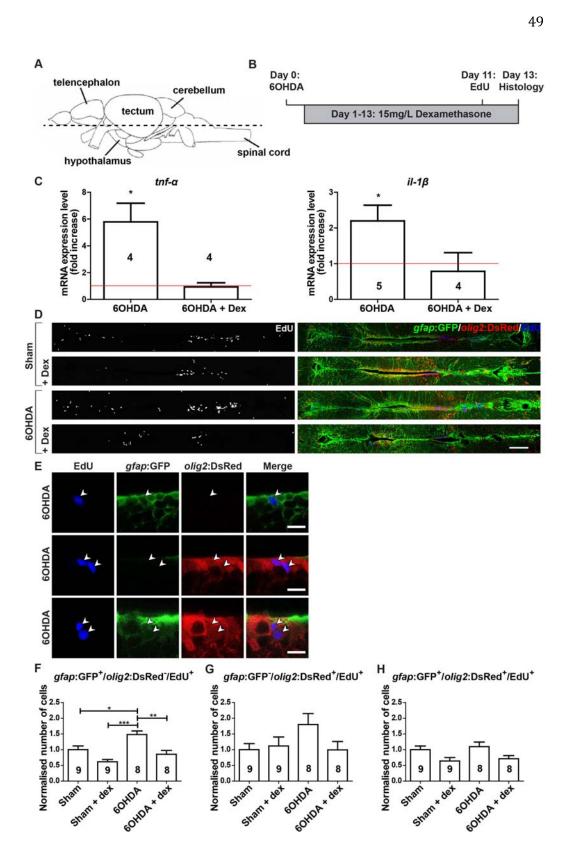
923 Fig. 3 Th<sup>+</sup> axons are inefficiently regenerated. **A-D:** Immunohistochemical 924 detection of Th<sup>+</sup> axons (black on red counterstain) in sagittal sections through 925 a terminal field of TH<sup>+</sup> axons ventral to population 5/6 is shown. Compared to 926 controls (A), density of these axons is reduced at 2 dpi (B), and is more 927 similar to age-matched controls (C,D) at 540 dpi. E: Semi-quantitative 928 assessment of labelling intensity in the area depicted in D-G indicates 929 significant loss of innervation at all time points except the latest, 540 dpi. F,G: 930 Spinal cross sections are shown. Compared to age-matched controls (A), 931 immunofluorescence for Th is very low at 540 dpi (B). H: Quantification of 932 spinal Th<sup>+</sup> axons indicates a lack of regeneration of the spinal projection. 933 Student's T-tests (with Welch's correction for heteroscedastic data) or Mann-934 Whitney U tests were used for pairwise comparisons as appropriate (\*p <

44

936 for F,G.






| 939 | Fig. 4 Generation of new $Th^+$ cells is enhanced by prior ablation only in                               |
|-----|-----------------------------------------------------------------------------------------------------------|
| 940 | dopaminergic populations showing constitutive neurogenesis. A: The                                        |
| 941 | experimental timeline is given. B,C: In sagittal sections of population 5/6                               |
| 942 | (rostral left; dorsal up), EdU and Th double-labelled cells can be detected.                              |
| 943 | Boxed areas are shown in higher magnifications in B'-C"", indicating cells with                           |
| 944 | an EdU labelled nucleus, which is surrounded by a $Th^+$ cytoplasm                                        |
| 945 | (arrowheads). <b>D:</b> A high magnification and orthogonal views of an EdU <sup>+</sup> /Th <sup>+</sup> |
| 946 | cell after 6OHDA treatment is shown. E-I: Quantifications indicate the                                    |
| 947 | presence of newly generated $Th^+$ cells in specific dopaminergic brain nuclei                            |
| 948 | (E-G). After 6OHDA treatment, a statistically significant increase in the                                 |
| 949 | number of these cells was observed for population 5/6. Note that population                               |
| 950 | 12 and LC showed no constitutive or ablation-induced EdU labelled $Th^+$ cells                            |
| 951 | (H, I). (Student's T-tests with Welch's correction, *p <0.05,). Bar in C = 20 $\mu$ m                     |
| 952 | for A,B; bar in C''' = 5 $\mu$ m for B'- C''', bar in D = 10 $\mu$ m.                                     |
|     |                                                                                                           |

А в telencephalon cerebellum Th\* cells 7 tectum ERG process ventricle spinal cord hypothalamus Day 6: 60HDA Day 48: С Histology Day 0-6: 40HT Recombination Number of D Th\*/GFP\* cells Tg (-3her4.3:Cre-ERT2; actb2:LOXP-mCherry-LOXP-EGFP) Control Th/GFP 2 0 Fish 1 0 Fish 2 0 40HT Fish 3 2 ++ Fish 4 7 +++ 1-1-1-Е Merge F Merge 955 956

Fig. 5 Genetic lineage tracing identifies ERGs as a source for new Th<sup>+</sup> cells. 957

958 A: The horizontal section level of all photomicrographs is indicated (rostral is

- left). **B:** Th<sup>+</sup> cells are in close vicinity to *gfap*:GFP<sup>+</sup> processes near the brain
- 960 ventricle. **C,D:** Pulse-chase lineage tracing driven by *her4.3* indicates variable
- 961 recombination and labelling of mainly ERGs and some Th<sup>+</sup> neurons. **E:** High
- 962 magnification and orthogonal views indicate Th<sup>+</sup>/GFP<sup>+</sup> cells. **F**:
- 963 *her4.3*:mCherry<sup>+</sup> cells largely overlap with *gfap*:GFP labelling in double-
- 964 transgenic animals. Scale bars: in B = 25  $\mu$ m, D and F = 100  $\mu$ m; in E = 10
- 965 µm.



| 969        | Fig. 6 60HDA injection increases ERG proliferation, which is abolished by                                                                                                    |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 970        | dexamethasone treatment. A,B: The section level of photomicrographs (A,                                                                                                      |
| 971        | rostral is left) and experimental timeline (B) are given. <b>C</b> : Levels of <i>il-1</i> $\beta$ and                                                                       |
| 972        | tnf- $\alpha$ are increased by 6OHDA treatment at 3 dpi, but not in the presence of                                                                                          |
| 973        | dexamethasone, as shown by qRT-PCR. Each condition is normalised to                                                                                                          |
| 974        | sham-injected fish (shown by the red line; one-tailed one-sample t-tests, $*p < $                                                                                            |
| 975        | 0.05). D,E: Overviews (D) of the quantification areas and higher                                                                                                             |
| 976        | magnifications of ventricular cells (E) are given. EdU-labels ERGs that are                                                                                                  |
| 977        | only <i>gfap</i> :GFP⁺, only <i>olig</i> 2:DsRed⁺ or both (arrowheads). <b>F-H:</b> The                                                                                      |
| 978        | proliferation rate in only <i>gfap</i> :GFP <sup>+</sup> ERGs is increased by 6OHDA injection                                                                                |
| 979        |                                                                                                                                                                              |
|            | and brought back to control levels by dexamethasone treatment (F). A similar                                                                                                 |
| 980        | and brought back to control levels by dexamethasone treatment (F). A similar non-significant trend is observed for only <i>olig2</i> :GFP <sup>+</sup> ERGs (G), but not for |
| 980<br>981 |                                                                                                                                                                              |
|            | non-significant trend is observed for only <i>olig2</i> :GFP <sup>+</sup> ERGs (G), but not for                                                                              |
| 981        | non-significant trend is observed for only <i>olig2</i> :GFP <sup>+</sup> ERGs (G), but not for double-labelled ERGs (H). For F-H: One-way ANOVA with Bonferroni post-       |

51



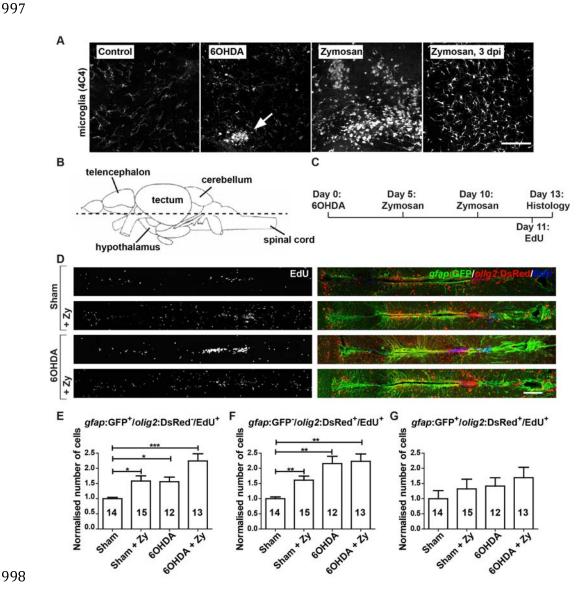
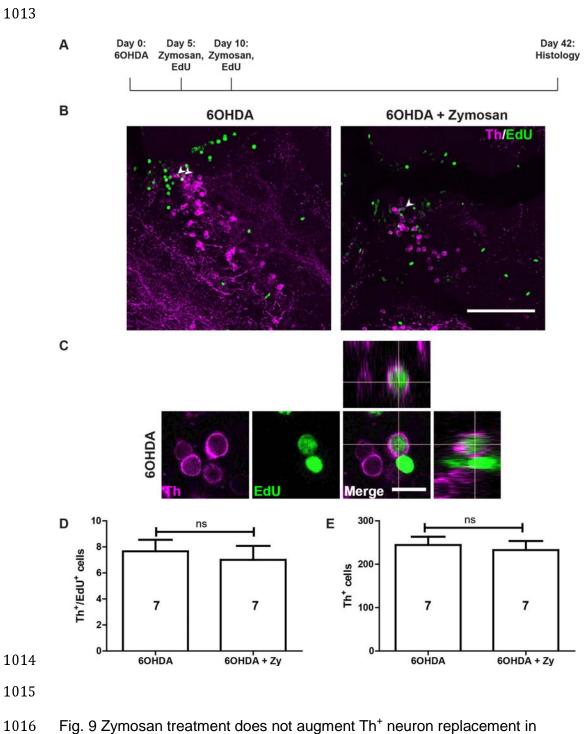

60HDA 60HDA + Dexamethasone в Th/EdU С 60HDA + Dex EdU Merge D Е 10 400 Th<sup>+</sup>/EdU<sup>+</sup> cells 8-300 Th<sup>+</sup> cells 6-200 4-100 2. 5 0 0 60HDA 60HDA + dex 60HDA 60HDA + dex

Fig. 7 Dexamethasone inhibits regeneration of  $Th^+$  neurons in the 5/6 population. **A:** The experimental timeline is given. **B:** In sagittal sections of population 5/6, EdU<sup>+</sup>/Th<sup>+</sup> neurons are present (arrowheads) after 6OHDA injection, with or without addition of dexamethasone. **C:** High magnification and orthogonal views of an EdU<sup>+</sup>/Th<sup>+</sup> neuron are shown. **D,E:** The number of

986

52


- $EdU^{+}/Th^{+}$  (D; Mann Whitney-U test, \*p < 0.05) and the overall number of  $Th^{+}$
- neurons (E; Student's t test, \*p < 0.05) are reduced by treating 6OHDA-
- injected animals with dexame has one. Scale bar in B = 100  $\mu$ m; in C = 10  $\mu$ m.

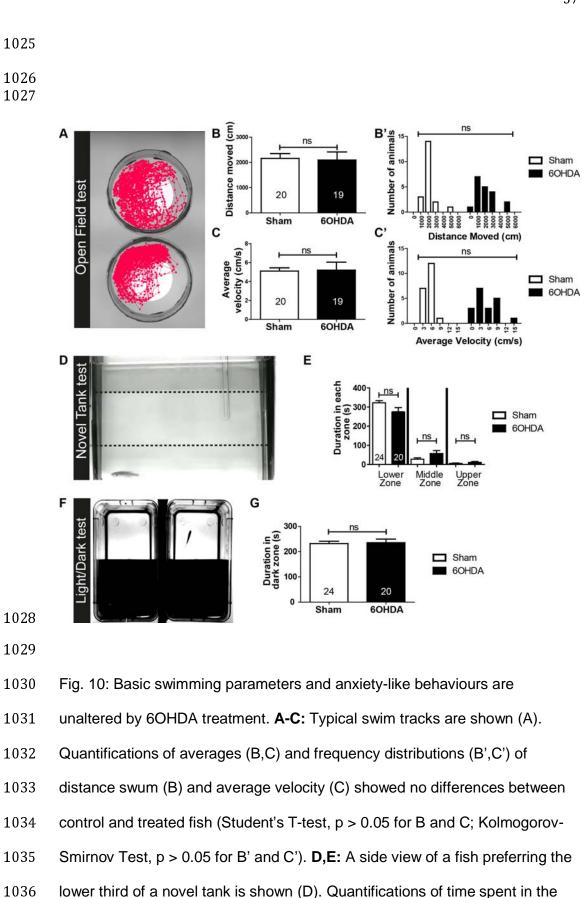


999 Fig. 8 6OHDA and Zymosan injections both increase ERG proliferation. A: In 1000 sagittal sections of population 5/6 restricted microglia activation at 24 hours 1001 after 6OHDA injection (arrow in B) compared to sham-injected control animals 1002 (A) is observed. Zymosan injection leads to much stronger non-localised 1003 microglia response that lasts for at least three days (C,D). B: The horizontal 1004 plane of sectioning for G is shown; rostral is left for all panels. C: The 1005 experimental timeline for D-G is given. D-G: 6OHDA injections and Zymosan 1006 injections, alone or in combination with 60HDA, increase proliferation of

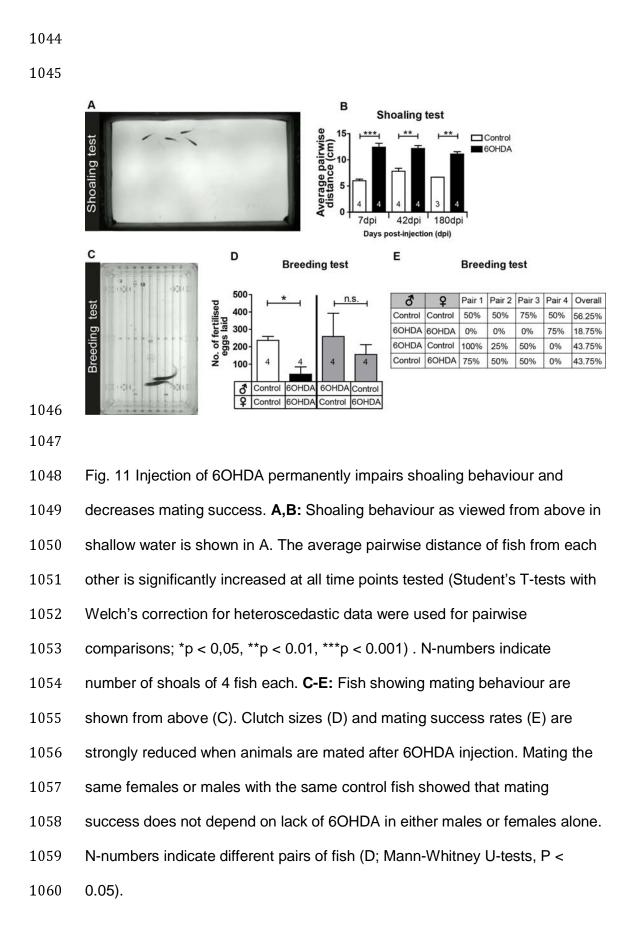
- 1007 ERGs (D). This is true for only *gfap*:GFP<sup>+</sup> (E) and only *olig2*:DsRed<sup>+</sup> (F), but
- 1008 not double-labelled ERGs (G). One-way ANOVA with Welch's correction and
- 1009 Games-Howell post-hoc test for H, I (\*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001), one-
- 1010 way ANOVA for J (p > 0.05). Scale bar in D = 100  $\mu$ m for A-D; in G = 100  $\mu$ m.
- 1011
- 1012

55




1017 population 5/6. A: The experimental timeline is indicated. B: In sagittal

1018 sections of population 5/6, EdU<sup>+</sup>/Th<sup>+</sup> neurons can be observed (arrowheads)


1019 after 6OHDA injection with or without addition of Zymosan. C: High

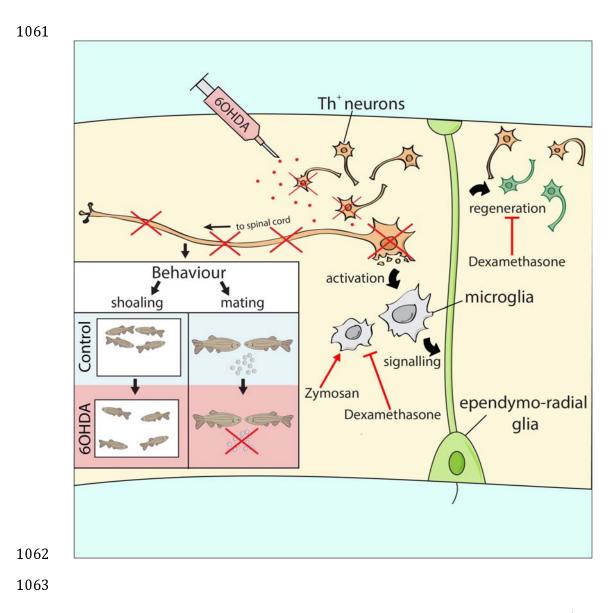
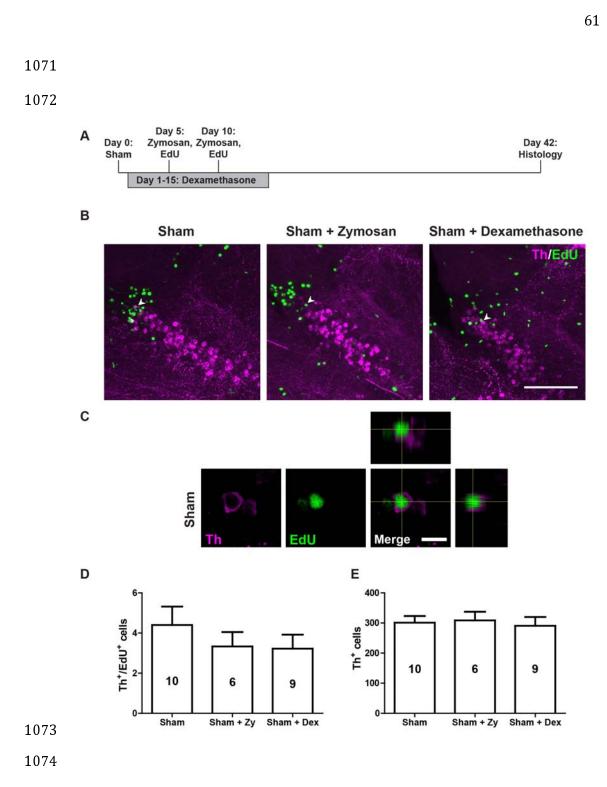
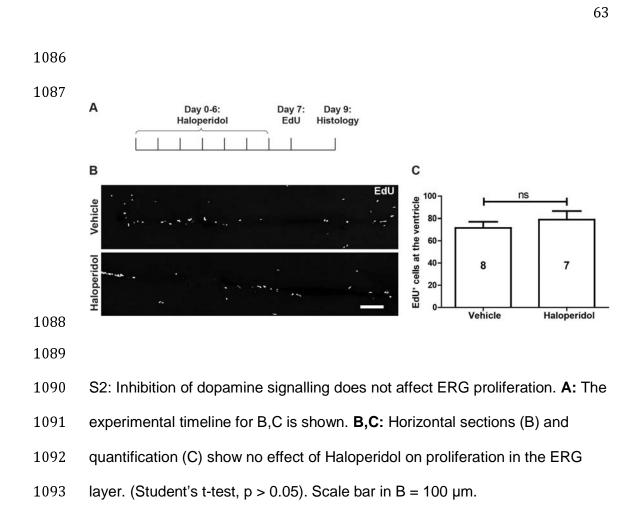
magnification and orthogonal views of an EdU<sup>+</sup>/Th<sup>+</sup> neuron are shown. **D,E**: 1020

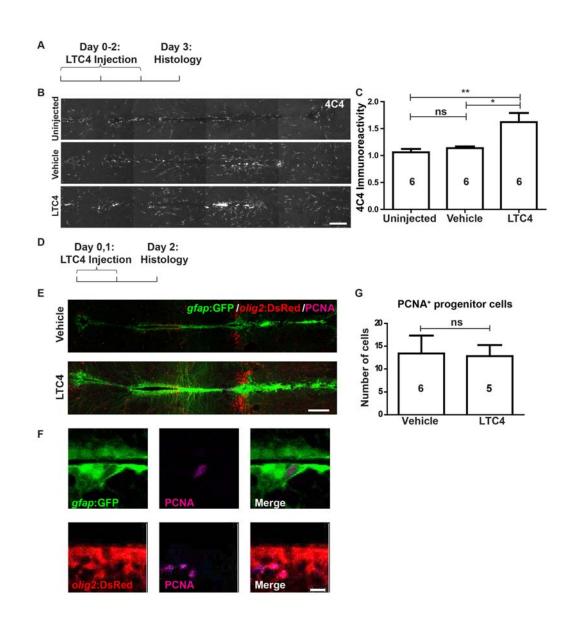
- 1021 The number of  $EdU^{+}/Th^{+}$  (D) and the overall number of  $Th^{+}$  neurons (E) are
- 1022 not increased by treating 6OHDA-injected animals with Zymosan (Student's
- 1023 T-tests, p > 0.05). Scale bar in B = 100  $\mu$ m; in C = 10  $\mu$ m.



- 1037 different depth of the tank (E) show the same preference for the lowest
- 1038 compartment in control and 6OHDA treated fish (Mann-Whitney U-tests, p >
- 1039 0.05). **F:** The setup for the light/dark preference test is shown from above (F).
- 1040 Quantifications (G) indicate that control and treated fish do not differ in their
- 1041 preference for the dark compartment in a 300 seconds observation period
- 1042 (Student's T-test, p > 0.05).
- 1043





Fig. 12 Schematic overview of results. 6OHDA injection ablates specific Th<sup>+</sup> cell populations, leading to a microglia response, which is necessary for regeneration of new dopaminergic neurons from ERGs. This is blocked by dexamethasone, whereas Zymosan stimulates ERG proliferation, but not addition of Th<sup>+</sup> neurons. Neurons projecting to the spinal cord are not replaced, associated with deficits in shoaling and mating behaviours.



S1: Immune system manipulations in animals in the absence of ablation do
not influence addition of new Th<sup>+</sup> cells. A: Timeline of experiments with either
Zymosan or dexamethasone treatment. B: In sagittal sections of population
5/6, EdU<sup>+</sup>/Th<sup>+</sup> neurons (arrowheads) can be observed in all experimental

- 1079 conditions. **C:** A high magnification and orthogonal views of a double-labelled
- 1080 neuron in a sham-injected animal are shown. **D,E:** In animals without ablation
- 1081 no changes are observed in the number of newly generated Th<sup>+</sup> neurons and
- 1082 the overall number of Th neurons after dexamethasone or Zymosan treatment
- 1083 (One-way ANOVA with Bonferroni post-hoc test used in D and E, p > 0.05).
- 1084 Scale bar in B = 100  $\mu$ m; in C = 10  $\mu$ m.
- 1085





S3: LTC4 moderately activates microglia but does not increase proliferation of
ERGs. Horizontal sections are shown, rostral is left. A-C: LTC4, but not
vehicle injection leads to an increase in microglia labelling in the brain D-G:
PCNA labelling in *gfap*:GFP<sup>+</sup> and/or *olig2*:DsRed<sup>+</sup> ERGs is not increased by

- 1099 LTC4 (One-way ANOVA with Bonferroni post-hoc test used in C, Mann
- 1100 Whitney-U test used in G, \*p < 0.05). Scale bars = 100  $\mu$ m in B and E, 10  $\mu$ m
- 1101 in F.
- 1102