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Abstract

Translational and post-translational control mechanisms in the cell result in widely
observable differences between measured gene transcription and protein abundances.
Herein, protein complexes are among the most tightly controlled entities by selective
degradation of their individual proteins. They furthermore act as control hubs that
regulate highly important processes in the cell and exhibit a high functional diversity
due to their ability to change their composition and their structure. To better
understand and predict these functional states, extensive characterization of complex
composition, behavior, and abundance is necessary. Mass spectrometry provides an
unbiased approach to directly determine protein abundances across cell populations and
thus to profile a comprehensive abundance map of proteins. We investigated the
behavior of protein subunits in known complexes by comparing their abundance profiles
across up to 140 cell types available in ProteomicsDB. After thorough assessment of
different randomization methods and statistical scoring algorithms, we developed a
computational tool to quantify the significance of concurrent profiles within a complex,
therefore providing insights into the conservation of their composition across human cell
types. We identified the intrinsic structures in complex behavior that allow to
determine which proteins orchestrate complex function. This analysis can be extended
to investigate common profiles within arbitrary protein groups. With the CoExpresso
web service, we offer a potent scoring scheme to assess proteins for their co-regulation
and thereby offer insight into their potential for forming functional groups like protein
complexes. CoExpresso can be accessed through
http://computproteomics/Apps/CoExpresso. Source code and R scripts for database
generation are available at https://bitbucket.org/veitveit/coexpresso

Author summary

Many proteins form multi-functional assemblies called protein complexes instead of
working as singly units. These complexes control most processes in the cell making the
full characterization of their behavior inevitable to understand cellular control
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mechanisms. Detailed knowledge about complex behavior will elucidate biomarkers and
drug targets that exhibit and correct aberrant cell states, respectively. We investigated
abundance changes of the protein complex components over more than 100 different
human cell types. By using statistical scoring models, we estimated the evidence for the
co-regulation of the proteins and revealed which proteins form subunits with impact on
complex function and composition. By providing the interactive web service CoExpresso,
any combination of proteins can be tested for their co-regulation in human cells.

Introduction 1

Biological systems are governed by a multitude of entangled interactions between 2

biomolecules with an immense number of physical and chemical properties. Protein 3

complexes are large biomolecules with a wide range of tasks in the cell and consist of 4

multiple subunits linked by non-covalent interactions. These interactions can lead to a 5

variety of stable or transient states where the complexes display different compositions 6

of their subunits or different structures that are often fine-tuned by post-translational 7

modifications. An example of functional diversity are ribosomes that are known to 8

contribute differentially to translation of distinct subpopulations of mRNAs [1]. There 9

is a pressing need to investigate complex capabilities for regulatory control of cellular 10

processes. To achieve this, a detailed map of protein complex composition, abundance, 11

and behavior in different cell types and tissues is required. Such a map will considerably 12

improve the characterization and the prediction of the functional states. 13

Various experimental methods exist to identify protein complexes and to determine 14

and quantify which protein subunits they are composed of. Determination of protein 15

interaction partners within a complex provides valuable knowledge about complex and 16

protein function and thus their potential behavior [2]. Most prominent experimental 17

methods to determine protein-protein interactions are based on the yeast-2-hybrid 18

protocol or the application of affinity purification coupled with mass spectrometry [3, 4]. 19

These methods however suffer from either large false identification rates or depend on 20

purification steps that often lead to a strong bias in the results. More details about 21

protein structure can be achieved by chemical cross-linking or hydrogen-deuterium 22

exchange mass spectrometry [5]. Despite the power of these methods, they cannot yet 23

be applied on entire proteomes. For an accurate, large-scale and general 24

characterization, protein complex behavior should be studied across large numbers of 25

samples without perturbations towards e.g. subgroups of proteins and additionally rely 26

on highly confident identification of the proteins. 27

There is an increasing amount of evidence supporting the hypothesis that the 28

majority of protein complexes are tightly controlled in the cell. Post-transcriptional 29

regulation occurs predominantly for protein complex members, leading to strong 30

co-regulation of complex subunits. This could be shown by systematic investigation of 31

protein and gene expression levels in human cancer [6, 7], in a study comparing 11 cell 32

types and 4 temporal states [8], based on the co-occurrence of protein pairs across 33

human experiments in the PRIDE database [9], or generally in a selection of proteomics 34

data sets [10]. In summary, these studies showed that only a fraction of complex 35

composition and abundance is regulated at transcriptional level and therefore other 36

mechanisms such as protein degradation contribute to protein complex stoichiometry. 37

This highlights the power of directly measuring protein abundance profiles by common 38

proteomics approaches such as bottom-up mass spectrometry to thoroughly study 39

protein complexes and their variants across cell types and states. 40

In contrast to most proteomics data repositories where only raw data and 41

identification results are available, ProteomicsDB [11,12] is a large compendium of 42

quantitative protein abundances, therefore highly useful to investigate general patterns 43
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of protein changes across more than 100 different human cell lines. 44

Here, we apply three scoring models on the ProteomicsDB data to assess the 45

significance of subunit co-regulation in protein complexes. We compare and benchmark 46

different randomization and scoring approaches on known complexes and reveal 47

particular substructures of complex behavior for a few selected use cases. The scoring 48

and extensive visualization is implemented in the web service CoExpresso that allows 49

investigating co-regulatory patterns in any group of human proteins. 50

Fig 1. Schema of entire workflow to investigate protein complex behavior.

Models and randomization methods that were not used in the final assessment of
CORUM complexes are shown in grey. For a more detailed description of the workflow,
see Methods.

Results 51

We applied different scoring systems to evaluate whether proteins in human complexes 52

exhibit similar regulatory behavior when compared over multiple cell types. Despite of 53

having a large set of available protein abundances, coverage of the proteins over the 140 54

cell types was often sparse (S1 Fig), requiring scoring methods that account for 55

missingness. Moreover, we needed to investigate different ways of randomizing the 56

ProteomicsDB data to identify the best performing combination of scoring scheme and 57

randomization procedure. 58

Table 1 summarizes the used methods and randomizations. In short, MCOM 59

compares each protein profile versus the averaged profile of protein group, allowing to 60

assess how much a protein follows this common trend. PCOM is based on pairwise 61

comparisons and summarizes them by their sum. This method was implemented to 62

consider internal structures of protein subgroups with high correlations. The FAM 63

model is based on factor analysis and calculates weights for each protein, giving a 64

measure of how much each protein contributes to the profile of the entire protein group. 65

For the following analysis, each protein complex reported in CORUM was assessed 66

for coverage in ProteomicsDB and further evaluated by the different models when all 67

protein subunits were available in at least 5 cell types. We tested a total of 1, 414 68

protein groups annotated in CORUM. 69

Table 1. Summary of scoring models and randomization methods.

Model Abbreviation Output

Mean correlation MCOM Similarity to averaged abundance profile
Pairwise correlation PCOM Sum of pairwise similarities
Factor analysis FAM Weights for protein contribution to full set

Randomization Abbrv. Basis

Independent sampling IS Mix all values
Protein-centered sampling PCS Keep protein profiles
Protein- cell type-centered sampling PTCS Keep protein and cell type profiles

Scoring models 70

By comparing the scores of the different models to scores obtained for randomly 71

sampled data, we obtained probabilities to discard the observed abundance profiles as 72

result of randomly chosen proteins. Thus the false discovery rates (FDRs), represented 73
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by p-values corrected for multiple testing, provide a measure for significance of a given 74

complex on basis of co-regulation of its subunits within human cell types. The different 75

randomization techniques were applied to resemble the intrinsic data structure on 76

different scales. 77

Fig 2a compares the p-values calculated for each model and randomization. More 78

“realistic” randomization (IS<PCS<PTCS) resulted in lower number of complexes with 79

significant abundance profiles. MCOM and PCOM, both models being based on 80

Pearson’s correlation, produced nearly the same results on complex level (see also S2 81

Fig). The FAMS approach however performed differently, reaching a higher number of 82

significant complexes for the protein-centered randomization. 83

On protein level (Fig 2b), lower protein numbers with significant abundance profiles 84

could be expected and were observed when using randomization methods that maintain 85

protein and cell type properties. Here, PCOM displays a higher number of proteins 86

than FAMS and MCOM for low false discovery rates. 87

Fig 2. Comparison of models for significant co-regulations. Number of
complexes (a) and proteins (b) with significant abundance profiles according to the
different scoring models and randomizations calculated for different thresholds for their
false discovery rate (FDR).

Robustness 88

Recovery of proteins and complexes with significant abundance profiles does however 89

not ensure robustness of the methods towards noise. As example, one could expect a 90

protein complex to contain subunits that do not follow the general trend of the 91

abundance profiles. This could be due to wrong assignment of a protein to a complex or 92

due to different behavior of a subunit being heavily regulated by e.g. post-translational 93

modifications or by forming transients regulating complex function. 94

Robustness to differently behaving proteins can be simulated by adding randomly 95

chosen proteins to the CORUM complexes. In all complexes, we increased the number 96

of proteins by 50%, 75% and 100%. Fig 3 shows ROC curves for these simulated 97

complexes, where we compared the significance by counting true (actual complex 98

subunits) and false positives (added proteins). Here, the different methods and 99

randomization approaches showed consistent differences for their robustness. 100

Randomization of the entire ProteomicsDB data lead to lower robustness for all 101

methods. One the other hand, protein-centered (PCS) and protein-cell type centered 102

(PTCS) randomization gave nearly identical performance results. Hence, the following 103

analysis will focus on PCS randomization, although being the computationally mosts 104

expensive one, as it yields higher counts of significant proteins. In addition, MCOM and 105

FAM models had lower false positives rates at least in the lower range. 106

Fig 3. Performance of scoring models measured by robustness to 50%, 75% and
100% artificially added random proteins. Proteins were categorized into complex
subunits and random proteins. True positive and false positives rates (TPR and FPR)
were given by the fraction of true positives and false positives at a given FDR threshold.
MCOM and FAM models lead to better performance. Only slight difference between
PCS and PTCS randomizations can be observed.
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Use cases 107

The following use cases will provide detailed results of the scoring models and general 108

complex behavior for three selected complexes that are representative for the 109

investigated complexes. We obtained 60 CORUM complexes with lowest FDR values 110

(< 0.0003) for all three scoring models. 111

Use case A: Condensin I (Fig 4) represented the first of the complexes with lowest 112

FDR values in all models (PCS randomization). All five proteins were commonly 113

expressed in 75 cell types. Very high correlations between all proteins confirmed the 114

high interaction evidence from STRINGdb [13]. However, Condensin subunit 2 115

(NCAPH) showed slightly lower correlation and lower scores. Indeed, NCAPH is known 116

as regulatory subunit of Condensin I with different nucleolar localization during 117

interphase [14]. We observed different abundance levels of NCAPH in several cell types 118

leading to lower weight by factor analysis (S3 Fig). 119

Use case B: 28S mitochondrial ribosomal subunit (Fig 4), being essential for ATP 120

production, represents the complex with lowest FDR in all models and most proteins. 121

The 30 proteins were commonly available in 23 cell types. Both our visualization and 122

STRINGdb interactions suggest a more open structure or composition of the complex 123

with a core component of heavily co-regulated proteins. These proteins were mostly the 124

same when comparing STRINGdb with our results and also were assigned higher 125

significance by the here applied scoring models. Moreover, the correlation map (upper 126

figure) roughly distinguishes 2 large subgroups with higher correlations amongst their 127

proteins. We found a strikingly different behavior of these groups in lung tissue (S3 128

Fig). This suggests that the 28S ribosomal complex plays a different role in lung where 129

it might break up into two functional units. 130

A group of the four proteins MRPS21, MRPS24, MRPS26 and MRPS33 exhibited 131

highest correlations and reasonably high significance. We investigated their 132

co-regulation as a protein group on their own where their abundance profiles were 133

available in a higher number of 39 cell types and confirmed highly significant 134

co-regulation for this higher coverage (not shown). 135

Use case C: NUMAC complex (nucleosomal methylation activator complex, Fig 4) 136

denotes a case with slightly lower significance. All scoring models suggest high 137

significance with an FDR below 0.5%. The 10 proteins were found in 33 cell types with 138

ACTB distinct behavior and drastically higher abundance than the other proteins. 139

Strong evidence for interactions of all components but SCYL1 in STRINGdb suggests 140

that ACTB plays a crucial role in complex composition but might still have other 141

functions in the cell. We assume that this protein is not actively degraded when not 142

forming the complex. All 3 models agreed in having high FDR values for ACTB and 143

SMARCD1 (FDR > 0.1), suggesting that the latter plays a particular role in this 144

complex. 145

Fig 4. Examples for complexes with highly co-regulated proteins. Upper
panels: hierarchical clustering of pairwise correlations between protein abundance
profiles. The sidebars show the significance of MCOM and FAM models (PCS
randomization). Middle panels: Network visualization of profile similarities. Edge
widths correspond to pairwise correlations. Grey tones of the proteins depict FDR
significance calculated by PCOM (PCS randomization). Lower panels: STRINGdb
(version 10) networks of proteins. Edge width is given by interaction confidence.
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A data source for tightly co-regulated proteins 146

Given the strong co-regulation in annotated protein complexes, we asked whether our 147

randomly sampled protein groups with highly significant co-regulation could determine 148

novel but yet not well characterized complex compositions in human cells. Random 149

protein groups with the highest scores did however not provide evidence for these 150

proteins to be arranged as complexes as evidence scores for their interaction in 151

STRINGdb were not sufficiently enriched. This does however not mean that highly 152

significant protein groups do not have particular common biological functions such as 153

co-regulation on transcriptional level or being common members of a pathway. We 154

implemented CoExpresso that interrogates groups of human proteins to assess their 155

co-regulation strength. The web service can be highly useful for the interested 156

researcher to test their hypothesis on the basis of human cell types in general. 157

Discussion 158

Published proteomics studies provide at least hundreds proteomics experiments per year 159

from which a large percentage have their raw data deposited in the major data 160

repositories (e.g. PRIDE nearly reaching 10,000 projects to date [15]). Availability of 161

quantified protein abundances is however still very rare also because the comparison of 162

protein abundance across experiments and projects is still a major bottleneck in the 163

proteomics field. ProteomicsDB provides a large catalogue of protein abundances in 164

human cell types which we used to thoroughly investigate protein complex behavior. 165

Despite the large number of characterized cell types, data coverage is rather low, where 166

more than 20% of the proteins were detected in only 2–5 cell types. Such low coverage 167

hindered straight-forward application of e.g. simple correlation and we therefore 168

compared a variety of different scoring models and randomizations that reproduce the 169

inherent data structure. 170

Our comparison showed that appropriate randomizations are crucial to achieve 171

results with simultaneously high recall and considerable robustness to the introduction 172

of noise. The results speak against complete randomization of all values, where global 173

differences amongst cell types and proteins are neglected. We found that protein 174

identities (PCS method) needed to be maintained to reach robust results. On the other 175

hand, maintaining the identity of the tissues (PCTS method) in the investigated protein 176

group did not lead to lower robustness. We therefore conclude that testing properties of 177

protein profiles in general should be compared to a randomized set where protein 178

identity is kept. In data with many missing values, this randomization requires 179

categorizing the random protein groups into their tissue coverage which can be 180

computationally expensive. We therefore provide a web service that stores the 181

randomizations and where arbitrary protein groups can be tested for their significance. 182

By testing annotated complexes from the CORUM database for the significance of their 183

concurrent protein abundance profiles, we could confirm almost 50% (500–600 184

depending on scoring model) of the protein groups being co-regulated with an FDR 185

below 0.1. This confirms the tight regulation of complex proteins previously reported 186

and extends this observation to be valid generally in human cells. Given the lack of 187

coverage over sufficient cell types in many cases, resulting in rather low statistical 188

power, we predict that most protein complexes will be found to be translationally and 189

post-translationally regulated. 190

Our analysis additionally confirmed and extended details about protein complex 191

substructure that indicates regulatory features that orchestrate complex function by 192

changes in complex composition or by here not investigated post-translational 193

modifications. 194
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We furthermore tested whether the large database of randomized protein groups 195

could be used to identify novel protein assemblies that represent highly interacting 196

functional modules such as complexes. We did not find enrichment for known 197

protein-protein interactions in the most significant protein groups. This means that 198

investigating protein co-regulation by random sampling alone is not a good source to 199

search for novel complexes but remains highly valuable to test for complex behavior and 200

confirm their composition across cell types. Given the combinatorial explosion when 201

considering the number of possible protein groupings, the random sampling strategy 202

used here considers only a small fraction of all protein groups that contain highly 203

co-regulated proteins. Novel protein assemblies could still be found by selective and 204

iterative algorithms that determine protein groups with highest co-regulation within all 205

possible combinations. The here presented study provides deep insight in to protein 206

complex behavior in human cells. The data for all 1, 414 investigated protein groups can 207

be accessed via the CoExpresso web service. Arbitrary protein groups can be tested for 208

their significance with respect to their co-regulation in human cell, such as investigating 209

prior hypotheses about protein groups with common strongly co-regulated functional 210

behavior. With more data on hand, we expect to improve statistical power and 211

accuracy by including more data sets and by characterizing the role of quantified 212

post-translational modifications. 213

Materials and methods 214

Quantifications of proteins and IDs of known complexes were downloaded from 215

ProteomicsDB [11,12] and CORUM [16], respectively. We used three randomization 216

approaches that differently resemble data structure within all protein abundance 217

profiles. Scores were calculated for the co-regulation of proteins in a complex applying 218

three different models for the comparison of protein profiles. The scores were stored in a 219

database. For each protein in each complex, significance for their co-regulation was 220

calculated and assessed on basis of the scores. A web service was implemented to allow 221

interrogating the score database to test arbitrary protein groups for the significance of 222

their co-regulation. Fig 1 provides an overview of the workflow and the web interface. 223

Data retrieval 224

Quantitative abundance profiles of SwissProt proteins were extracted from 225

ProteomicsDB hosting mass spectrometry based protein abundances for distinct human 226

cell types including cell tissues, cell lines and fluids. In ProteomicsDB, proteins and 227

samples are annotated according to UniProtKB and Brenda Tissue Ontology [17], 228

respectively. 229

From the downloaded profiles (summer 2016), we retained only cell types with more 230

than 1, 000 proteins and which were tagged by Brenda ontology terms. Proteins not 231

available in at least 2 cell types were removed. This reduced the data to comprise 232

15,409 proteins and 140 tissues. Uniprot accession numbers for annotated human 233

complexes were downloaded from CORUM and filtered for duplicates, leading to a total 234

of 2175 reported complex compositions. 235

Complex abundance profiles 236

For each protein group C, only the nt cell types with full coverage, t = [1..nt] , i.e. 237

having quantitative values for all proteins p = [1..np], were considered, resulting in a nt 238

by np matrix EC(t, p). 239

July 5, 2018 7/11

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 12, 2018. ; https://doi.org/10.1101/367227doi: bioRxiv preprint 

https://doi.org/10.1101/367227
http://creativecommons.org/licenses/by/4.0/


Randomization techniques 240

We applied 3 different forms of randomization to obtain random protein groups being 241

quantified in the same number of cell types as the proteins of protein group C. The 242

often relatively low coverage of proteins over multiple cell types required creating 243

randomized sets for each combination of number of cell types and number of proteins. 244

Independent sampling (IS): Randomization of quantitative values of all proteins in 245

all tissues comprised sets with the same dimensions as the to be tested protein group. 246

That is, the nt by np randomized values were obtained by sampling, independently at 247

random, ntnp values from all quantitative values of all proteins in all tissues. 10, 000 248

random groups were created for each combination of nt and np. 249

Protein-centered sampling (PCS): Randomization of proteins and categorization into 250

cell type coverage. This randomization type turned out to be more complex and a 251

sufficient large coverage of random groups was achieved by the following procedure. For 252

each combination of number of proteins np and number of cell types nt: 253

1. Take all proteins being each quantified in at least nt cell types 254

2. Repeat the following 5, 000 times: sample np proteins IDs and count full cell type 255

coverage of the protein group 256

3. Keep unique protein combinations with coverage over at least five cell types 257

With this procedure, we obtained 1,000-20,000 unique and random protein groups for 258

each relevant combination giving a total of more than 20,000,000 randomized groups. 259

Protein- and tissue-centered sampling (PTCS): All proteins simultaneously found in 260

the same cell types as the tested protein group were randomized to create 10,000 261

samples. That is, np proteins are sampled independently at random from all proteins 262

that appear in the same cell types as the tested protein group, and their observed values 263

in those cell types are considered. 264

Similarity models and scoring 265

Mean correlation model (MCOM): Protein abundances were averaged for each cell type, 266

restricting to cell types covered by the entire protein group, M(t) =< EC(t, p) >p. For 267

each protein p, Pearson’s correlation to the means M(t) provides a measure of how 268

much the protein follows the common profile of the protein group, 269

SMCOM(p) = cor(M(t), EC(t, p)), where cor(x(t), y(t)) denotes Pearson’s correlation 270

between samples x and y. 271

Pairwise correlation model (PCOM): Pearson’s correlation was calculated between 272

all proteins pairs using the abundances in the cell types covered by all proteins. The 273

score is then given by the sum, 274

SPCOM(p) =

np
∑

p,q=1;q 6=p

cor (EC(t, p), EC(t, q))

Factor analysis model (FAMS): The model is based on factor analysis developed for 275

microarray analysis [18] and recently modified to improve protein inference in 276

bottom-up mass spectrometry data [19]. The following parameters were used: Weight 277

w = 0.1, µ = 0.1, 1,000 maximal iterations and a minimal noise of 0.0001. The feature 278

weights W were used to score each protein of a group: SFARMS(p) = W (p). 279

Scores for protein groups: Overall scores per protein group were generated by 280

simply averaging the scores of the individual proteins, Ŝ =
∑np

p=1 SMODEL(p)/np, where 281

MODEL stands for either MCOM, PCOM or FARMS. 282
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Scoring statistics 283

For each model, randomization method, and a given combination of nt and np, the
aforementioned scores were calculated for randomized protein groups, and stored in a
database. These scores, more than 100,000,000 in total, were then used to calculate the
probabilities to reject the null hypothesis (of observing the score for a set of np proteins
over nt tissues) for both a single protein p and a group of proteins:

pMODEL(p) =
(

N
[

SMODEL(p
(random)) > SMODEL(p)

]

+ 1
)

/
(

N
[

SMODEL(p
(random))

]

+ 1
)

and
pMODEL =

(

N [Ŝ
(random)
MODEL > ŜMODEL] + 1

)

/
(

N [Ŝ
(random)
MODEL ] + 1

)

,

where p(random) denotes a protein from a randomized protein group, Ŝ
(random)
MODEL a score 284

for a randomized protein group, and N [...] counting the number of all valid cases within 285

the brackets. 286

For p-values from multiple protein groups, correction for multiple testing was carried 287

out via the Benjamini-Hochberg procedure. 288

Supporting information 289

S1 Fig. Low coverage of protein profiles across cell types complicates 290

co-expression analysis. 291

S2 Fig. Comparison of complex p-values between models. Colors indicate 292

cell type coverage. 293

S3 Fig. Protein abundance over cell types for 3 protein complexes. Left 294

panels: Abundance is shown versus the mean taken for each cell type (different colors). 295

Middle panels: Protein abundances for the different cell types which were ordered 296

according to the mean expression. Line thickness corresponds to the weights calculated 297

by the FAM model. 298
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