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 21 

Abstract 22 

 23 

Drug combinations are a promising strategy to increase killing efficiency and to decrease the 24 

likelihood of evolving resistance. A major challenge is to gain a detailed understanding of how 25 

drugs interact in a dose-specific manner, especially for interactions involving more than two 26 

drugs. Here we introduce a direct and intuitive visual representation that we term “interaction 27 

landscapes”. We use these landscapes to clearly show that the interaction type of two drugs 28 

typically transitions smoothly from antagonism to no interaction to synergy as drug doses 29 

increase. This finding contradicts prevailing assumptions that interaction type is always the 30 

same. Our results, from 56 interaction landscapes, are derived from all possible three-drug 31 

combinations among 8 antibiotics, each varied across a range of 7 concentrations and applied 32 

to a pathogenic Escherichia coli strain. Such comprehensive data and analysis are only recently 33 

possible through implementation of an automated high-throughput drug-delivery system and 34 

an explicit mathematical framework that disentangles pairwise versus three-way as well as net 35 

(any effect) versus emergent (requiring all three drugs) interactions. Altogether, these 36 

landscapes partly capture and encapsulate selective pressures that correspond to different 37 

dose regions and could help optimize treatment strategies. Consequently, interaction 38 

landscapes have profound consequences for choosing effective drug-dose combinations 39 

because there are regions where small changes in dose can cause large changes in pathogen 40 

killing efficiency and selective pressure.  41 

  42 
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 3 

Introduction 43 

 44 

Combination therapy is widely used to treat a number of chronic health issues such as cancer 45 

[1, 2] , HIV [3, 4], hypertension [5] or multidrug resistant bacterial infections [6, 7]. 46 

Understanding the effects of these drug combinations and interactions among drugs is a major 47 

clinical concern and active research area [8-14]. A promising strategy for combatting the 48 

evolution of drug resistance is to use drugs in combination by effectively leveraging 49 

interactions. However, a detailed understanding of how three drugs interact in a dose-specific 50 

manner is challenging to examine and visualize. Gaining this understanding has importance 51 

both for devising optimal treatments and for leveraging selection pressure to combat evolution 52 

of resistance. 53 

 54 

Measures for interactions are often evaluated based on a coarse-grained categorization of 55 

three interaction types: additive (no interaction), synergistic (combined effect greater than 56 

expected based on single-drug effects), and antagonistic (combined effect less than expected 57 

based on single-drug effects). Synergistic drug combinations, in which combining drugs 58 

enhances the effects of the individual drugs, are commonly prescribed for patients because 59 

they maximize efficacy at lower doses. However, previous work indicates that antagonism may 60 

be more beneficial for slowing down the rate of resistance evolution to the component drugs 61 

[10, 14], because it creates more complex or rugged fitness landscapes. Thus, simply knowing 62 

how interactions deviate from additivity towards synergy or antagonism is potentially a 63 
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 4 

powerful indicator to anticipate effects of a specific drug combination on treatment and 64 

resistance development.  65 

 66 

Nevertheless, in practice it becomes challenging to use this interaction categorization to 67 

optimize treatment strategy and leverage evolution of resistance due to the complexity of 68 

dose-dependent interactions. Many empirical studies of drug interaction are conducted at a 69 

fixed dose and thus can only measure a single interaction type for each specific drug 70 

combination (i.e., Bliss Independence) [10, 13, 15]. The Bliss independence model is one of the 71 

most commonly used measures of drug interactions because it is intuitive, simple to calculate, 72 

readily expandable to numerous interacting components, and experimentally less demanding 73 

because it only requires four measurements to classify a pairwise interaction.  74 

 75 

When drug combinations do not have an unchanged interaction type with changing drug dose 76 

[16], there is a breakdown of common interaction definitions based on single-dose 77 

measurements. Several studies have now shown that changes in interactions based on doses is 78 

not just an abstract possibility but a reality for combinations of antibiotics, antifungal, and 79 

chemotherapeutic agents [15, 17-20]. More systematic studies are needed to find and 80 

understand general patterns and thus to avoid adverse effect that promote development of 81 

resistance and disease relapse. Such cases could occur when the interaction of a drug 82 

combination is defined at a specific dose combination and is extrapolated into a region of drug 83 

doses where the interaction is neither what is expected nor what is desirable. Until now, there 84 

have been no direct and intuitive visualizations of high-dimensional drug spaces that would 85 
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help verify and more deeply understand the range of complexities in transitions among 86 

interaction types. 87 

 88 

In this paper, we examine all possible three-drug combinations among 8 antibiotics, each varied 89 

across a range of 7 concentrations and applied to a pathogenic Escherichia coli strain. We 90 

introduce a new and direct visual representation of dose-dependent drug interactions that we 91 

term “interaction landscapes” (Figure 1). This approach is placed directly within the space of 92 

drug interactions where general inferences about consequences of interactions can be made 93 

quickly with extremely efficient use of the information in the data.  Interestingly, because 94 

interactions are calculated from fitness differences, the interaction landscape is a visual 95 

representation that partly captures directions and strengths of selection pressures. Therefore, 96 

these interaction landscapes will help to analyze how drug-dose combinations affect treatment 97 

strategies, regions of positive or negative selection pressures, and evolution of resistance. 98 

 99 

Interaction landscapes, which are based on our high-throughput data and calculated from our 100 

mathematical framework, provide direct visualizations of local synergy or antagonism 101 

embedded within a larger interaction space and thus enable quantification and assessment of 102 

the directionality, pervasiveness, organization, and transition between regional synergy and 103 

antagonism. Consequently, we can use these landscapes to carefully investigate and answer the 104 

questions above. We expect broad implications of this general approach and ideas, including in 105 

environmental pollution and risk assessment of toxic chemical mixtures where the exposure is 106 

rarely a uniform dose.  107 
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Results 108 

Overall, we find that interaction types are often strongly dose-dependent, and that this is true 109 

for both lower-order (two drug) and higher-order (three drug) combinations.  We typically 110 

observe smooth transitions between different interaction types and subspaces within a drug 111 

combination. Furthermore, net interactions tend to transition from antagonistic at low dose to 112 

synergy at high doses. For emergent interactions, higher doses often have the opposite effect 113 

and lead to more antagonism. These transitions happen quickly but smoothly. Finally, pairwise 114 

interactions can often be used to predict net three-drug interactions but not emergent three-115 

drug interactions.  116 

 117 

Interaction type is dose dependent.  118 

Both lower-order (2-drug) and higher-order (3-drug) interactions are strongly dose dependent. 119 

To assess the effect of increasing dose on interaction in a two- drug case, we compared how 120 

sub-inhibitory concentrations of drug A interact with drug B at either a high dose or a low dose. 121 

In a three-drug combination, the interaction was examined with the third drug at a high and 122 

low dose. We measured interaction both at the overall net level (DA)—combined pairwise and 123 

three-way interactions—and at the emergent level (E3), where the pairwise interactions are 124 

subtracted from the net interactions so that only the truly three-way interaction part remains 125 

(Figure 2). The distributions of DA and E3 among all combinations of drugs and doses are 126 

multimodal with peaks at synergy (DA = –1), additivity (DA = 0), and antagonism (DA = 1) (Fig. 127 

3A and B). Smoothing the data results in a more continuous distribution (Fig. 3C and D). The 128 

peaks at the boundaries of synergy and antagonism were much less prominent (Fig. 3C and D), 129 
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 7 

and low drug concentrations result primarily in net interactions that are additive or antagonistic 130 

(Fig. S1). Synergistic DA and E3 interactions are mostly observed at intermediate and high 131 

concentrations with a dearth at low doses (Fig. 3C and D).  132 

 133 

Interaction type transitions.  134 

Interaction types tend to transition from antagonism and additivity at low doses to synergy at 135 

high doses for net three-way interaction, but to antagonism for emergent three-way 136 

interaction. For both DA and E3, the magnitude of the mean of all antagonistic interactions and 137 

the magnitude of the mean of all synergistic interactions each increase with the combined dose 138 

of all three drugs (Fig. S2, resulting in a dose dependency of interaction strength). We further 139 

show net (DA) interactions are antagonistic at a low dose and shift to additivity or synergy at a 140 

high dose (Fig. 4). Most of the dose-dependent transitions are from additivity (no interaction) 141 

to either synergy or antagonism. Transitions between synergy and antagonism—corresponding 142 

to an extremely abrupt or sharp transition—are extremely rare, at less than 4% for DA and less 143 

than 1% for E3. Antagonistic interactions remain antagonistic or transition to additivity more for 144 

2-drug combinations (26%) than for 3-drug combinations (17%). Emergent interactions (E3) are 145 

rarely synergistic. No drug combinations exhibit emergent synergy at the low dose (index 1), 146 

while less than 4% do so at the high dose (index 6) (Fig. 4). Interaction transitions are 147 

summarized for each drug combination with both the sum and absolute change in DA (Fig. S3). 148 

Clearly, increasing the dose of one drug can lead to various trajectories for changes in DA (Fig. 149 

S4), such as a no change, additive to synergy, or additive to antagonism. Nevertheless, the 150 

landscapes are not randomly scattered with mixtures of interactions, but instead are composed 151 
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 8 

of confined subspaces or regions of synergy or antagonism. Transitions between different 152 

interaction types are generally buffered by a region of additivity. 153 

 154 

Pairwise interactions contribute most to net three-way interactions, emergent three-way 155 

interactions are not predicted by pairwise interactions 156 

For each triple-drug combination, we calculated three-way net (DA), pairwise net (DA), and 157 

three-way emergent (E3) interaction metrics for all possible drug pairs with a third drug at low, 158 

intermediate, and high concentrations (dose indices 2, 4, and 6). The relationship between the 159 

pairwise DA and three-way DA is mostly positive, with the net interactions strongly influenced 160 

by the pairwise interactions (Fig. S5). For all three doses, the mean of the three pairwise DA 161 

correlates strongly with three-way DA (Spearman’s ρ = 0.793, Fig. 5A). DA and E3 show no 162 

correlation (Spearman’s ρ = -0.094, Fig. 5B), while E3 and pairwise DA exhibit a slightly anti-163 

correlated pattern (Spearman’s ρ = -0.384, Fig. 5C). A more synergistic mean pairwise DA thus 164 

predicts a more synergistic three-way DA, which is unsurprising, since the pairwise interactions 165 

are included in the three-way DA. Although the relationship between three-way DA and E3 is 166 

weak or non-existent, the anti-correlation between mean pairwise DA and E3 is striking. In 167 

particular, for synergistic three-way DA (red points) interactions, there is a strong anti-168 

correlation between pairwise DA and E3, indicating that antagonistic pairwise interactions tend 169 

to be associated with strongly synergistic E3, which in turn drives the three-way interaction 170 

synergistic (Fig. S6). Conversely, when the mean of the three pairwise interactions is below zero 171 

(corresponding to synergy) and the three-way DA is synergistic, E3 is predominantly 172 

antagonistic. This effect is likely to result from low fitness at high doses that can cause large 173 
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 9 

deviations in DA and E3. The correlations between pairwise DA, three-way DA, and E3 are 174 

similar for both low and intermediate doses of the third drug (dose indices 2 and 4), with similar 175 

correlation coefficients (Fig. S7). 176 

 177 

Discussion 178 

To quantify the effect of dose on drug interactions, we measured fitness of a pathogenic strain 179 

of E. coli subjected to all possible 3-drug combinations of eight antibiotics across a gradient of 180 

doses for each drug. To visualize the high-dimensional interaction space of our data, we 181 

introduced the interaction landscape that displays quantitative measures of interactions as a 182 

function of the interacting components. We provide evidence that different environmental 183 

conditions (i.e., drug concentrations) can change drug interaction type and thus lead to dose-184 

dependent interactions. We also showed these transitions are smooth, rarely going from 185 

synergy directly to antagonism or vice versa. Instead, transitions first pass through the 186 

intermediate type of additivity (no interaction) as they pass from antagonism to synergy or 187 

from synergy to antagonism.  188 

The interaction landscapes give a direct and intuitive view of how the environmental space of 189 

combined drug doses affects the efficacy of drugs in combination. This representation is 190 

analogous to other maps of underlying control variables onto one dependent variable, such as 191 

genotype-fitness maps [21-23] , genotype-phenotype maps [24, 25], and phenotype-fitness 192 

maps [26-28] . In addition, we expect our approach can be usefully applied to other systems 193 

related to toxins, pollution, and stressors.  194 

 195 
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Our results lead to two insights that should aid future studies of drug combinations. First, 196 

within our interaction landscapes, there are large, clearly delineated subspaces that correspond 197 

to specific types of drug interactions. These subspaces often occur at high or low 198 

concentrations of the combined drugs. Conclusions can therefore be made with less 199 

information than is needed for fitness landscapes by mapping the boundaries between these 200 

different subspaces and understanding how the magnitude of the interactions change when 201 

moving toward or away from a boundary. Moreover, these subspaces suggest simple methods 202 

for predicting regions of positive or negative evolutionary pressures on subpopulations of 203 

treated cells (e.g., selecting for or against resistance) and could have profound implications for 204 

choosing effective drug-dose combinations as well as intelligent drug treatments. Second, 205 

because there are transitions across the landscape that go between these subspaces of 206 

interaction type, synergistic combinations identified with only one dose regime [10, 13, 15, 29] 207 

can be antagonistic when used or prescribed at a different dose regime. Such a reversal could 208 

have detrimental impact on clinical decisions and scientific studies. For example, in figure 1C, 209 

an interaction type of antagonism at one set of doses ([ERY]= 125 M, [AMP] = 0.39 M, and 210 

[CLI] = 7.81 M) changes to synergy at another set of doses ([ERY] = 125 M, [AMP] = 6.25 M, 211 

and [CLI] = 125 M). Understanding how drugs interact in a dose-specific way will help to avoid 212 

conflicting results and potentially detrimental antagonistic combinations being applied in the 213 

wrong setting [30]. Importantly, fluctuating drug dosages could be used to create fluctuating 214 

selection pressures for cell populations. Indeed, evolutionary dynamics of a population can 215 

change drastically in changing environments [31, 32] and fluctuating environments can lead to 216 

higher levels of genetic diversity and biodiversity [33], evolution of generalist over specialist 217 
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 11 

species [34], and other evolutionary and ecological phenomena. To assess whether this picture 218 

of drug interactions as strongly dose dependent goes beyond these particular drugs for this 219 

specific strain of E. coli, other drugs in other organisms need to be explicitly measured. Further 220 

detailed data and identification of general patterns across bacterial strains or drugs will 221 

contribute to better methods for predictions.  222 

 223 

Zimmer et al. [15] proposed a model that predicts higher-order interactions at a full range of 224 

doses based only on pairwise interactions at low doses. We find component pairwise 225 

interactions are the largest contributor to overall net interactions which suggests the approach 226 

of Zimmer et al. may be frequently useful. However, pairwise interactions are independent of 227 

emergent interactions, so we doubt that higher order interactions will be easily predictable 228 

using the framework of Zimmer et al. That is, for most of the triple-drug combinations, the 229 

pairwise DA is a reasonable predictor of three-way net interaction (DA), but it does not 230 

correlate well with or usefully predict E3. Moreover, in some cases of synergistic three-way DA 231 

is not predicted by any component pairwise interactions, we do find a correlation between 232 

three-way DA and E3, showing the net interaction arises from the emergent part as would be 233 

expected. Our results are consistent with the basic findings of the Zimmer et al. model for net 234 

interactions, but show that emergent, higher-order interactions are independent and not 235 

predicted from component pairwise interactions. For cases where there are only three-way 236 

interactions, but very weak or non-existent pairwise interactions, inferences based on the 237 

Zimmer et al. model will therefore be especially misleading. This critical distinction seems 238 

absent from the literature because previous studies on dose-dependent interactions have been 239 
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conducted with either limited numbers of drug combinations, with drugs at fixed doses, or have 240 

analyzed interactions with methods that do not distinguish net versus emergent interactions. 241 

Our study compensates for both the lack of data and missing analysis for emergent interactions 242 

for dose dependency.  243 

 244 

Finally, we note that examining the whole-drug space for three-drug combinations can be 245 

extremely time consuming and expensive. An intriguing recent work by Cokol et al. [35] 246 

sampled data that correspond to a portion of our interaction landscape in order to infer the 247 

interaction type based on the Loewe additivity model in which it is assumed that a drug cannot 248 

interact with itself [36]. However, this methodology requires that the interactions be uniform 249 

throughout the entire interaction space, such that the contours stay either concave or convex 250 

across all doses. That is, the Cokol et al. framework assumes that there is no dose dependency, 251 

meaning no transitions between subspaces of interaction types. In contrast, our study using 252 

Bliss Independence models, which applies to single-dose measurements and makes no 253 

assumptions about dose dependency, shows that drug interactions generally are strongly 254 

affected by dose when we look at the entire interaction landscape. These fundamental 255 

discrepancies between the Bliss and Loewe models are also observed in two-drug interactions 256 

[37]. Future work to understand the meaning of these differences, which are intricately 257 

connected to the domain of Bliss versus Loewe models, are therefore greatly needed.  258 

 259 

Our introduction of interaction landscapes along with our results that transitions are typically 260 

smooth and gradual should greatly aid in intuiting and thus understanding the complexity of 261 
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drug interactions. Such insight is needed because combinatorial therapy is an extremely 262 

common practice in complex, chronic diseases such as hypertension, infectious disease, and 263 

cancer [38, 39], and could be strategically valuable for preventing the evolution of resistance. 264 

Visualization and analysis of multi-dimensional interaction data is a challenge faced by an 265 

increasing number of disciplines as experimental advances for collecting big data continue to 266 

grow. By combining our large dataset with a rigorous theoretical framework to quantify both 267 

net and emergent interactions, our approach enables new insights via the detection and 268 

quantification of how multi-drug interactions change with dose from low to high concentrations 269 

or for small or large numbers of drugs.  270 

 271 

Materials and Methods 272 

 273 

Bacterial Strain. We used E. coli CFT073, a highly virulent pyelonephritis strain isolated from 274 

human clinical specimen, obtained from ATCC (designation number 700928). The strain was 275 

grown in 2 mL of LB media (10 g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl) and streaked 276 

onto LB agar plates to isolate single colonies. Then a single colony was inoculated into 2 mL of 277 

LB and grown for 24 hours. Following the incubation, the culture was mixed with 2 mL of 50% 278 

glycerol and aliquoted into 50 L to generate bacterial cell stocks with 25% glycerol for storing 279 

at -80C. Each experiment was started with a thawed aliquot stock by inoculating 20 L into 2 280 

mL of LB media. The culture was incubated at 37C until it reached exponential growth phase 281 

(an OD of 0.5) and diluted to maintain 104 cells per experimental condition.  282 

 283 
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Antibiotics. Antibiotics used include erythromycin (ERY), ampicillin (AMP), clindamycin (CLI), 284 

streptomycin (STR), nitrofurantoin (NTR), cefoxitin (FOX), and trimethoprim (TMP), all from 285 

Sigma (St Louis, Mo), and ciprofloxacin (CPR) from MP Biomedicals (Santa Ana, Ca). All 286 

antibiotics were dissolved and sonicated in 100% DMSO (Sigma) except for STR which was 287 

dissolved in 50% DMSO, due to limited solubility in 100% DMSO. Experiments for IC50 and drug 288 

interactions (below) were conducted in clear flat bottom 384-well plates from Greiner BioOne.  289 

 290 

IC50 determination. A 20-step two-fold serial dilution was prepared for each antibiotic. The 291 

source plate was made by preparing each drug with a total volume of 70 L at 10 mM as the 292 

starting concentration, or the first step, filled into a 384 well plate. The following dilution steps 293 

were conducted by a robotic liquid handling system with a transfer volume of 35 L per step. 294 

Meanwhile, 25 L of LB per well were prefilled into a second 384-well plates using the 295 

Multidrop 384 (Thermo Scientific). Next, 500 nL from the source plate were delivered into the 296 

prefilled plate using the Biomek FX (Beckman Coulter) with a pin tool (V&P Scientific). Then, 25 297 

L of bacteria inoculum was added to each well to reach a final 50 L per well with 1% DMSO. 298 

Each plate included negative controls (media alone), vehicle controls (media with 1% DMSO), 299 

and positive controls (media with 1% DMSO and cells). The plates were incubated at 37C with 300 

OD595 measurement for cell density at 4-hour intervals for 24 hours. IC50s were determined by 301 

fitting a sigmoidal dose-response curve using the software Graphpad Prism.    302 

 303 

Determining drug-dosage levels from dose-response curve of single drugs. 304 
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To establish reasonable resolutions of various drug doses, we designed our dilution regime (Fig. 305 

2A) to cover a wide range of dose effectiveness in terms of bacterial fitness of lethal, low, 306 

intermediate, and high. Mean dose response curves of each single drug (Fig. 2C) show a 307 

sigmoidal and monophasic curve that results in the desired fitness levels. Dose indices 1 and 2 308 

are regarded as low doses, where fitness is between 1 and 0.8, with fitness here measured as 309 

growth rate relative to bacteria in no-drug environments. Dose indices 3 to 5 are intermediate 310 

doses that give a mean fitness around 0.4. High doses of 6 and 7 result in fitness below 0.2, 311 

except for clindamycin that has fitness well above the other drugs. We then calculated IC95 312 

concentrations—where the dose concentration inhibits 95% of bacterial growth compared to 313 

no-drug environments—for each single drug (Table 1) to normalize the combined dose in triple-314 

drug combinations in terms of combined effectiveness. 315 

 316 

Drug combination experiment  317 

All three-drug combinations formed from a set of eight drugs were tested, resulting in 56 318 

unique three-drug combinations. A source plate for each drug was prepared in seven-step, two-319 

fold dilutions with various starting concentrations (Table 1), dependent on their respective 320 

IC50, with a total of 70 L in DMSO at each dilution step. In addition, a zero dose was included 321 

into each drug gradient as the lowest concentration. A combination drug plate was prepared by 322 

pinning from each source plate of the component drugs using a 250 nL pin tool (V&P Scientific) 323 

to restrict the DMSO concentration to be lower than 1%. Methods for cell inoculation and 324 

incubation were the same as stated above. OD measurements were taken at 12 hours.   325 

 326 
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Measuring fitness 327 

Optical density measurements were made with Perkin Elmer Wallace 1420. Fitness was 328 

calculated as: 329 

 330 

𝑊 = (𝑂𝐷 − 𝑂𝐷𝑛𝑒𝑔)/(𝑂𝐷𝑝𝑜𝑠 − 𝑂𝐷𝑛𝑒𝑔), 331 

 332 

where OD is the optical density of the experimental condition with bacteria and drugs, ODpos is 333 

the positive control without drugs, and ODneg is the negative control without bacteria or drugs. 334 

Fitness is given with a precision of two decimals, and we therefore exclude fitness 335 

measurements below 0.01.  336 

 337 

Quantifying interactions 338 

Interactions are commonly quantified as the deviation from Bliss independence [40]. We 339 

quantify this using deviation from additivity (DA), which measures interactions between drugs, 340 

while additivity is defined when the presence of one drug does not affect the percent reduction 341 

of bacterial growth of another drug. If the fitness of the organisms given three drugs is  𝑊𝑋𝑌𝑍, 342 

and the fitness when only given one drug is 𝑊𝑋,  𝑊𝑌, and 𝑊𝑍, for drugs X, Y, and Z, respectively, 343 

then  344 

 345 

𝐷𝐴 =  𝑊𝑋𝑌𝑍 − 𝑊𝑋𝑊𝑌𝑊𝑍 346 

 347 
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[41]. DA incorporates both pairwise and three-way drug interactions but cannot discern 348 

between them. To measure emergent interactions that occur only when three drugs are 349 

present, we subtracted both the single-drug effects and the component pairwise effects:  350 

 351 

𝐸3 =  𝑊𝑋𝑌𝑍  + 𝑊𝑋𝑊𝑌𝑍 + 𝑊𝑌𝑊𝑋𝑍 + 𝑊𝑍𝑊𝑋𝑌  −  2𝑊𝑋𝑊𝑌𝑊𝑍  352 

 353 

[41]. To delineate boundaries and tease apart interactions as synergistic, additive, and 354 

antagonistic from the unimodal distribution of DA and E3, rescaling was applied to each 355 

measurement. DA was rescaled by dividing by the absolute value of DA, but replacing 𝑊𝑋𝑌𝑍 356 

(denoted as 𝑊̃𝑋𝑌𝑍) by 0 if DA ≤ 0, to account for cases of extreme lethal synergy (𝑊𝑋𝑌𝑍 = 0) 357 

while no single drug completely was completely lethal, and by the minimum value of 358 

𝑊𝑋, 𝑊𝑌, 𝑊𝑍 if DA > 0, for cases of buffering antagonism where combined drugs have the same 359 

effect as the strongest single-drug effect.  360 

 361 

𝐷𝐴𝑅  =  (𝑊𝑋𝑌𝑍 − 𝑊𝑋𝑊𝑌𝑊𝑍)/|𝑊̃𝑋𝑌𝑍 − 𝑊𝑋𝑊𝑌𝑊𝑍|, 362 

 363 

where 𝑊̃𝑋𝑌𝑍 = 0 for DA ≤ 0, and min(𝑊𝑋, 𝑊𝑌, 𝑊𝑍) otherwise.  364 

 365 

Similarly, E3 is rescaled by dividing by  366 

 367 

|𝑊̃𝑋𝑌𝑍  + 𝑊𝑋𝑊𝑌𝑍 + 𝑊𝑌𝑊𝑋𝑍 + 𝑊𝑍𝑊𝑋𝑌  −  2𝑊𝑋𝑊𝑌𝑊𝑍|, 368 

 369 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 11, 2018. ; https://doi.org/10.1101/367664doi: bioRxiv preprint 

https://doi.org/10.1101/367664
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

where 𝑊̃𝑋𝑌𝑍 = 0  for E3 ≤ 0 and min(𝑊𝑋𝑊𝑌𝑍 , 𝑊𝑌𝑊𝑋𝑍 , 𝑊𝑍𝑊𝑋𝑌) otherwise [41]. This rescaling 370 

results in values between -1 and ∞. We further discretize both DAR and E3R based on the 371 

natural breaks in the histogram distribution of DAR and E3R . Values below -0.5 correspond to 372 

synergy, between -0.5 and 0.5 to additivity, and above 0.5 to antagonism. Values above 1 are 373 

capped at 1. 374 

 375 

Smoothing 376 

To increase our confidence and resolution of interaction transition with dose, given the fairly 377 

noisy OD measurements, we smoothed the data using a weighted average algorithm by 378 

considering our dose combination matrix as a metric space. For each data point (interaction 379 

measurement at each drug-dose combination), both rescaled DA and E3 were recalculated as a 380 

weighted average depending on the Euclidean distance (within the three-dimensional matrix) 381 

between the original data point and the points used for calculation. The weight is 1 for the 382 

origin, and 1/8d for the 26 nearest neighbors, where d is the Euclidean distance from the origin. 383 

If a neighboring value was missing, either because it lies at the boundary or because it was 384 

excluded due to low fitness, its weight was set to zero. The sum of the weights was required to 385 

comprise at least 59 percent of the original weight matrix. For smoothing, both DA and E3 were 386 

truncated to values between -1 and 1, with higher values set equal to 1. 387 
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Figure 1. Overview and comparison of traditional fitness landscapes and  interaction 488 

landscapes. (A) Schematic of a traditional phenotype-fitness landscape with fitness as a 489 

function of three continuous trait values. Two peaks are visible, showing that there are 490 

different combinations of trait values favored by selection. Values below 0.2 are not shown. (B) 491 

Fitness landscape with fitness as a function of drug concentration for AMP/CLI/ERY. Fitness is 492 

optimal when no drugs are administered. Values below 0.2 are not shown. (C) DA interaction 493 

landscape for AMP/CLI/ERY showing two distinct regimes where interactions are primarily 494 

antagonistic (green) and synergistic (red). Values between –0.5 and 0.5 are not shown. (D) E3 495 

interaction landscape for AMP/CLI/ERY, showing how interactions can be dramatically different 496 

between net (DA) and emergent (E3) interactions. 497 

 498 

Figure 2. Schematic representation of experimental design. (A) For one triple-drug 499 

combination of X, Y, and Z, the drug X plate includes 7 steps of 2-fold serial dilutions (in red) 500 

plus no drug control (in white) going in the horizontal direction. Drug Y plate includes the same 501 

concentration gradient but in the vertical direction (in blue). Combining drug X and drug Y 502 

plates results in a 2-dimensional matrix of drug X+Y. Drug Z is composed of 7 plates each with 503 

one concentration across the full 7-drug gradient (in green). Each of the seven drug Z plates is 504 

transferred to a drug X+Y plate to form a matrix of X+Y+Z at one respective dose (drug X+Y+Z). 505 

Finally, a 3-dimensional matrix of all three drugs is constructed of all seven additions of Z into 506 

one plate of X+Y, plus a control where Z is zero. (B)  For each drug-dose combination, the 507 

overall interaction of DA is calculated with three component pairwise interactions of drug X+Y, 508 

drug X+Z, and drug Y+Z (2), and the interaction when all three drug are present (3); while 509 
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emergent three way E3 represent the interaction of only at the three drug level.  (C) Mean dose 510 

response curves for single drugs from the dilution scheme, where the dilution step is plotted as 511 

dose index and the fitness as a function of dose. AMP (20 replicates, red), ERY (21 replicates, 512 

green), CLI (21 replicates, blue), STR (21 replicates, orange), NTR (21 replicates, teal), FOX (20 513 

replicates, purple), TMP (21 replicates, black), CPR (20 replicates, cyan). 514 

 515 

Figure 3. Rescaled net (DA) and emergent (E3) interaction distributions. Panel A and C show 516 

the overall net level (DA) which encompasses all component pairwise and three-way 517 

interactions. Panel B and D show interaction at the emergent level (E3), where the pairwise 518 

interactions are subtracted from the net interactions so that only the truly three-way 519 

interaction part remains. The colors correspond to drug concentration, where IC95 were used 520 

as the maxima (see methods). Drug concentrations above IC95 were counted as the maxima. 521 

(A) Rescaled DA, (B) rescaled E3, (C) smoothed DA, (D) smoothed E3. Low drug concentrations 522 

(red) result predominantly in additive (–0.5 < DA < 0.5) or antagonistic interactions (DA > 0.5). 523 

Higher concentrations (green to purple) are more evenly distributed among interaction types. 524 

 525 

Figure 4. Distributions of transitions between interaction types from a low dose (index 1) to a 526 

high dose (index 6). To assess the effect of increasing dose on interaction in a two- drug case, 527 

we compared drug interaction of drug A at a sub-inhibitory concentration and drug B at either a 528 

high dose and a low dose. In a three-drug combination, the interaction was examined with a 529 

third drug at a high and low dose. Pairwise interactions (DA2, i.e. overall pairwise interaction) 530 

are dominated by antagonism and additivity at the low dose (green and gray, 99%), while a 531 
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total of 10% are synergistic at the high dose (left). Three-way (DA) interactions are mostly 532 

additive at the low dose (gray, 76%) and antagonistic (green, 22%), but change from additivity 533 

to antagonism (16%) and from additivity or antagonism to synergy (21%) at the high dose. The 534 

emergent three-way interactions measured by E3 are mainly additive at the low dose (gray, 535 

89%) with the rest being antagonistic, and result in very few synergistic interactions at the high 536 

dose (3%), with some being antagonistic (22%) and a majority being additive (75%). 537 

 538 

Figure 5. Comparisons of three-way interactions to pairwise interactions. For each three-drug 539 

combination, we calculated three-way net (DA), pairwise net (DA), and three-way emergent 540 

(E3) interaction metrics for all possible drug pairs and doses with the third drug at low, 541 

intermediate, and high concentrations (dose indices 2, 4, and 6). The relationship between the 542 

three-way DA at dose index 6 and the mean of the three pairwise DAs at the same doses shows 543 

a strong positive correlation (Spearman’s ρ = 0.793), whereas this correlation is absent between 544 

E3 and three-way DA, as well as between E3 and the mean pairwise DA. Together, this suggests 545 

that the E3 interactions emerge independently of the pairwise interactions. The pairwise 546 

interactions surprisingly are negatively correlated with the emergent three-way interactions. 547 

DA and E3 are evaluated at a high dose (dose index 6), and markers are colored according to 548 

the three-way DA value for antagonism (green), additivity (gray), and synergy (red). Three-way 549 

DA and E3 are calculated for one drug at dose index 6 and the other two drugs at all dose 550 

combinations. The three pairwise DA components are calculated with one of the three drugs 551 

concentrations at zero. The mean pairwise-E3 correlation for synergy alone is ρ = –0.619 (See 552 

Fig. S8). 553 
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Table 1. List of drugs used in the study. 554 

 555 
Table 1.   556 
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Figure 1.  558 
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Figure 2.  561 
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Figure 3. 564 
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Figure 4. 567 
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Figure 5. 570 
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