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Abstract 

The role of microRNAs (miRNAs) in the pathogenesis of Alzheimer’s disease (AD) is currently 

extensively investigated. In this study, we assessed the potential impact of AD genetic risk 

variants on miRNA expression by performing large-scale bioinformatic data integration. Our 

analysis was based on genetic variants from three AD genome-wide association studies 

(GWAS). Association with miRNA expression was tested by expression quantitative trait loci 

(eQTL) analysis using next-generation miRNA sequencing data generated in lymphoblastoid 

cell lines (LCL). While, overall, we did not identify a strong effect of AD GWAS variants on 

miRNA expression in this cell type we highlight two notable outliers, i.e. miR-29c-5p and miR-

6840-5p. MiR-29c-5p was recently reported to be involved in the regulation of BACE1 and 

SORL1 expression. In conclusion, despite two exceptions our large-scale assessment provides 

only limited support for the hypothesis that AD GWAS variants act as miRNA eQTLs. 
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1 Introduction 

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease 

characterized by progressive cognitive decline eventually leading to dementia. While it is 

established that genetic factors play a crucial role in determining liability to both monogenic as 

well as polygenic forms of AD, the underlying functional mechanisms – in particular those 

driving polygenic AD – hitherto remain only poorly understood. One such mechanism may 

involve the (dys-)function of microRNAs (miRNAs). MiRNAs are small, non-coding RNAs that 

post-transcriptionally alter messengerRNA (mRNA) expression and consequently protein 

abundance by their semi-complementary binding to specific mRNA targets. Like the expression 

of protein-coding transcripts (i.e. mRNAs) a substantial portion of miRNA expression is 

genetically controlled by alleles of both common and rare DNA sequence variants. Here, we 

systematically investigated whether and which of the currently established AD risk variants 

exhibit allele-specific effects on miRNA expression utilizing next-generation sequencing-based 

miRNA expression data in human lymphoblastoid cell lines previously generated by the 

GEUVADIS consortium. For two miRNAs whose expression was found to be at least partially 

regulated by AD associated variants, we performed additional analyses to characterize their 

potential role in AD pathogenesis.  

2 Methods 

Data integration is based on genome-wide AD association results retrieved from publicly 

available GWAS summary statistics from the International Genomics on Alzheimer’s Disease 

Project (IGAP (2013)). These data were supplemented by index SNPs from two subsequently 

reported GWAS (Jansen et al. (2018) and Kunkle et al. (2018)). MiRNA eQTL analysis was 
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performed using small RNA sequencing data generated in 345 independent lymphoblastoid cell 

lines by the GEUVADIS consortium (Lappalainen et al. (2013)). GWAS and miRNA expression 

data were integrated using a variety of methods including a data integration pipeline 

(ADmiReQTL) developed by our group and two recently developed tools for assessing the 

relationship between genetic association and gene expression data (JLIM (Chun et al. (2017)) 

and TWAS/FUSION (Gusev et al. (2018))).  

GWAS data 

For our genome-wide analyses we used the data released by the IGAP consortium which 

represents the largest currently available set of AD GWAS summary statistics (IGAP (2013)). 

For the analyses of this paper, we utilized the results from “stage I” of that study (17,008 cases 

and 37,154 controls; 7,055,881 SNPs), except for those SNPs which were also analyzed in 

“stage II” (11,632 SNPs; using 8,572 AD cases and 11,312 controls in addition to those of stage 

I). For all analyses (JLIM, TWAS/FUSION, and the miRNA target gene set enrichment) we used 

IGAP stage I (i.e. genome-wide) summary statistics and for ADmiReQTL we used stage I data 

except for N=11,632 SNPs for which summary statistics from stage I and stage II combined 

were utilized instead. In addition, we obtained index SNPs from two more recent and larger AD 

GWAS (Jansen et al. (2018), Kunkle et al. (2018)); neither of these latter studies have made 

their summary statistics publicly available at the day of writing (June 2018). The first GWAS, by 

Jansen et al. (2018), utilized 24,087 cases and 55,058 controls and 9,862,738 SNPs in their 

discovery phase and 74,793 “AD by proxy” cases and 328,320 controls in their replication 

stage; altogether, they confirmed all but four of the IGAP loci and pinpointed an additional nine 

novel AD loci. In analyses using the ADmiReQTL workflow (see below), we used genome-wide 
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significant index SNPs after meta-analysis of discovery and replication phase from their 

Supplementary Table 2. Kunkle et al. (2018) is a follow-up to the original IGAP report with 

sample increase of 29% for cases and of 13% for controls in stage I leading to overall 21,982 

AD cases and 41,944 controls, and with overall 8,572 Alzheimer’s disease cases and 11,312 

controls in stage 2 compared to the earlier report. In addition, they extended their stage I 

analyses to 9,456,058 SNPs while the number of variants in stage II remained the same as in 

the original paper. Overall, these updated analyses resulted in four new loci, one of which (i.e. 

ECHDC3) was also detected by Jansen et al. (2018). With ADmiReQTL, we used genome-

wide significant index SNPs after meta-analysis of stage I and stage II data according to Table 

1 of Kunkle et al. (2018). 

eQTL data 

We performed a miRNA eQTL analysis using small RNA sequencing data of 345 samples of 

lymphoblastoid cell lines generated by the GEUVADIS consortium (Lappalainen et al. (2013)). 

In brief, this entailed genotype QC, expression quantification, batch correction, normalization 

and linear model fitting using Matrix eQTL (for details see Wohlers et al. (2018)). Overall, we 

combined the data from 468 miRNAs and 1,748,620 SNPs in our eQTL analyses resulting in a 

total of 3,191,687 association results. This resulted in 7,081 eQTLs at FDR of 0.05 (for 149 

miRNAs and 5,658 SNPs). When defining p=0.01 for nominal significance, we observed 52,003 

significant eQTLs (for 468 miRNAs and 45,911 SNPs). 

Data integration using ADmiReQTL 

Statistical assessment of shared association signals between AD risk and miRNA expression 

using tools such as JLIM and TWAS/FUSION requires GWAS summary statistics, which are 
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not yet available for the two latest and largest AD GWAS studies (Jansen et al. (2018), Kunkle 

et al. (2018)). However, it is still possible to assess novel loci identified by these studies by 

matching AD risk index SNPs to miRNA eQTLs within the implicated GWAS loci (defined as +/- 

1 MB of the GWAS index SNP). To formalize this process, we developed a workflow 

(ADmiReQTL for “AD-miRNA-eQTL analysis pipeline”), which links each index GWAS SNP 

with eQTLs of all miRNAs within a specific locus (Figure 1). First, this entails assigning miRNA 

eQTL association data to the GWAS index SNP. For any given miRNA we then add the best, 

i.e. index, miRNA eQTL and its genomic information followed by computation of LD between 

GWAS SNP and eQTL index SNP; only variants with pairwise LD at r2≥0.1 are retained. Finally, 

and if available, the GWAS p-value of the best miRNA eQTL SNP is provided and compared to 

the best GWAS p-value in the region. As a result, ADmiReQTL comprehensively evaluates and 

enumerates all overlapping AD risk and miRNA expression association signals and filters those 

supported by LD. 

miRNA target genes and miRNA target gene enrichment 

Target genes were determined using two sources: First, from binding regions obtained from 

human brain AGO2 CLIP-Seq data published by Boudreau et al. (2014). Second, from 

miRTarBase, a database with a comprehensive listing of experimentally validated miRNA target 

genes (Chou et al. (2018). Enrichment of disease risk association was tested using PASCAL 

(Lamparter et al. (2016)) as described previously (Wohlers et al. (2018)). 

Application of JLIM software 

JLIM is a recently developed statistical approach to assess whether signals in genetic 

association and eQTL data are linked by shared genetic effects. JLIM was run as described in 
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the original publication (Chun et al. (2017), following instructions on the JLIM website 

(https://github.com/cotsapaslab/jlim). To ensure consistent genomic SNP coordinates among 

the eQTL and GWAS data, we lifted coordinates of the summary statistics SNPs to hg38 

genome assembly using the PyLiftover library within Python. 

Application of TWAS/FUSION software 

TWAS/FUSION is a recently developed tool to perform transcriptome-wide (here: miRNome-

wide) association analyses by imputing miRNA expression into GWAS data from GWAS 

summary statistics and then testing whether expression is associated with disease risk. Here, 

we used TWAS/FUSION (Gusev et al. (2017)) as described on the TWAS/FUSION website 

(http://gusevlab.org/projects/fusion) using coordinates from the hg38 genome assembly. After 

consultation with the authors (i.e. Dr. Gusev; see acknowledgements), we updated required 

TWAS/FUSION reference files to hg38 and aligned SNP identifiers of the GWAS summary 

statistic with those used internally by TWAS/FUSION.  
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3 Results 

In total, we assessed 65 index AD GWAS SNPs in 36 genomic regions, of which 28 SNPs in 

15 regions were in proximity of an expressed miRNA and tested as eQTL for one or more 

miRNAs, see Supplementary Table 1. Our first analyses aimed at answering the question 

whether or not AD GWAS results (represented by summary statistics of the IGAP study) were 

linked to miRNA expression data (represented by the miRNA eQTL results that we generated 

from small RNA sequencing data in the GEUVADIS project) on a genome-wide level. To this 

end, we utilized JLIM, which assesses whether signals in genetic association and eQTL data 

are linked by shared genetic effects. However, these analyses revealed no significant loci with 

shared effects on a genome-wide scale (see below and Supplementary Table 2). Similarly, 

applying the TWAS/FUSION approach, which performs a miRNome-wide association study by 

predicting miRNA expression into GWAS data, did not reveal significant signals on a genome-

wide level (see below and Supplementary Table 3). Taken together, these results do not 

suggest strong effects of AD genetic risk variants on miRNA expression in general, i.e. when 

analyses were based on the full genome-wide datasets with appropriate multiple testing 

correction. However, when individually matching the best miRNA eQTL SNPs within AD loci to 

AD GWAS index SNPs followed by filtering (ADmiReQTL, Supplementary Table 1), two 

miRNAs emerged, i.e. miR-6840-5p and miR-29c-5p. The expression of these two miRNAs 

may be regulated by variants showing genome-wide significant association with AD risk by 

GWAS (see Figures 2 and 3 and Subsection “Data integration using ADmiReQTL” for details).  

Application of JLIM and TWAS/FUSION 

Neither JLIM nor TWAS/FUSION revealed any significant results when using FDR for multiple 
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testing correction on the eQTL results indicating that there is no statistical support for a 

connection between the analyzed miRNA expression and AD GWAS data. For JLIM this overall 

negative result was indicated by the lack of nominal p-values less than 0.05 for any of the 13 

loci and their overall 25 corresponding miRNAs (see Supplementary Table 2). Likewise, for 

TWAS/FUSION the lack of statistical support for AD association with miRNA expression was 

evidenced by the lack of FDR-corrected TWAS p-values less than 0.05 for any of the 49 

miRNAs whose expression was sufficiently heritable for analysis (NB: miR-29c-5p could not be 

assessed; see Supplementary Table 3).  

Data integration using ADmiReQTL 

The association with miR-6840-5p converges on the association of SNP rs1859788 with both 

AD risk (GWAS p=2.220E-15) and miRNA expression (eQTL p=1.582E-5; see Figure 2). This 

variant was reported as index AD GWAS SNP by Jansen et al. (2018) where it was assigned 

to the NYAP1 locus (previously assigned to ZCWPW1 by IGAP (2013)) on chromosome 

7q22.1. The strongest miR-6840-5p eQTL SNP in the GEUVADIS sequencing data set is 

rs111344110 which is in only modest LD with the GWAS index SNP (r2 with rs1859788 = 0.108). 

This variant’s minor G-allele is correlated with the AD risk, major G-allele of rs1859788 and 

associated with increased miRNA expression (p-value of 5.279E-60; see Figure 2). The second 

highlighted miRNA is miR-29c-5p which is connected to AD genetics via SNP rs6656401 

(GWAS p=5.692E-24, miRNA eQTL p=1.789E-2; see Figure 3). This variant was originally 

reported as genome-wide significantly associated with AD risk in the first IGAP GWAS and is 

located within the CR1 locus at 1q32.2. This finding has since been replicated in many 

independent association studies, including the two most recent AD GWAS by Kunkle et al. and 
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Jansen et al. SNP rs6656401 is located in an intron of the CR1 gene but is also predicted to 

represent a gene regulatory variant according to Ensembl’s Variant Effect Predictor tool (VEP; 

McLaren et al. (2016); www.ensembl.org/Tools/VEP). The strongest miR-29c-5p eQTL in the 

GEUVADIS data is SNP rs6540439 (r2 with rs6656401 = 0.114) where it exhibits increased 

miRNA expression for the minor C allele, which is correlated with the AD risk, i.e. minor A-, 

allele of rs6656401 (p=5.295E-4; see Figure 3). 

miRNA target genes and miRNA target gene enrichment 

Despite the observations from ADmiReQTL for miR6840-5p and miR-29c-5p, we observed no 

strong enrichment for significant GWAS signals in the target gene set of these two miRNAs 

using miRTarBase or human brain AGO2 CLIP-Seq data, with the exception of a weak nominal 

enrichment for miR-29c-5p in the latter data set (P=0.049) possibly driven by variants in SORL1 

(see Supplementary Table 4). We note that this lack of general enrichment of genetic 

association signals in the targets of either miRNA does not preclude functionally relevant effects 

in individual target genes. Among these there are at least two interesting candidates reported 

for miRNA-29c-5p, BACE1 and SORL1. 

4 Discussion 

To the best of our knowledge, our study represents the first systematic assessment to 

investigate the potential overlap between genetics findings driving both risk for AD and miRNA 

expression. Despite using the largest hitherto available genome-wide datasets in each domain, 

we found no overarching strong evidence linking AD genetics to miRNA eQTLs. In other words, 

our findings provide a first indication that – perhaps with the exception of a few individual 

miRNAs – AD GWAS signals do not unfold their pathogenic effects by disturbing miRNA 
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expression in general, at least in lymphoblast cell lines. This conclusion is different from that 

reached in similar studies with the aim to elucidate the impact of AD risk variants on mRNA 

expression. Several of these studies concluded that the predominant functional effect of many 

genetics variants underlying polygenic AD is to disturb mRNA expression (recently reviewed in 

Verheijen and Sleegers (2018)).  

Despite utilizing large-scale “omics” data sets in our analyses, our study has some important 

limitations. First and foremost, the miRNA expression data utilized here was generated in 

human lymphoblastoid cell lines. MiRNA expression patterns in brain – especially in those 

regions (and cells) primarily affected by AD pathology – may be different from those found here. 

Second, and related to the previous point, only 468 miRNAs (out of 2588; Chou et al. (2018)) 

were found to be expressed at levels sufficient for analysis. It is therefore quite likely that our 

analyses missed to map potential eQTL effects simply owing to low abundance in 

lymphoblastoid cell lines while the same miRNAs may be expressed at higher levels in the 

brain. Neither of these limitations is addressable without access to sufficiently sized human 

brain miRNA expression data which currently do not exist. Third, with n=345 the data set used 

for the miRNA eQTL calculations is comparatively small and may have resulted in a loss in 

power for some aspects of our analyses. However, we note that the utilized data still originates 

from the largest currently available dataset with both genome-wide small-RNA and genotyping 

data generated in the same individuals.  

Despite these limitations and the lack of an overall strong genetic effect on miRNA expression, 

we were able to pinpoint two “risk miRNA eQTLs” that may be of relevance in AD, i.e. GWAS 

SNPs correlating with levels of miR-29c-5p and miR-6840-5p. While none of the target gene 
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sets of these miRNAs shows an enrichment of significant AD risk association signals in the 

IGAP GWAS dataset (see Results and Supplementary Table 4), it is interesting to note that 

previous data suggest that miR-29c can decrease the expression of beta-secretase 1 (BACE1; 

Lei et al., 2015), an enzyme involved in cleaving amyloid precursor protein (APP), which is of 

central relevance in AD pathogenesis (Selkoe and Hardy (2016)). Secondly, miR-29c-5p was 

also recently found to target SORL1 mRNA in Ago2 CLIP-Seq experiments performed on 

human brain samples (Boudreau et al. (2014)). Genetically, SORL1 has been linked to AD by 

both common (IGAP (2013)) and rare variant (Nicolas et al. (2016)) analysis, indicating that 

differential expression of this miRNA may exert some functionally relevant effects in AD 

pathogenesis. In conclusion, our large-scale integrative assessment provides only limited 

support for the hypothesis that AD GWAS variants act as miRNA eQTLs in lymphoblastoid cell 

lines on a large scale. Future work needs to confirm these findings in larger data sets, ideally 

assessing miRNA expression in human brain samples. 
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Figure 1: Illustration of the ADmiReQTL approach. 
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Figure 2: Boxplots of TPM normalized miRNA expression stratified by genotype (left) and of 

processed expression values used for eQTL computation (right). Top row: index variant. 

Bottom row: best eQTL SNP. Genotypes are ordered from hg38 reference allele (left) to 

alternative allele (right).  
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Figure 3: See caption of Figure 2. 
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